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Abstract With advancements in virtualization technology,
datacenters are often faced with the challenge of manag-
ing large numbers of virtual machine (VM) requests. Due to
this large amount of VM requests, it has become practically
impossible to search all possible VM placements in order
to find a solution that best optimizes certain design objec-
tives. As a result, managers of datacenters have resorted
to the employment of heuristic optimization algorithms for
VM placement. In this paper, we employ the cuckoo search
optimization (CSO) algorithm to solve the VM placement
problem of datacenters. Firstly, we use the CSO to opti-
mize the datacenter for the minimization of the number of
physical machines used for placement. Secondly, we imple-
ment a multiobjective CSO algorithm to simultaneously
optimize the power consumption and resource wastage of
the datacenter. Simulation results show that both CSO algo-
rithms outperform the reordered grouping genetic algorithm
(RGGA), the grouping genetic algorithm (GGA), improved
least-loaded (ILL) and improved FFD (IFFD) methods of
VM placement.
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1 Introduction

Recently, datacenters have become more robust. This is
due to the employment of virtualization technology which
enables the resources of a single large server to be divided
into several isolated execution environments running on vir-
tual machines. This has resulted in the creation of datacen-
ters with fewer physical servers, high per-server utilization,
higher availability, enhanced flexibility, as well as reduced
hardware and operational costs. However, this flexibility
provided by virtualization has caused the client base of most
cloud service providers to significantly grow over the years.
This has compelled large cloud service providers (such as:
Amazon, Google and Microsoft) to deploy datacenters that
consume huge amount of energy [1]. Consequently, the
energy cost of operating and cooling infrastructure within
such datacenters has significantly increased and in some
cases even exceeding the cost of acquiring hardware. Recent
studies have shown that the energy cost of datacenters
around the world is around $20 billion [2, 3]. Thus, cutting
down the energy cost of such datacenters causes a signif-
icant cost savings for both clients and providers of cloud
services. Furthermore, other than enormous energy costs,
rise in power consumption has been shown to cause consid-
erable increase in heat dissipation which in turn increases
hardware failure rates [4]. Hence, reducing energy con-
sumption significantly affects the availability, productivity,
as well as reliability of datacenters. Additionally, the meth-
ods of generating such large amount of energy could cause
increase in carbon footprint and nuclear wastes disposed
into our surroundings. There have been several attempts
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to conserve energy within datacenters, which includes the
employment of energy efficient hardware. However, cutting
down energy wasted due to over-provisioning of hardware
has been shown to provide great amount of savings [2]. In
order to sustain service availability during peak resource
demands, present day datacenters are typically over pro-
visioned. However, nowadays resource requests are often
bursty in nature. This causes a low average utilization of
resources in the range of 15-20 % [5]. Thus, energy conser-
vation techniques such as turning off idle servers can lead to
huge energy savings.

The virtual machine placement problem is a Multi-
Capacity Bin Packing Problem (MCBPP) which is a variant
of the well-known bin-packing problem [6]. In such prob-
lems, there exist items of different sizes which are to be
packed into bins of a given capacity, such that a minimum
number of such bins are used. In the case of the VM place-
ment problem, items to be packed are the VMs, and their
sizes are the resource utilizations. The bins are the physi-
cal servers and their capacity is the utilization threshold of
the servers. Finally, the dimensions are represented by the
kind of resources (e.g. CPU and memory). Figure 1 shows
the packing of three VMs into a single server with two
dimensions, i.e., CPU and memory.

A two-level control approach (shown in Fig. 2) for
automating the management of resources in datacenters
was developed by Tolia et al. [7]. The local controller in
Fig. 2 is responsible for estimating the amount of compute
resources required by applications to guarantee their perfor-
mance. This estimation usually involves either some form
of approximation or profiling in which an application is run
on a server for few weeks and then the peak utilization of
resources are taken as the resource utilization request for
such application. In general, the local controller maps appli-
cations to physical resource requirements. In contrast, the
global controller (shown in Fig. 2) is in charge of final VM
placement and resource allocation. The global controller
receives resource utilization requests in the form of VM
requests from the local controller and then finds the place-
ment and amount of physical resource to allot to each VM.
However, this initial placement carried-out by the global
controller may have to change over time. This is due to
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Fig. 1 A typical example of VM placement on a single server
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Fig. 2 Two-level control architecture for automating resource man-
agement in datacenters. [8]

the fact that workloads represented as VMs are dynamic
in nature. This means that some VMs may change their
resource requirements or release resources due to task com-
pletion. Moreover, additional VM requests may enter into
the datacenter. In each of the aforementioned cases, the
global controller should be able to receive some feedback
on the condition of workloads within the datacenter. From
the Feed-Back block (shown in Fig. 2), the global con-
troller is capable of finding better placements for existing
as well as incoming VM requests. VM migration technol-
ogy [8] is often employed to enable the global controller
perform dynamic placement of VMs. Our proposed CSO
algorithm is used for VM placement, which is the job of the
global controller. Thus, the CSO algorithm will be used by
the global controller for both VM placement and also re-
placement in the case of dynamic placement of VMs. The
CSO algorithm enables the global controller to find better
placements for the VM requests it receives from the local
controller.

The cuckoo search optimization (CSO) algorithm is
inspired from the aggressive reproduction strategy of the
wonderful cuckoo bird [9]. Some species of cuckoos engage
in obligate brood parasitism behaviour, in which a bird (the
parasite) lays its egg in the nest of another bird (the host)
so that the host becomes responsible for the incubation and
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hatching of the parasites’ egg(s). However, some of these
host birds are very vigilant and could engage the intruding
bird cuckoo in direct conflict. Moreover, if the host discov-
ers that some of the eggs in its nest are not its own, it either
throws the alien ones away or discards the entire nest and
builds a new one elsewhere. Other species of cuckoo such
as New World Brood-Parasitic Tapera have evolved in such
a way that they lay eggs that mimic the color and size of
that of their hosts. This reduces the chance that their eggs
will be identified and eventually discarded, thus increasing
their reproductivity. Most parasitic cuckoos lay their eggs
in fresh host nests. This increases the chance that their eggs
will get hatched earlier than that of their hosts. Once the
first cuckoo bird is hatched, it blindly propels other eggs
out of the nest to increase its share of food provided by
the host bird. The CSO algorithm employs the use of 1évy
flight for both local and global searching. The 1évy flight
is a random walk characterized by sudden jumps. Stud-
ies have shown that such characteristic is demonstrated by
the flight behaviour of many insects and animals. Recent
applications of such behaviour in optimization and optimal
search has yielded interesting results [10]. Figure 3 shows
a typical plot of the 1évy flight. Assuming the imaginary
rectangular border to be the design space of an optimiza-
tion problem, it can be clearly seen that the 1évy process
randomly searches the design space with a high degree of
exploitation and diversification. Walton et al. [11] presented
two modifications to the original cuckoo search by Yang
et al. [9]. These improvements enable the cuckoo search
achieve faster convergence rate as well as wider application.
The CSO algorithm proposed by Walton et al. [11] is shown
in Fig. 4. It is based on partitioning the nests into top and
bottom nests according to their cost such that the number
of bottom nests is equal to P, of the number of nests. Then
each of the bottom nests is replaced using a 1évy flight-based
perturbation. For each of the top nests, a new nest is created
either using a 1évy flight-based perturbation or based on a
crossover of two randomly selected top nests. If the cost of
the new nest is less than a randomly selected nest among the
population it replaces it.

The CSO algorithm offers many advantages over other
metaheuristics. One is that its design involves the tuning
of few parameters, such as the percentage of bottom nets
and the generation of 1évy flight step size. Moreover, the
CSO algorithm together with 1évy flight has been shown to
outperform the genetic algorithm (GA) and particle swarm
optimization (PSO) for solving complex optimization prob-
lems [9].

In this paper, we employ the cuckoo search optimization
(CSO) algorithm [9] to solve the virtual machine place-
ment problem. Firstly, we implemented a CSO-based server
consolidation algorithm. The CSO for server consolidation
uses a VM-based fitness measure to determine the quality

Fig. 3 A typical plot of levy flight

of solutions in the population. Moreover, we propose new
perturbation functions that enable the CSO algorithm to
traverse the large design space effectively. The fitness mea-
sure and perturbation functions used have shown to perform
well. Furthermore, we implemented a multiobjective CSO
algorithm for VM placement. In this case, we aim to simul-
taneously optimize the datacenter for reduced power and
resource wastage. A fuzzy evaluation function is used to
combine the two objectives into a single objective which
we aim to optimize. To the best of our knowledge, this is
the first attempt to use the cuckoo search optimization algo-
rithm to solve the VM placement problem. Moreover, we
have shown that the CSO algorithm can be used to solve
both the server consolidation problem as well as multiobjec-
tive optimization of the datacenter. The rest of the paper is
organised as follows. In Section 2 we discuss works related

1. P, +0.75, ¢ < 1.62, M AXiter < 350

2: Initialize the Population

3: Rank the entire population according to cost

4: for G =1 to M AXiter do

5. partition the population into top and bottom nests

for all X; in bottom nests do
use Lévy flight to create a new nest X from X;
replace X; with X,

9: end for

10:  for all X; such that X; is in top nests do

11: Select another random top nest X;

12: if (X; = X;) then

13: perform Lévy flight from X; to create a new nest Xy,
14: Select a random nest X;

15: if (Cost(Xy) < Cost(X;)) then

16: replace X; with X},

17: end if

18: else

19: Move a distance d, = |X; — X;|/4 from X; to create a new nest Xy,
20: validate X

21: Select a random nest X;

22: if (Cost(Xy) < Cost(X;)) then

23: replace X; with X}

24: end if

25: end if

26:  end for

27:  Rank the nests according to their costs
28: end for

29: Save the best achieved nest and its cost

Fig. 4 Modified CSO algorithm by Walton et al. [11]
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to the VM placement problem. Section 3 presents the CSO
algorithm for server consolidation. In Section 4, the mul-
tiobjective CSO algorithm for VM placement is presented.
Finally, Section 5 concludes the paper.

2 Related work

Most algorithms designed to solve the VM placement prob-
lem can be broadly classified into two: those that attempt
to optimize the datacenter for reduced number of physical
machines (servers), which is referred to as server consoli-
dation and those that attempt to optimize the datacenter for
other objectives such as: power consumption, thermal dis-
sipation and resource wastage. As stated earlier, the VM
placement problem is a variant of the vector bin-packing
problem; as such heuristics developed to solve the vec-
tor bin-packing problem can be adapted to solve the VM
placement problem. The vector bin-packing problem has
many applications, such as: scheduling, material cutting,
loading and layout design [12]. However, even the simple
one-dimensional vector bin-packing is known to be NP-
hard [13]. Deterministic heuristics have been developed
to solve the vector bin-packing problem [14]. The First-
Fit-Decreasing (FFD) heuristic and Least-Loaded heuristic
(LL) are among the prominent of these methods [15]. In
the FFD algorithm, items to be packed are initially sorted
in decreasing order of their sizes. In a single dimensional
bin-packing, this sorting process is trivial. However, in the
case of multidimensional bin-packing, Maruyama et al. [12]
have proposed eight different methods for sorting the items
according to their multidimensional sizes. Subsequently,
each item in the sorted list is then packed in the first exist-
ing bin that can accommodate it. However, if all the existing
bins are sequentially scanned and none could accommo-
date an item, a new bin is introduced into the solution to
accommodate such an item and the algorithm keeps pack-
ing remaining items till all the items have been successfully
packed.

In contrast, the LL algorithm tries to balance loads
among the existing bins by assigning an item to the least
loaded bin. Ajiro et al. [15] proposed a new technique for
improving the standard FFD and LL. Experiments con-
ducted proved that the improved versions of FFD (IFFD)
and LL (ILL) outperform the standard FFD and LL algo-
rithms. Non-deterministic algorithms that can be employed
to solve the server consolidation problem include Falke-
nauer’s grouping genetic algorithm GGA [16]. The pro-
posed GGA was developed to address the failure of the
classic genetic algorithm (GA) in solving most grouping
problems. The GGA employs the use of a group-based
encoding scheme rather than the individual or item-based
encoding of the classic GA. However, due to this new
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encoding scheme, Falkenauer [16] designed new mutation
and crossover operations that apply to the new encoding. An
enhancement of the GGA is the reordered grouping genetic
algorithm (RGGA) proposed by Wilcox et al. [17]. The
RGGA employs the use of two solution encoding schemes-
the group-based encoding as well as the packing sequence
encoding. Moreover, RGGA employs a modified version
of GGA’s fitness function in order to solve Multi-Capacity
Bin Packing Problems. Additionally, the authors designed
new mutation and crossover functions. With equal probabil-
ity, the RGGA performs three mutation functions: the swap,
move and remove. Additionally, RGGA uses the steady state
genetic algorithm [18]. Another form of the GGA is the
exon shuffling genetic algorithm proposed by Rohlfshagen
etal. [19].

In contrast, other works attempt to optimize the data-
center for objectives other than minimizing the number of
physical servers used. Such objectives include: low power
consumption, reduced resource wastage, and low thermal
dissipation [3]. Additionally, other studies have attempted to
simultaneously optimize more than one objective in what is
popularly known as multi-objective optimization. Examples
of such works include multi-objective ant colony system
(VMPACS) of Gao et al. [20]. VMPACS optimizes the dat-
acenter for both reduced power consumption and resource
wastage. A similar work is the modified grouping genetic
algorithm (MGGA) proposed by Xu et al. [8].

3 CSO for server consolidation

In this section we explain the implementation of a cuckoo
search optimization (CSO) algorithm for solving the vir-
tual machine placement problem targeting the minimization
of the number of physical machines used for placement.
This is often referred to as server consolidation. As dis-
cussed in Section 1, in server consolidation, VMs are
placed onto the datacenter in such a way that a minimum
number of physical servers are employed. Subsequently,
any machine that does not host any VM is switched off
in order to cut down power consumption. Moreover, this
section compares the performance of the CSO algorithm for
server consolidation with that of RGGA [17], GGA [16],
improved least-loaded (ILL) [15] and improved FFD (IFFD)
[15].

3.1 Problem definition

This section details the server consolidation problem and
also elaborates on the optimization equation and constraints.
In this work, the datacenter is considered to be fully virtual-
ized such that all applications run on virtual machines. Thus
the virtual machine placement problem is that of assigning



Cuckoo search based resource optimization...

493

these VMs to physical machines such that certain design
objectives are optimized. In the server consolidation prob-
lem the design objective is the minimization of the number
of physical servers used for placement. CPU and mem-
ory dimensions are used to characterize a VM and a server
node. Disk size dimension is not considered because it is
assumed that network-attached-storage (NAS!) is used as
the main storage. If a server hosts more than one VM, the
CPU utilization of the server is estimated as the sum of
CPU utilizations of the VMs it hosts. Similarly, the mem-
ory utilization of the server is approximated as the sum
of memory utilizations of the hosted VMs. Moreover, we
assume a homogeneous datacenter, where all the servers
have identical capacities.

Next, the VM placement equation and constraints are
defined. Suppose that there are n number of VMs that can be
placed on m servers with the assumption that there exist no
VM request that cannot be handled by a single server. Vari-
ables i and j represent a VM and server, respectively. Thus
sets I and J represent all VMs and servers, respectively. Let
p{ denote CPU request of VMi and p!" denote the memory
request of VM. Additionally, let T¢; and 7;,; be the maxi-
mum capacity of CPU and memory utilization of server j,
respectively. In addition we define the following two binary
decision variables:

—  Server allocation variable y;, equals 1 if server j is in
use and 0 otherwise.

— VM allocation variable x; ;, equals 1 if VMi is placed
in server j, and O otherwise.

Since the fundamental aim of the server consolidation
algorithm is to place the given VMs such that the minimum
number of servers is used, the placement problem can be
formulated as:

m
Minimize f(y) = ) y;
j=1

subject to:
n
pr'xi,jSch')’j vjieJ (1)
i=1
n
D oM xij < Twj-y; Vi€l )
i=1
m
in,jzl Viel (3)
j=1
yj,xj€0,1 VjeJ and Viel “4)

Constraints (1) and (2) guarantee that the capacity thresh-
old of each server is not exceeded. Moreover, constraint (3)

'NAS device is a dedicated server used for storing and sharing files.

ensures that a VM is placed in exactly one server. Finally,
constraint (4 )represents the domain of variables x; ; and y;.

3.2 Proposed CSO for Server Consolidation

The CSO algorithm employs a similar chromosome rep-
resentation as the GGA, where genes represent groups
(servers) instead of individual items (VMs). An illustration
of such encoding is: A = {4,5,6}, B={1,2,7},C={3,8},D=
{0,9,10}. Where A,B,C and D represent servers and numbers
0-10 represent VMs. Thus, this nest? can be represented as:
{4,5,6} {1,2,7} {3,8} {0,9,10}. The modified CSO algorithm
for VM placement shown in Fig. 5 can be divided into three
parts: the initialization phase, bottom nest perturbation and
top nest perturbation. In the initialization phase, initial pop-
ulation and algorithm parameters are set. The population is
then partitioned into top and bottom nests. In the second
phase, each bottom nest is then perturbed and replaced by its
perturbed version. In the top nest perturbation phase, each
top nest is also perturbed and then a random nest is picked
from the entire population, if the fitness of perturbed top
nest is better than the randomly selected nest, it replaces
it in the population. The best nest seen is then saved and
the algorithm keeps iterating till the maximum iteration is
reached.

In detail, the algorithm begins by setting initial parame-
ters such as fraction of population in the bottom nests P,
and the maximum number of iterations M AXiter. The ini-
tial population of size S is generated by initially obtaining S
random permutations of the VM requests. Subsequently, for
each of these random permutations, the first fit (FF) heuris-
tic [16] is run to obtain a placement solution. Thus, at the
end we are able to obtain S different placement solutions to
serve as the initial population. Next, the fitness of each nest
is found by computing the average fitness of placed VMs
based on the fitness of a VM given in (5). Subsequently,
a procedure (line 6) commences and is repeated M AXiter
times. This procedure starts with the partitioning of the pop-
ulation into top and bottom nests. This partitioning is done
by first obtaining the 75" percentile of the population fit-
ness. The first 75 % of the population that have fitness less
than or equal to the 75" percentile form members of the
bottom nests, and the remaining nests are selected as mem-
bers of the top nest. This ranking method is used in order
to avoid the computationally expensive sorting used in the
modified cuckoo search algorithm [11]. Subsequently, for
each nest belonging to the bottom nest (line 8-12) we gen-
erate a new nest using the Perturb_1 function (described in

2The terms “nests” and “egg” are used interchangeably to denote a VM
placement solution
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1: P, + 0.75 {P, is the fraction of population belonging to bottom nests}
2: Set M AXiter {MAXiter is the maximum number of iteration}

3: Generation number G + 1

4: Initialize the population

5: Calculate the fitness of each nest

6: for G =1 to M AXiter do

7. Partition the population into top and bottom nests

8 for all X; such that X; is in bottom nests do

9: X; « Perturb_1(X;)

10: Xi — X

W f(X) e f(X)

12:  end for

13:  Partition the population again into top and bottom nests

14:  for all X; such that X; is in top nests do

15: Xy, < Perturb2(X;)

16: Select a random nest X; from the entire population
17: if f(X) > f(X;) then

18: X[ — Xk

19: F(X0) + F(X2)

20: end if

21:  end for

22:  Store the best nest seen so far and its fitness
23: end for

Fig. 5 Modified CSO algorithm for VM placement

Section 3.2.2). The new nest generated is made to replace
the old bottom nest. The population is then partitioned again
into top and bottom nests.

Next, the algorithm moves to the top nests procedure
(line 14-21). For each top nest, a new nest Xy is generated
from the current top nest by using the Perturb_2 function
(explained in Section 3.2.3). Subsequently, a random nest
X is picked from the entire population. If the fitness of the
newly created nest (X}) is better than that of X, it replaces
X; in the population. After the top nest procedure, the best
nest found so far is stored and the outer-loop keeps repeating
until M AXiter is reached.

It should be observed that the differences between our
proposed CSO algorithm and that proposed by Walton et al.
[11] is that we rank the population again after perturbing the
bottom nests as we have found that this step improves the
results. In addition, we perturb the top nests differently as
illustrated in Section 3.2.3.

3.2.1 Fitness evaluation

One of the main characteristics of a good heuristic algo-
rithm is the definition of a good fitness evaluation function.
For the VM placement problem, the first fitness measure
that comes to mind is the employment of number of servers
used for placement, which is correct from a mathematical
point of view. However, as highlighted by Falkenauer [16]
this fitness measure is not practical. This is because it leads
to an extremely unfriendly landscape of the design space.
By using such fitness measure in a population-based heuris-
tic like CSO algorithm, individuals (nests) in the population
will all have the same fitness prematurely. Considering
these limitations, a fitness measure which is item (VM)
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Fig. 6 perfect placement of VMs on a server

based rather than the group (server) based is employed. This
fitness measure is intuitively speaking and considers the fit-
ness of a packed VM as a function of how well it utilizes the
space remaining? in the server. A VM that fills this remain-
ing space well receives a high fitness while the one that fails
to fill the space well gets a lower fitness. Equation 5 shows
this fitness measure of a given VM. The numerator denotes
the CPU and memory requests of the VM in question, while
the denominator denotes the remaining CPU and memory
capacity of the server assuming the VM is removed from the
server. It should be noted that in the denominator, variable k
cannot take the value of i.

pi + o )

n n
T.— Y pf)+(Tn— X o
k=1,k#i k=1,ki

As an illustration, consider the placement of three VMs
in a server shown in Figs. 6 and 7 with thresholds 7, and
T, set as 90 % . In the case of Fig. 6, from (5) the fitness
of VML is 1 and so is the finesses of the other two VMs
since they completely fill the server capacity. In contrast, in
Fig. 7, from (5) the fitness of VMI is computed as 0.46.
This low fitness resulted because in Fig. 7 VM1 does not
utilize the remaining space within the server well. Thus (5)
is able to completely model how well VMs are placed within
a server. Subsequently, the fitness for a server is computed
as the average fitness of the VMs placed in the server. The
overall fitness of a nest (placement solution) is taken to be
the average fitness of all VMs contained in the solution.

3.2.2 Perturb_I function

The CSO perturb_1 function is executed in line 9 of the
CSO algorithm. The function receives a nest as input, it
then generates a number x from a 1évy distribution [9]:
x = (1 — u)~Y* where u is a uniform random variable in
the range [0, 1] and @ = G'/® with G as generation number.
Subsequently, x number of randomly selected servers are

3This means the residual space within the server assuming that the
particular VM is removed from the server
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Fig.7 Placement of VMs on a server with wasted resources

deleted from the nest. However due to this deletion, VMs
contained in the deleted servers are missing from the nest
and need to be reinserted. One of the 8 sorting methods of
Maruyama et al. [12] is then randomly selected to sort the
missing VMs. Finally, the sorted VMs are reinserted into the
solution by using the first-fit (FF) heuristic and the function
returns the completed solution.

3.2.3 Perturb_2 function

The perturb_2 function is executed in line 15 of the CSO
algorithm within the top nests. The function receives a sin-
gle nest as input. It then finds the fitness of each server
within the nest. The fitness of each server is estimated as
the average fitness of the VMs it hosts (calculated from (5)).
The servers are then partitioned into top and bottom groups
based on their fitness. Experimental testing has shown that
by selecting the best 75 % of servers as members of the
top group and the remaining 25 % as bottom group, bet-
ter results are obtained. In order to avoid the sorting of
servers within the nest, the partitioning process adopted is
similar to that of partitioning the population into top and
bottom nest explained in Section 3.2. Subsequently, the
servers belonging to the bottom group are deleted from the
nest. The VMs in the deleted servers are then sorted accord-
ing to one of the sorting methods of Maruyama et al. [12].
They are then replaced into the nest by using the first-
fit (FF) heuristic. The final resulting nest is then returned
by the function.

3.3 Experimental results

In this section we discuss the experimental findings.
All algorithms are implemented in MATLAB R2012b
(8.0.0.783) running on Windows 7 Ultimate 64-bit (6.1,
build 7601). It is run on a computer with 200GB RAM
and Intel(R) Xeon(R) CPU X5690 3.5GHz (24CPUs). In
order to generate the dataset for this kind of experiment,
all that is needed is to develop sequences of random CPU
and memory requests for VMs in an experiment that has
several correlations. However as pointed out by Ajiro et
al. [15] there is no available standard method for gener-
ating such sequences. Thus the method adopted is to use

the probability P that both the CPU and memory utiliza-
tion of a server would be equal to or greater than some
set reference values or that both utilizations would be less
than the reference values. The pseudocode of Fig. 8 is used
to generate such instances of CPU and memory utilization
requests.

In the procedure above, the function rand(x) returns ran-
dom numbers that are uniformly distributed in the range [0,
X). R, and R,, represent the reference CPU and memory
utilization, respectively. These reference values are set as:
R. =Ry, =25 % and R, = R;; =45 %. P is a probabil-
ity that is used to control the correlations between memory
utilizations and that of CPU. The value of P is set to: 0.0,
0.25, 0.50, 0.75 and 1.0, respectively. These values corre-
spond to strong negative, weak negative, zero, weak positive
and strong positive correlations, respectively. Random VM
requests are generated while incrementing the values of
probability P. Thus for each reference value, five sets of
VM requests are generated with each set representing dif-
ferent correlations. VM requests are produced for the case
where the number of VM requests (n) is set to 200 and the
case where it is set to 500, respectively. Thus, for each of
the two cases (n = 200 and n = 500) there are five VM
request sets, with each representing different correlations
between the CPU and memory dimension of VM requests.
For each correlation value we generated 100 instances of
VM requests, e.g., for the settings n = 200, R, = R, =
25 % and P = 0 (strong negative correlation) we have 100
instances of 200 VM requests. The same is repeated for
other settings. All algorithms are used to solve the place-
ment of each of these 100 instances of VMs into physical
servers and the average results are reported in Table 1. In all
experiments, the resource capacity threshold (7, and 7;,,) of
all servers was set to 90 %.

The population size and maximumm iteration number of
the CSO, RGGA [17] and GGA [16] algorithms is set to
25 and 100, respectively. The RGGA implemented is the
steady state genetic algorithm [18] with crossover rate and
mutation rates of 0.8 and 0.1, respectively as proposed by
Wilcox et al. [17]. Similarly, the GGA implemented is a
generational genetic algorithm with crossover rate of 0.8
and mutation rate of 0.1. Since the GGA fitness measure
was designed to solve only single dimensional bin pack-
ing problem, the GGA implemented uses the RGGA fitness

fori=1ton
p$ « rand(2R.)
P < rand(R,,)
r = rand(1.0)
if (r < Pand p{ > R.)or (r>Pand p§ < R.)
L
end if
end for

Fig. 8 Pseudocode for Dataset. [15]
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Table 1 Comparison of the CSO algorithm with other Techniques for server consolidation

n =200 n =500
Reference value Corr. Algorithm m m/LB Time(s) m m/LB Time(s)
R.=Ry=25% strong -ve CSO 59.40 1.03 5.66 145.86 1.03 22.68
RGGA 62.26 1.08 2.03 153.63 1.08 9.58
GGA 61.32 1.06 5.94 152.79 1.08 25.03
ILL 62.89 1.09 3.05 155.59 1.10 43.22
IFFD 66.10 1.14 5.33 164.15 1.16 202.61
weak -ve CSO 58.98 1.02 5.64 144.31 1.02 22.64
RGGA 60.91 1.05 1.95 149.22 1.05 8.99
GGA 60.44 1.04 5.80 149.27 1.05 24.53
ILL 61.60 1.06 2.26 152.69 1.08 30.88
IFFD 64.46 1.11 4.25 160.73 1.13 176.98
7ero CSO 58.75 1.02 5.80 143.76 1.01 23.21
RGGA 60.44 1.05 1.96 147.67 1.04 8.85
GGA 59.84 1.04 5.72 148.00 1.04 25.05
ILL 60.80 1.05 1.82 150.41 1.06 25.88
IFFD 63.87 1.11 3.94 160.00 1.13 172.56
weak +ve CSO 57.96 1.02 5.80 143.19 1.01 23.95
RGGA 59.53 1.04 1.91 146.15 1.03 8.82
GGA 59.08 1.04 5.65 146.75 1.04 25.39
ILL 59.79 1.05 1.56 149.18 1.05 22.18
IFFD 62.21 1.09 322 155.50 1.10 130.21
strong +ve CSO 57.74 1.01 5.83 142.19 1.01 24.30
RGGA 58.87 1.03 1.88 144.74 1.03 8.69
GGA 58.59 1.03 5.61 145.30 1.03 25.15
ILL 59.20 1.04 1.30 147.75 1.05 19.26
IFFD 60.77 1.07 2.19 150.69 1.07 86.50
R. =R, =45% strong -ve CSO 121.01 1.17 9.56 290.75 1.14 42.07
RGGA 123.79 1.20 3.82 299.30 1.17 18.41
GGA 122.34 1.18 10.02 297.89 1.17 50.01
ILL 123.59 1.20 11.34 296.84 1.16 332.94
IFFD 122.37 1.19 17.24 293.77 1.15 563.04
weak -ve CSO 118.48 1.15 9.25 286.27 1.12 41.08
RGGA 121.40 1.17 3.72 294.50 1.15 18.00
GGA 120.05 1.16 9.82 293.69 1.15 48.71
ILL 120.85 1.17 9.56 292.10 1.14 248.56
IFFD 120.65 1.17 15.78 291.66 1.14 458.57
7ero CSO 116.07 1.13 8.99 278.96 1.10 39.76
RGGA 118.96 1.15 3.65 287.73 1.13 17.66
GGA 117.91 1.14 9.62 287.75 1.13 47.59
ILL 118.54 1.15 8.24 285.71 1.12 247.50
IFFD 118.71 1.15 13.74 288.40 1.13 425.66
weak +ve CSO 114.11 1.11 8.90 272.39 1.08 38.72
RGGA 117.05 1.14 3.52 280.58 1.11 17.08
GGA 116.05 1.13 9.48 281.35 1.11 46.33
ILL 116.56 1.13 7.09 278.99 1.10 190.17
IFFD 117.53 1.14 12.29 285.10 1.13 382.67
strong +ve CSO 109.64 1.07 8.66 267.71 1.06 37.93
RGGA 112.32 1.10 3.38 274.52 1.09 16.59
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Table 1 (continued)
GGA 111.43 1.09
ILL 111.54 1.09
IFFD 114.02 1.12

9.16 275.27 1.09 45.36
4.75 271.41 1.07 102.23
9.48 281.37 1.11 333.76

measure which is a modification of the GGA fitness for
solving multidimensional bin packing problems. In contrast,
for the deterministic methods of ILL and IFFD, the maxi-
mum number of repetition (MAXR) [15] parameter was set
as follows: 30 % of number of VM requests (n) for IFFD
and 10 % for ILL as recommended by Ajiro et al. [15].

Table 1 compares the performance of the proposed
CSO algorithm with that of RGGA [17], GGA [16], ILL
[15] and IFFD [15] algorithms. The performance mea-
sures are: The average number of physical machines used
for placement (m), average consolidation ration (m/LB)
and execution time in seconds. LB is the theoretical lower
bound on the number of servers that can be used for
placement given as:

LB =max {[ (37 o)) /Te] [(Cies o) / T ]}

Thus, as the number of physical machines used for place-
ment (m) approaches the theoretical lower bound (LB) the
server consolidation ratio (m/LB) converges to a value of 1.
From Table 1 we observe the following:

— For both scenarios reported i.e., where n = 200 and
n = 500, the CSO algorithm outperforms the RGGA,
GGA, ILL and IFFD in terms of both average number
of machines used for placement (m) and average server
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Fig. 9 Convergence of CSO with other Techniques

consolidation ratio (m/LB) in all reported cases. Thus,
we can conclude that placement solutions obtained by
employing the CSO algorithm have less number of
physical machines (m) than those obtained from other
reported algorithms.

—  From the last column (Time (s)), it can be observed that
the good results of the CSO algorithm are obtained at
competitive run times.

— As correlation increases (from strong negative to strong
positive), the number of machines needed for place-
ment decreases. This is because when there is a negative
correlation between the CPU and memory requests of
VMs, the VM placement generally results in plenty of
wastage in each server and as a result a large number of
servers are needed to accommodate the VMs.

— It can be observed that more number of servers (m) are
needed for placement when the reference values R, and
R, are set to 45 % than when they are set to 25 %.
This is because in the first scenario, the VM utilization
requests are in the range [0,90 %) while in the second
case the range is [0,50 %). Thus due to the VM sizes
in the first case (R, = R, = 45 %) more number of
server are needed for placement.

In the plots of Figs. 9a —10a we aim to compare the
convergence rate of the proposed CSO algorithm with that
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of the RGGA and GGA algorithms. From our generated
dataset, we selected one of the 100 instances of the case
where R, = R, = 45%, n = 500, at P = 0O (strong nega-
tive correlation; Fig. 9a), P = 3 (zero correlation; Fig. 9b)
and P = 5 (strong positive correlation; Fig. 10a), respec-
tively. For each experiment, the same initial population was
fed into the algorithms and each of the algorithms is run
10 times on the same initial population and then the best
traces obtained are plotted. From the plots in Figs. 9a—10a
we can observe that after few iterations the CSO algorithm

700

has faster convergence rate than the RGGA and GGA algo-
rithms. Moreover, looking at the number of servers used
for placement at the end of the 100" iteration, we can see
that the CSO algorithm clearly outperforms the RGGA and
GGA algorithms.

Similarly, Fig. 10b shows a plot of the average number of
servers in the population of the CSO algorithm per iteration.
The curve is for the case where: R, = R, = 45 %, n = 500
and P = 0. The main aim of this experiment is to see how
the average qualities of nests evolve with iteration. From the

Fig. 11 Testing the CSO for
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figure, it can be observed that the average number of servers
per iteration does not decrease uniformly with iteration. The
curves show a hill-climbing-like behavior, which is one of
the attractive features of the CSO algorithm (line 8-12) that
enables it to escape the local minima of most optimization
problems.

In Fig. 11, the CSO algorithm is tested for scalability. The
aim of this experiment is to investigate how long the CSO
algorithm takes to perform the placement of a large num-
ber of VMs. In the pseudocode of Fig. 8, we set P = 0O i.e.,
strong negative correlation. This case was chosen because it
is the most difficult to solve. The number of VMs (n) is then
gradually incremented from 200 to 2000 in steps of 200.
From the graph of Fig. 11 it can be observed that even in the
case where the reference values are set to 45 %, the place-
ment of 2000 VMs took approximately 11 minutes, which
shows that the proposed CSO algorithm is scalable.

4 Multiobjective CSO for virtual machine
placement

In this section we present the implementation of a multi-
objective cuckoo search optimization (CSO) algorithm for
solving the virtual machine placement problem. In the mul-
tiobjective CSO, the datacenter is optimized for the simul-
taneous minimization of power consumption and resource
wastage. As highlighted in Section 1, power consumption as
well as resource wastage are among the major factors that
contribute to the capital cost of running large datacenters.
Therefore, reducing both power consumption and resource
wastage causes a significant reduction in cost as well as
potential decrease in carbon footprint. The implemented
multiobjective CSO is compared with reordered grouping
genetic algorithm (RGGA) [17], grouping genetic algo-
rithm (GGA) [16], improved least-loaded (ILL) [15] and
improved FFD (IFFD) [15] algorithms for VM placement.

4.1 Problem definition

This section discusses the optimization equations of the
multiobjective VM placement.

4.1.1 Resource wastage model

Different VM placement solutions often result in varied
resource wastages on each server. Thus to fully utilize mul-
tidimensional resources, potential cost of wasted resources
is computed using the following equation [20]:

_|L;”—L;|+s

W, = 6
/ U+ US ©)

Where: W; represents the resource wastage of the jth
server, U J’” and U]? denotes the normalized memory and
CPU resource usage (i.e., the ratio of used resource to total
available resource), respectively. L;’.1 and L? represent the
normalized remaining memory and CPU resource, respec-
tively, while ¢ is a constant with value set as 0.0001. This
constant (¢) is added to prevent the case where the resource
wastage of a server is returned as zero. The main idea of
(6) is to make efficient utilization of resources in all dimen-
sions and balance the remaining resources on each server
along different dimensions. Thus, from (6), a server with
almost equal CPU and memory utilization will have a low
resource wastage. This means that it has a high proba-
bility of receiving additional VMs. In contrast, when the
difference between the CPU and memory utilization of a
server is large, the resource utilization becomes higher,
which means that such a server is less likely to accept new
incoming VMs.

4.1.2 Power consumption model

Fan et al. [21] proposed a method for accurately deter-
mining the power consumption of a server from the linear
relationship between power consumed and the utilization
of CPU. This research has been further verified by Gao et
al. [20] in experiments they conducted on a Dell server.
In order to save energy, servers that are not utilized* are
usually turned off. Thus their power consumption in idle
state is not part of the total energy consumed by the CPU.
The power consumed by the j* server can be defined
by (7) [20].

P = [(ﬁhusy — Didle) X UJC] + Pidle, if U7 > 0. o
. 0, elsewhere.

Since we are considering physical servers to be homoge-
neous, Ppyusy and pjqe are the average power consumption
of a server when it is fully utilized and when it is idle,
respectively. Gao et al. [20] conducted experiments on a
Dell server and came up with pp,sy = 215 Watts and
Pidle = 162 Watts.

4.2 Optimization equations
In this section the VM placement optimization problem is

formulated. Using the same notation used in Section 3, the
overall placement problem can be formulated as [20]:

4In the server idle-state, the CPU is not used, thus power is consumed
by other server peripherals other than the CPU
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m m
Minimizez P = Z

J=1 J=1

n
[ = busy _ —za’le)xlej Pz
i=1

‘( Z(xl/ p, ) < mi — Z(xlj p,m)>‘

~idle

values of the objectives [23]. These linguistic values oper-
ate over the interval [0 ~ 1]. The following fuzzy rule can
be used to express the evaluation of a solution:

m m
Minimize Y W; = > 1y
=1 =1 Z(xij - py) + Z(xij )
i=1 i=1
Subject to:
m
Zx,,:l Viel (®)

pr'xi./Sch'yj Vjeld ©)]
i=1
n
yj,xij€0,1 VjeJ and Viel (11)

4.3 Proposed multiobjective CSO for virtual machine
placement

The multiobjective CSO algorithm for VM placement is
similar to the CSO algorithm for server consolidation
discussed in Section 3. Both algorithms have the same
encoding and Perturb_1 functions. However, they differ in
two main areas, which are: the fitness evaluation method
and Perturb_2 function. While the CSO for server con-
solidation uses the fitness evaluation method detailed in
Section 3.2.1, the multiobjective CSO uses a fuzzy evalu-
ation method (explained in Section 4.3.1) to combine both
the power consumption and resource wastage objectives into
one objective which we aim to maximize. Moreover, the
Perturb_2 function of the CSO for server consolidation
(explained in Section 3.2.3) and Perturb_2 of the multiob-
jective CSO are the same in all aspects, except in the method
used in finding the fitness of a server.

4.3.1 Fitness measure
The fitness of a particular nest or placement solution is
obtained by fuzzy logic [22]. Fuzzy logic enables different

criteria to be mapped into linguistic values which charac-
terize the designer’s level of satisfaction with the numerical

@ Springer

If solution x has low power consumption (Ip), AND
small resource wastage (sw) THEN it is a good solu-
tion. Thus, the solution with the best quality is the one
with highest membership in the fuzzy sets of {lp, sw}.
We use the And-like-Fuzzy-Aggregation (AFA) fuzzy rule
proposed by Khan et al. [23] to obtain the fitness of solu-
tions. However, in order to obtain the fitness of a solution
we have to find its membership in fuzzy set of {/p} and
{sw}, respectively. This membership can be obtained by first
defining upper and lower bound for power consumption and
resource wastage.

Power consumption bounds

Lower bound The lower bound on power is the power
consumed by a placement solution consisting of mini-
mum number of servers that are required to pack VMs.
This theoretical lower bound on number of servers M,
(LB) is computed using (12). Thus, assuming all these
servers are busy, the lower bound on power is given by
(13). In (13), the first term denotes the total power con-
sumed by other server peripherals, while the second term
represents the total power consumed by the CPUs of
My, servers.

(54 [(5) )

12)

n

POwerlgwer = Mml}’lﬁldle + ﬁﬁpu Z (’olc) (13)
i=1

Upper bound We assume the upper bound on power con-
sumption to be the real power consumed by the datacenter
when the maximum possible number of servers is used for
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placement i.e., when we have one VM per server denoted by
M4 = number of VMs. Thus, the upper bound on power
is:
n
Powerypper = Mmaxﬁidle + Iscpu Z (,O,C) (14)
i=1

Pcpu = f’busy — _,-dle is the average power consumed
by the CPU and p; is the CPU utilization of VMs. T, and
T, represent the CPU and memory utilization capacity of a
server.

Wastage bounds

Lower bound In the case of resource wastage, we assume
the lower bound to be the wastage calculated when we
assume that there exists a large single server that can accom-
modate all VMs. The wastage that is generated by the
placement of VMs in this large server is the lower bound on
resource wastage and is given by:

120 (o) = X (o) +e
Wastage; = - ;
X (ef) + i (o)

5)

Upper bound The upper bound on resource wastage is the
wastage obtained from the worst placement of VMs i.e., one
VM per server. This wastage is given by:

n | c m
o =o' +e
Wastageupper = =t (16)
L\ e

Subsequently, from these computed bounds, we are able
to find the membership of a solution say x in the fuzzy set of
{Ip, sw}. The Fitness function receives inputs of upper and
lower bounds on power and resource wastage. Moreover, it
also receives input of the resource wastage (Wastage,) and
power consumption (Power,) of solution x computed from
(6) and (7), respectively. From these inputs, the function is

Fig. 12 Normalized A
Membership Function of

Solution x in the Set {sw} and 1
{Ip} Hyw

able to compute the membership of solution x in the set
{sw} and set {Ip} given by (i , tx,p in (17).

Wastageypper — Wastagey

Mex,w (17a)

Wastageypper — Wastagejoper

Powerypper — Powery (17b)

Mx,p =
P Powerypper — Poweripyer

By employing the equations of Khan et al. [23], we
compute the weights of each objective.
Equation 18 is used to compute such weights.

Wy oy = I S Wy,p = _ HMxp (18)

I_Lx,w + I_Lx,p ﬁx,p + I_Lx,w
where: [ty =1 — pywand ity p =1 — py p.

Figure 12 shows the graph of the normalized membership
function of solution x in the set {sw} and {Ip}, respectively.
From these weights we find the complement of the overall
membership of solution x or fuzzy fitness (FF) in the fuzzy
set {Ip, sw} as:

l_/«x = (wx,w)(llx,w) + (u_)x,p)(,ax,p) (19)

Finally, we are able to obtain the fitness evaluation of
solution x from (19).

Px =1 — [ix (20)

As an illustration of how the overall membership of a
particular solution is found, take for example a nest x with
overall power consumption and resource wastage calculated
from (6) and (7) as (Powery = 300) and (Wastage, = 65),
respectively. To find the membership of such nest, we start
by computing upper and lower bounds from (13) through
16. Let us assume that these bounds were found to be;
Powerjoper = 200, Powerypper = 650, Wastageoper =
50 and Wastageypper = 100. Thus, from (17b) we find
that for nest x, uyw = 0.7 and py , = 0.78. Subse-
quently, from (18) we find the weights to be wy ,, = 0.58
and w, , = 0.423. Consequently, from (19) we find that i,
is 0.27. Finally, from (20) we obtain u, = 0.73 which is

A
1
px,P
: 0 p >
Wastage Power .. Power oer
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Table 2 Comparison of the multiobjective CSO algorithm with other Techniques for average power consumption and resource wastage

n =200 n =500
Reference value Corr. Algorithm ~ Power(W) Wastage FF(x10%) Time(s) Power(W) Wastage FF(x10%) Time (s)
Ry, =R, =25% strong-ve CSO 12410 2.90 974 4.68 30491 548 980 18.56
RGGA 12739 5.14 956 2.03 31514 1022 963 9.58
GGA 12587 4.95 959 5.94 31378 10.08 964 25.03
ILL 12841 15.90 870 3.05 31831 3955 872 43.22
IFFD 13361 17.15 863 5.33 33218 42.67 865 202.61
weak -ve ~ CSO 12319 2.63 975 4.63 30190 437 983 18.50
RGGA 12528 4.39 959 1.95 30801 795 970 8.99
GGA 12452 4.39 959 5.80 30809 7.84 970 2453
ILL 12640 13.85 867 2.26 31363 3378 871 30.88
IFFD 13103 14.97 861 4.25 32666 37.08 863 176.98
zero CSO 12251 1.99 978 4.60 30086 370 984 18.15
RGGA 12463 3.81 958 1.96 30556 6.71 971 8.85
GGA 12366 3.41 963 5.72 30610 6.62 971 25.05
ILL 12521 11.67 867 1.82 31000 28.66 869 25.88
IFFD 13019 12.82 860 3.94 32554 32.31 859 172.56
weak +ve  CSO 12109 1.48 980 4.60 29966 342 982 18.11
RGGA 12300 3.05 960 1.91 30304 577 970 8.82
GGA 12227 2.76 964 5.65 30402 6.01 969 25.39
ILL 12342 9.25 871 1.56 30795 2310 872 22.18
IFFD 12734 10.02 866 322 31819 25.61 864 130.21
strong +ve  CSO 12060 0.98 983 4.56 29776 1.98 987 17.97
RGGA 12198 2.00 966 1.88 30096 391 974 8.69
GGA 12152 1.76 970 5.61 30187 391 974 25.15
ILL 12251 5.90 895 1.30 30584 1496 895 19.26
IFFD 12506 6.62 885 2.19 31060 16.57 886 86.50
Rn =R, =45% strong-ve CSO 24432 18.31 815 7.69 59258 3795 850 34.19
RGGA 24841 23.62 777 3.82 60391 48.11 816 18.41
GGA 24607 23.63 784 10.02 60162 48.19 819 50.10
ILL 24809 48.04 618 11.34 59992 11295 641 332.94
IFFD 24611 47.70 621 17.24 59495 110.74 648 563.04
weak -ve ~ CSO 23983 15.05 834 7.49 58512 31.41 864 33.53
RGGA 24423 19.81 794 372 59656 40.09 831 18.00
GGA 24204 20.17 797 9.82 59525 40.58 831 48.71
ILL 24334 41.96 615 9.56 59267 98.88 638 248.56
IFFD 24302 41.86 616 15.78 59196 98.62 639 458.57
zero CSO 23608 12.44 847 7.28 57356 24.19 881 33.50
RGGA 24049 16.39 806 3.65 58519 3146 848 17.66
GGA 23879 17.18 803 9.62 58522 3277 844 47.59
ILL 23981 35.21 620 8.24 58192 81.70 644 247.50
IFFD 24009 35.55 617 13.74 58627 84.01 635 425.66
weak +ve  CSO 23300 9.17 866 7.21 56223 1741 900 32.40
RGGA 23770 12.81 820 3.52 57346 2373 865 17.08
GGA 23608 13.18 819 9.48 57471 2556 857 46.33
ILL 23691 27.801 635 7.09 57088 6431 657 190.17
IFFD 23848 28.60 625 12.29 58078 6795 641 382.67
strong +ve  CSO 22565 5.18 904 7.01 55483 1076 922 30.35
RGGA 22985 7.76 862 3.38 56418 15.67 889 16.59

@ Springer



Cuckoo search based resource optimization... 503
Table 2 (continued)
GGA 22841 7.61 867 9.16 56540 16.58 883 45.36
ILL 22859 19.00 676 4.75 55914 44.38 693 102.23
IFFD 23260 19.89 665 9.48 57528 48.64 673 333.76

the overall membership value of nest x in fuzzy set of good
solutions.

As mentioned earlier the Perturb_2 functions of the
CSO for server consolidation (Section 3) and multiobjec-
tive CSO are similar in all aspects except in the method
used in finding the server fitness. In the multiobjective CSO,
the function for finding server fitness operates as follows:
Firstly, the function receives a server as input, say server
x. Upper and lower bounds are then defined for server
power and resource wastage. The lower bound on power is
taken to be the power consumed by the server when it is
fully loaded i.e., when the CPU utilization is 90 % (thresh-
old). This is the best power that can be obtained since
the server is fully utilized. The upper bound on power is
estimated as Pig, = 162W ie., power consumed when
the server is almost idle. This is the worst power that can
be obtained because the server is highly underutilized. In
contrast, the resource wastage lower bound is taken to be
resource wastage generated when the server is fully loaded
i.e. both CPU and memory utilization of the server is 90 %.
The upper bound on resource wastage is taken to be the case
where the resource utilization of a server is skewed i.e., the
case in which one dimension is fully utilized while the other
is almost zero e.g., CPU utilization is 90 % and memory uti-
lization is 0 %. The wastage generated from such a server is
taken as upper bound on server resource wastage. The func-
tion then computes the actual power and resource wastage
of server x. Equation 17 is then used to find the membership
of server x in fuzzy set of {I{p} and {sw}. From these mem-
bership values, (18-20) are used to obtain the overall fitness
of server x in the set {{p, sw}. This membership is taken as
the fitness of server x.

4.4 Experimental results

In this section, we present our experimental results on
the employment of the multiobjective CSO algorithm to
solve the VM placement problem of datacenters. The
experimental platform and parameters used are similar
to that discussed in Section 3.3. Table 2 shows com-
parison results of the multiobjective CSO, RGGA, GGA,
ILL and IFFD algorithms. The measures for compari-
son are: the average power consumption (Power), average
resource wastage (RW), average fuzzy fitness (FF) and
CPU times (Times). From Table 2 the following points
can be observed:

— In terms of average power consumption (W), in both
scenarios i.e., where n = 200 and n = 500 the CSO
algorithm performs better than other algorithms in all
reported cases. As a result, we can deduce that place-
ment solutions obtained by employing the proposed
CSO algorithm generally have less power consumption
than those obtained from RGGA, GGA, ILL, and IFFD.

— Comparing the average resource wastage, it can be seen
that for both the case where n = 200 and n = 500,
the CSO algorithm outperforms other algorithms in all
reported results. From these results, we can say that
placement solutions obtained by the proposed CSO
algorithm generally have less resource wastages than
those of the other reported algorithms.

— Similarly, considering the fuzzy fitness (FF), it can
be observed that the CSO algorithm outperforms other
algorithms in all reported cases. This shows that place-
ment solutions found using our proposed CSO algo-
rithm achieves better balance between the power con-
sumption and resource wastage objective.

— As correlation increases i.e., from strong negative to
strong positive, the average power and average resource
wastage decrease for all algorithms. This is because
as correlation increases, less number of servers are
needed for VM placement thus resulting in low power
consumption and resource wastage.

— More power consumption and resource wastage are
generated for the case where n = 500 than the case
where n = 200. This is because with more num-
ber of VMs, more servers are needed for placement
and as a result more power and resource wastage
is produced.

Figure 13 shows how the fuzzy fitness and average fuzzy
fitness of solutions (nests) improve with iteration. Without
the loss of generality, the case reported has the following
values: n = 500, R, = R;; = 25 % and P = 0 (strong neg-
ative correlation). However, similar results are obtained for
other cases. From Fig. 13, we can see that the best fuzzy fit-
ness curve increases with iteration. While in the case of the
average fuzzy fitness curve, it can be seen that it rises and
falls with iteration. This is because in the CSO algorithm
(line 8-12), all bottom nests are replaced irrespective of their
quality, thus the average quality of nests is bound to rise and
fall with iteration. This attribute is similar to hill climbing
and it is one of the attractive features of the CSO algorithm
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Fig. 13 Plot of best and average 0.99

fuzzy fitness per iteration

0.985 A

0.98 4

0.975 A

Fuzzy Fitness

0.97 A

0.965 A

0.96 A

Average

0.955

that helps it escape the local minima of most optimization
problems.

5 Conclusions

In this paper we have proposed a cuckoo search opti-
mization (CSO) based algorithm for server consolidation
in datacenters. In server consolidation, the datacenter is
optimized for the minimization of the number of physi-
cal servers used for placement. Moreover, we have also
proposed a multiobjective CSO algorithm for the simulta-
neous optimization of the power consumption as well as the
resource wastage of datacenters. Experimental results have
shown that both the CSO algorithm for server consolidation
and multiobjective CSO algorithm are able to outperform
the reordered grouping genetic algorithm (RGGA), group-
ing genetic algorithm (GGA), improved least-loaded (ILL)
and improved first-fit-decreasing (IFFD) methods of VM
placement. Additionally, our implemented CSO algorithm
for virtual machine placement can also be employed in solv-
ing the dynamic placement of VMs in datacenters. When a
batch of VM requests is received by the datacenter, the CSO
algorithm can be used to resolve the placement problem in
order to find a good placement for both the incoming and
existing VMs. Moreover, because VM requests can time-
out, it is recommended that after several weeks, the CSO
algorithm should be used again to resolve the placement
problem so that better placements can be found for existing
VMs. However this resolving process should not be done
frequently, due to the expensive nature of VM-migration.
In the case that only few VMs arrive at the datacenter, it is
better to use the FFD heuristic to place them.
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