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Abstract Recently, a shift from CMOS lithography to
nanoelectronics chemical assembly has been under inves-
tigation. Nanoscale components are assembled into arrays
of low-power and high-density nanofabrics, which can be
integrated with conventional CMOS systems. The inabil-
ity to achieve inexpensive defect-free mass manufacturing
of nanoelectronics is the largest impediment of their adop-
tion. Limited nanowire lengths and defect-prone nanodevices
pose significant challenges for design automation tools. In
this work, we propose a design phase for cell mapping
and reconfiguration in novel hybrid CMOS/nanoelectronics
architecture called CMOL. Reconfiguration consists of find-
ing new suitable physical location for each gate such that
the circuit becomes defect free. The novelty of this work
is to engineer non-deterministic iterative search heuristics,
namely simulated evolution (SimE) and Tabu search (TS), to
find cell assignment around defective nano-components. Cir-
cuits of various sizes from ISCAS’89 benchmarks are used
to evaluate the designed heuristics. Results show that SimE
and TS yield successful reconfigurations in reasonable com-
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putation time when nanodevice defect rate is as high as 50%
and nanowire cut rate up to 70%.
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1 Introduction

Scaling down CMOS lithography process into nanometer
region brings about a number of serious challenges. Among
those challenges are fabrication plant costs and sub-micron
physical limitations like short channel effects and doping
fluctuations [1,2]. A shift from CMOS-based integrated
circuits to chemically assembled nanoelectronics has been
under investigation in the past years. The new nanoelec-
tronics circuits take advantage of small, basic and active
components with reproducible size and structure. Those
components are based on the recent advances in single elec-
tron devices [3,4], quantum dot cells [5], reconfigurable
switches [6] and negative differential resistors (NDR) [7].

Molecular-sized nanoelectronics are very small in which
they need to be chemically self-assembled instead of being
lithographically fabricated. Self-assembly process is based
on synthesizing and connecting nanoscale components (e.g.,
wires or devices) through chemical processes [8]. A group
of nanowires are self-aligned to construct an array (i.e., two-
dimensional orthogonal grid) with nanometer-scale spacing.
At each intersection of two wires, a configurable com-
ponent (e.g., switch or device) is formed. Self-assembly
and self-alignment result in simple orthogonal grid-shaped
nanofabrics, where post-manufacturing field configuration
can render them into functional circuits.
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Overcomingnanometer-scale lithography limitationswith
bottom-up components’ self-assemble comes at a price. The
small-size devices and the fundamental non-determinism of
the chemical process give rise to high defect density. Defects
are the major issue for devices with few atoms in diameter.
The small cross sections and contact areas can render nano-
electronics fragile and defect prone. The order of defects in
the nanofabrics surpass the highly controlled lithography-
based CMOS manufacturing process.

Nanofabrics have a built-in defect tolerance provided
by reconfigurable and defect-testable nanodevices along
with alternative nanowire connections. The configurability
and rich interconnects offer the choice between different
nanowires and nanodevices to implement a particular circuit.
Reconfiguring a circuit involves reprogrammingnanodevices
(set each of them to be “ON” or “OFF”) based on new Con-
figuration Data. Nanofabrics pose a compromise between
simple and imprecise manufacturing process and complex
design automation tools, which are needed to implement
circuits by configuring nanofabrics around defective com-
ponents.

Nanoelectronics can operate at THz frequencies [9] and
consume less power as switching only involves few elec-
trons.Moreover, their small size (i.e., few nanometers) offers
huge density improvement over conventional CMOS tech-
nology, which entails multiple microscale transistors per
logic cell. However, the absence of transistors in nanoelec-
tronic systems constitutes functional restrictions such as lack
of register structures and mechanisms for signal restoration.
Many suggested systems use CMOS to buffer signals and
provide the additional necessary functionalities (e.g., high
voltage gain). Following this approach, many researchers
proposed hybrid CMOS/nanodevices circuits with differ-
ent layouts and organizations, examples of which include
Likharev et al. CMOL circuits [10] and CrossNets [11]
and Goldstein et al. Nanofabrics [12]. Recent reviews of
CMOS/nanodevices circuits can be found in [13–16].

Nanowire interconnects are local in nature (i.e., they have
limited length), which reduces the impact of a particular
defect to only a small subset of the nanofabric. Nanofab-
rics can be tested in conjunction with an outside circuit or
by configuring part of it to test its own resources. Once a
defect map is generated, defect information can be used to
avoid defective components when implementing a particu-
lar circuit. Tahoori et al. [17] surveyed different approaches
for defect detection and diagnosis in nanofabrics computing.
Different variations and enhancement toBIST have been pro-
posed, among those are designs reported in [18–20].

Nanoelectronic fabrics are promising high-density and
low-power circuits. The main impediment for the adap-
tation of nanoelectronics is their imprecise manufacturing
process. This work aims to help speed up the adaptation
of nanoelectronics through advances in design automation

tools that can map cells to arrays with defects through cir-
cuit reconfiguration. Harnessing the power of the very small
molecular devices can be done by employing effective design
tools that map logic circuits to nanofabrics and perform
post-fabrication reconfiguration around defects. The nov-
elty of this work is to engineer iterative heuristics to find
an assignment around defective nano-components. The main
contributions of this papers are:

1. A design automation phase for circuit placement and
reconfiguration in CMOL hybrid CMOS/nanodevice
architecture via the engineering of iterative heuristics.

2. A formulation of CMOL reconfiguration problem and
extensive experimentations using different defect maps.

3. Addressing the solution to overcome three major sources
of defects (stuck-open, cut nanowires and defective
CMOS cells) by iterative improvement of circuit’s con-
figuration.

The paper is organized as follows; in the next section, we
give a review covering CMOL hybrid CMOS/nanodevices
fabric and discuss previous solutions for CMOL cell place-
ment and reconfiguration. Section 3 provides problem formu-
lation of gates-to-nanofabricmapping and design automation
flow. Engineering and implementation of non-deterministic
heuristics namely simulated evolution (SimE) and Tabu
search (TS) are presented in Sect. 4. Section 5 includes the
generation of defect maps, details the experimental results,
and provides further discussions on the nanofabric reconfig-
uration problem. Finally, we conclude with final remarks and
suggestions in Sect. 6.

2 Literature Review

CMOL cell-based, field-programmable gate array (FPGA)-
like circuit integrates conventional inverter-based
four-transistor MOSFET CMOS cells with uniform recon-
figurable nanofabric [10]. Each generic CMOS cell consists
of an inverter and two pass transistors. Two-terminal nan-
odevice “latching switches,” which can serve both inter-cells
connectivity and wiring logic, are self-assembled at each
nanowires cross-point. CMOL cells connectivity is limited
to only M = a2 − 2 other cells located within a square-
shaped Connectivity Domain as shown in dark boarder line
in Fig. 1, where a is a positive integer number which indicate
the connectivity domain radius.

Conventionally, CMOL cells mapping is split into two
steps; 1) defect-unaware cells Placement [21], where logic
gates are assigned to CMOL cells according to the connectiv-
ity domain constraint. 2) Reconfiguration around defective
components. Further discussion of CMOL circuits map-
ping design flow is presented in Sect. 3. Recently, several
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(a) (b)

Fig. 1 Defects in CMOL circuits. Cells in light gray are the connectivity domain of the cell in dark gray. Cells shown in striped pattern are not
reachable because of defects. a Type 1: stuck-open nanodevice defect, b Type 2: broken nanowire defect

proposals had been introduced for defect-unaware cell place-
ment/assignment in CMOL circuits including the works
of Likharev et al. [15,22] and Hung et al. [23]. Previous
attempts to use sub-optimal search heuristics for CMOL
placement are reported in [24–27]. Simulated evolution [28]
and TS [21,29] heuristics have also been attempted for
defect-unaware CMOL placement problem.

Finding the optimal reconfigurations around defects for
large nanofabrics is not guaranteed as the given problem
is NP-hard [30]. Previously proposed algorithms by Huang
et al. [31] and Tahoori et al. [32] are only applicable for small
nanofabric crossbars. Greedy algorithms yield degraded
results and require considerable computation time in case of
high defect rates. Reconfiguration around defective CMOL
nanodevices was also reported by Likharev et al. [10]. They
developed a reconfiguration algorithm assuming only one
type of defect (stuck-open). The algorithm preforms a num-
ber of sequential attempts to move each gate from a cell
with bad input or/and output connections (i.e., connections
which use defective nanodevices) to a new cell. Each gate
may be swapped with another one, provided that all con-
nections of the swapped gates are realized with the CMOL
fabric and are not defective. The authors only showed case
studies of reconfiguring Kogge-Stone adder and full crossbar
around randomly distributed defects. Other attempt to recon-
figure CMOL circuits were reported using SAT solvers [23].
Few clustered defects (around single source)were introduced
into small- or medium-size CMOL circuits. A center of mass
computation is performed to focus on a limited reconfigu-
ration region where defects are formulated as satisfiability
constraints.

The aforementioned reconfiguration techniques are
expected to be sufficient for small- or medium-size circuits.
Reconfiguration becomes more complex if CMOL has high
rates of wider range of defects or when circuits’ gates have
high fan-ins or fan-outs. In such cases, resorting to SAT or

sequential-attempts algorithms will be insufficient and cir-
cuit reconfiguration may fail. In this paper, we extend our
previous work in [33]. We introduce a complete design flow
for CMOL cells mapping and introduce a new type of defect.
We further elaborate our SimE solution and engineer TS to
solve the reconfiguration problem while conducting exten-
sive experiments using different defect maps and scenarios.

3 Design Automation and Problem Description

To implement a combinational circuit in CMOL,NOR-based
gates need to be assigned to cells (i.e., CMOL slots). Those
cells are connected by two levels of perpendicular nanowires.
Programable nanodevices are chemically assembled at the
intersection of the two nanowires. In this work, we will con-
sider the assignment of gates to cells in a grid. All cells of
the grid and nanodevices may not be defect free. The three
used defect models are:

1. Stuck-open:Here the nanodevice connecting two perpen-
dicular nanowires is stuck-open (i.e., not programmable).
In this case, the connection between two cells through
this nanodevice is not feasible. However, the two CMOL
cells can still be used, andonly their connectivity domains
change.

2. Broken nanowire: An input or output nanowire of a
CMOL cell is broken into two segments. Thus, CMOL
cell may not be connected to all other CMOL cells within
its input/output connectivity domains. The connectiv-
ity domains of the affected cells will be significantly
reduced.

3. CMOS cell defect: In this case, the CMOS cell could be
unusable, because the input/output pins connecting the
CMOS stack to the input/output nanowires are broken,
or the CMOS inverter is defective. Any cell with this type
of defect cannot be used.

123



2518 Arab J Sci Eng (2015) 40:2515–2529

Fig. 2 Design flow of CMOL cells mapping; it consists of twomain stages, defect-unawarePlacement and circuitsReconfiguration around defects;
each main stage is followed by a complementary Nets Resolving step

Defects of type 1 and type 2 are shown in Fig. 1. In bro-
ken nanowire defect, each unreachable nanodevice can be
modeled as stuck-open. CMOL is susceptible to stuck-close
defects; for moderate defect rate, the circuit may become
unusable. Likharev et al. [34] reckoned that a defect proba-
bility of 0.02%may not be tolerated. Any probability higher
than that means that most of CMOL cells are connected with
each others because of the stuck-close nanodevices. For that
reason, we did not included stuck-close defects in this work
on reconfiguration, as other approaches should be investi-
gated to mitigate this type of defects.

Design automation of CMOL circuits comprises a num-
ber of sequential steps. It starts with technology mapping
and converting the circuits into a network of NOR/NOT
gates (with a certain maximum fan-in). Figure 2 shows
the proposed design flow for mapping logic circuits into
CMOL grid; it consists of two main stages (defect-unaware
Placement and defects Reconfiguration). When any of the
two stages terminate, some connections may still be unre-
solved (i.e., beyond the connectivity domain in case of
placement or use stuck-open or cut nanowires in case of
reconfiguration). In such cases, complementaryNets Resolv-
ing steps are needed to insert extra buffers (i.e., pair of
inverters to maintain signal polarity) as intermediate cells
between unconnected gates. Those buffers compensate for
the missed/defective connections. Each pair of inverters can
make a cell connect to another cell, whose distance is within
three times the value of the connectivity domain radius a.
Violating nets (i.e., those longer than a or use defective nano-
components) may not be resolved successfully in case no
empty cells are available for the additional buffers, or when
gates with violating nets are not reachable because all cells
in their connectivity domain are occupied. If that is the case,
all design stages are repeated using bigger CMOL grid or
longer connectivity radius.

We have investigated CMOL placement in our previous
works involving SimE [28] and TS [21]. In this work, we
address the second design stage, namely reconfiguration and
formulate it as an optimization problem. In the subsequent
paragraphs, problem constraints are formulated and an objec-

tive cost function is given. Iterative heuristics (SimE and TS)
are then characterized to seek an optimized cells configura-
tion that minimizes the given cost.

3.1 Problem Formulation

Based on the aforementioned defect models and design flow,
CMOL reconfiguration problem can be stated as follows:
for a set of gates G = g1, g2, g3, . . . , gm and the set of
gates’ fan-ins and fan-outs � = γ1, γ2, γ3, . . . , γm where
γi = { f an-ini & f an-outi } of gi and given a set of slots or
locations L = L1, L2, L3, . . . , Ln where m ≤ n, each gate
gi in location Li that uses defective connections is reassigned
to a new location L j given that the connectivity domain is
respected and defects are avoided. Reconfiguration involves
rearranging CMOL cells as to avoid the use of any defec-
tive components. According to CMOL FPGA topology, if a
particular cell is moved to another location, it will use differ-
ent nanodevices to connect with its fan-in and fan-out cells.
Reconfiguration should not relocate two cells in which their
connectivity is violated (i.e., invalidate the assignment set by
Placement step), but rather only avoid using defective com-
ponents. Mathematically, reconfiguration constraints can be
defined as follows: Given a gate and its net (gi , γi ) placed
in location Li , for any gate gk ⊆ G and gk in the net γi , the
following constraints should be satisfied.

∀gi ∈ G : Li �= 0 (1a)

∀gi ∈ G, ∃gk ∈ γi : N (Li , Lk) �= 0 (1b)

where N (Li , Lk) is a binary value (0 or 1) representing the
nanodevice connecting gate gi in location Li and gate gk
in location Lk . N = 0 means the nanodevice is defective.
L = 0 means the location (i.e., the cell) has a defect of
type 3. CMOL reconfiguration is intended to rearrange cells
to honor the constraints 1(a) and 1(b), while not violating
CMOL connectivity domain constraints defined as follows.
For a given gate and its net (gi , γi ), any gate gk in the net γ i
should satisfy the following.
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∀gi , gk ∈ G : (gi �= gk) ⇒ (Li �= Lk) (2a)

∀gi ∈ G, ∃gk ∈ γi : Lk ∈ C(Li ) (2b)

where Lk is the location of gk ,C(Li ) is either the input or the
output connectivity domain of cell in location Li . Reconfig-
uration is highly dependent on defect rates and connectivity
radius a. For small connectivity radius, high defect rate may
lead to reconfiguration failure.

3.2 Cost Function

The main objective of reconfiguration is to tolerate defects
and ensure that the circuit is working properly. The problem
we are trying to optimize is to avoid using defective com-
ponents. Therefore, we should have a measure which can
quantify the overall quality of the solution. The overall cost
of a solution is expressed as the total number of used defec-
tive nanodevices [i.e., the number of connections that violate
Eq. 1(b)]. Equation 3 shows the cost of each gate gi ∈ G as
the number of defective components it uses to connect with
its fan-in and fan-out cells. The overall circuit’s cost is the
sum of individual gates cost.

Ci =
∑

j∈ f an-outi

ui, j (3a)

ui, j =
{
1 if N (Li , L j ) = 0
0 otherwise

(3b)

4 Non-deterministic Heuristics Designs

4.1 Solution Representation

Reconfiguration solutions are represented as an arrangement
of logic cells in the two-dimensional CMOL layout surface.
The layout size corresponds to the number of requiredCMOL
cells to fit each benchmark circuit. Outer cells of the grid are
reserved for I/O pins, where I/O pins moves are restricted
to these reserved locations. Reconfiguration process starts
from a complete cell placement in which all gates are placed
within each others connectivity. Each gate is represented by
a unique positive integer value. Changing the location of
one cell will change the set of nanodevices and nanowires it
uses.

4.2 Simulated Evolution

The SimE algorithm is a general search strategy for solving
a variety of combinatorial optimization problems. The selec-
tion ofwhich elements are to be reallocated is done according
to a stochastic rule.Alreadywell located elements have a high
probability to remain where they are. In SimE heuristic, the

movable elements have a goodness value (a number between
0 and 1). Those with goodness value close to 1 have a smaller
possibility of leaving their current locations, while thosewith
smaller goodness (i.e., ill suited components) have otherwise.
The algorithm has one main loop consisting of three basic
steps: Evaluation, Selection and Allocation. The three steps
are executed in sequence until the solution average goodness
reaches a maximum value, or no noticeable improvement
to the solution cost is observed after a number of itera-
tions. Further discussion of SimE heuristic can be found
in [35].

4.2.1 Goodness Function

In SimE, goodness function is used to evaluate individual ele-
ments (i.e., gates) in each generation, where unfit elements
are selected and reassigned to other locations. The goodness
measure must be strongly related to the objective of the prob-
lem, in that sense, the goodness function of each individual
element is defined as following:

goodnessi = connecti
|γi | (4)

where connecti represents the number of connections in set
γi that do not use defective nanodevices (i.e., the connec-
tions that are defect free) and |γi | is the number of fan-ins
and fan-outs gates of gate gi . The above equation assumes
a minimization problem (or a maximization of goodness).
According to the aforementioned definition, if cell i ′s con-
nections violate the constraint in Eq. 1(b), the cell will have
low goodness value. An example of such cell is shown in
Fig. 3, where two defective nanodevices are used to connect
gates 4 and 5 with gate i . According to the given definitions

Fig. 3 Evaluation of gate i’s goodness; connection between cell i and
cells 4 and 5 use defective nanodevices, goodnessi = connecti/|γi | =
3/5 = 0.6. Nanodevices are shown as black dots
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of the goodness function, the value of |γi | do not change
from generation to generation. It is only computed once and
is based on the original circuit description.

4.2.2 Selection Function

It uses original SimE selection function [35], an element
(i.e., gate) is selected for reallocation if its goodness score
is less than a randomly generated number between 0 and 1.
The higher the goodness value of the element, the higher
is its chance of retaining its current location. While lower
the goodness value, the more likely the element will be
perturbed and reallocated. SimE selection function has a non-
deterministic nature; an individual with a high goodness (i.e.,
close to one) still has a nonzero probability of being selected.
This stochastic role gives SimE the hill climbing property.
Reallocating the selected elements can be done in a deter-
ministic order that is correlated with the objective function
being optimized. Hence, prior to the allocation step, the ele-
ments in the selection set are sorted in an ascending order
based on their netlist size, where elements with higher cardi-
nality of γi are processed first. Selection function for CMOL
reconfiguration is similar to the one used for defect-unaware
placement [28]. The only difference is in the way cells good-
ness is evaluated. In defect-unaware placement, goodness is
based on the number of unconnected cells, while the good-
ness function in reconfiguration phase is based on the number
of used defective components.

4.2.3 Allocation Function

This function has the most impact on the quality of the
solution; it is intended to generate a new solution that is
inherently better than the old one. The design of the allo-

cation function is related to the problem specifications. The
allocation function is a complex form of genetic mutation,
it alters the locations of all elements in the selection set one
after the other. The function is fully aware of the presence of
defects. It actually, swap cells based on the cost defined by
the number of used defective nanodevices. For each selected
element, the allocation function evaluates the cost of swap-
ping the element with another one in the grid based on the
cost function in Eq. 3a. Then, the best swap is chosen. This
constitute a global allocation policy, which could prove to
be very useful specially in the early iterations. Unlike the
allocation function in the defect-unaware placement [28],
an additional constraint applies for gates movements dur-
ing reconfiguration; the reallocation of gates is constrained
to the region defined by the intersection of the connectiv-
ity domains of the two cells where the gates are located and
their fan-in and fan-out cells. This ensures that reconfigura-
tion do not invalidate the assignment made by the placement
phase (i.e., does not move cells in which some of the con-
nections violate the constraints in Eq. 2(b)). Furthermore,
CMOL cells with stuck-open or cut nanowires defects can
still be used in the reconfiguration stage. SimE’s allocation
function can assign gates to those cells as long as the assigned
gate’s fan-ins and fan-outs do not require the use of defective
complements.

AnevaluationofSimE implementation is shown inFig. 4a,
where the number of elements selected for perturbation in
each iteration is given. The size of the selection set decreases
with time, until a final solution with the least cost is reached.
This is also an indication that the overall quality of solution
is improving. In addition, Fig. 4b shows the problem cost
(Eq. 3) of the solution in each iteration. It shows how the
heuristic is evolving to better solutions without being too
greedy.
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Fig. 4 SimE reconfiguration heuristic. a Illustration of change in the
size of the selection set with iterations for the SimE reconfiguration
heuristic for s1238.blif benchmark. Selection set size decreases with
time, until a final solution is found, b change in number of defective

cells due to reconfiguration. Cost per iteration in SimE run shown for
s1238.blif benchmark. Solutions found by SimE are evolving to better
ones without being greedy
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4.3 Tabu Search

Tabu Search algorithm is a non-deterministic iterative heuris-
tic that has been applied to solve many combinatorial
optimization problems. It is considered as a generalization
of local search algorithms. At each step, TS explore the local
neighborhood of the current solution and the best solution in
that neighborhood is selected as the new current solution. TS
is a heuristic that proceeds by making iterative perturbations
while preventing cycling to certain number of recently visited
points in search space. Detailed description of TS’s attributes
and constructs can be found in [35]. In engineering TS for
reconfiguration phase, we have used the same methodology,
move attributes and aspiration criteria used in defect-unaware
placement [21]. Reconfiguration phase neighborhood is gen-
erated by performing one move (i.e., perturbation). Each
solution in the candidate list is evaluated based on the change
in number of used defective components before and after the
swap, taking care that swaps do not violate the constraints
set by Eq. 2(b). The actual size of the candidate list is empir-
ically set based on the performance of the heuristic and the
problem behavior. Figure 5(a) shows the quality of the solu-
tions produced by TS over iterations. The heuristic steadily
converges to near optimal solution.

Figure 5(b) shows the change in the problem cost with
respect to changes in candidate list sizes for different defect
rates. Each rate constitutes a distinct instance of the reconfig-
uration problem. In high defect rates, a small candidate list
(e.g., between 5 and 35) results in bad solutions, whereas for
low rates, a small list is sufficient. The problem becomes
more constrained when many nanodevices are defective;
thus, TS requires more choices to effectively explore the
search space. Throughout our implementation, we have used
different list sizes for different defect rates; amaximumvalue
of 60 is used as an upper bound limit on the list size. We have

further used the same candidate list probabilistic swap selec-
tion described in [21] using Gaussian random variable that
hasmeanm0 = 0 and standard deviationσ = circui t−si ze.
This modified neighborhood generation has reduced the can-
didate list sizes considerably compared with that required
when random cells are selected.

4.4 Nets Resolving Procedure (Buffers Insertion)

When reconfiguration stage terminates, there may still be
some connections that use defective nanodevices or cut
nanowires. In such case, the circuit will not be functional
and defective connections need to be mitigated by rerouting
them through additional buffers. Intermediary inverters are
inserted between cells which have their connections faulty.
Buffers insertion is done by performing the same SimE
or TS heuristics but with some modifications. The heuris-
tics will assign pairs of inverters to empty locations (i.e.,
unused CMOL cells) so that two cells with defective inter-
connect become connected. Those buffers compensate for
the missed/defective connections. Each pair of inverters can
make a cell connect to another cell using a new set of nanode-
vices and nanowires. The constraints highlighted in Eqs. 1
and 2 should also apply for the inserted inverters. SimE allo-
cation function and TS swaps are modified as to only permit
the interchange of two inserted inverters or to reallocate an
inverter to a different unused CMOL cell. The other already
occupied CMOL cells are assumed to be fixed and no pertur-
bation can involve any one of them.

Initially, theNetResolvingprocedure startswith onebuffer
(pair of inverters) for each defective inter-cells connection.
Inverters are randomly assigned and then SimE or TS are
called with the aforementioned modifications. The heuristics
then continuously try to improve the locations of the inserted
inverters until all of them are placed and all defective nets
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Fig. 5 Tabu search reconfiguration heuristic. a Change of recon-
figuration cost per iteration for s832.blif benchmark, b change of
reconfiguration cost with respect to changes in candidate list size for

different nanodevices stuck-open defect rates qnano = 10–50%. High
defect rates require larger candidate list sizes. s1196.blif benchmark
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are resolved. If Net Resolving procedure terminates while
still some connections are defective (i.e., the heuristics failed
to substitute them by inserting additional buffers), the unre-
solved interconnects are substituted by two buffers instead of
one (i.e., four inverters) and the procedure is repeated. This
process goes onuntil all violating connections are resolvedby
new buffers that respect CMOL constraints, or until no cells
are available in the grid to which inverters can be assigned
to. In our implementation, we limited the number of invert-
ers that can be inserted to substitute a particular defective
interconnect to 6 to avoid major deterioration of the circuits
timing delay.

5 Experimental Results

In this section, we describe the experimental setup and
final results of CMOL hybrid nanofabric reconfiguration.
Next, defect scenarios, benchmark circuits and simulation
environment are outlined. Results yielded by SimE and TS
are presented afterward. Final solutions (i.e., reconfigured
CMOL circuits) are tested and verified to insure the cor-
rectness of the whole design stages. Active nanodevices are
cross-checked with defect information stored in the defect
maps, and randomly generated input patterns are applied to
test circuits’ functionality.

5.1 Defect Maps

Different methods for simulating faults distribution have
been reported in the literature [36]. In this work, two meth-
ods are used for stuck-open faults simulation. In the first
approach, a uniform random distribution is used. For any
given nanodevice, a random number p with uniform distri-
bution between 0 and 1 is generated, the nanodevice could
be defective if p is less than a pre-defined defect rate qnano.
In the second approach, clustered faults are injected around
multiple defect sources. Each cluster is generated as follow:
First a random location (x0, y0) is chosen, and then a proba-
bilitymass function pm f (x, y) is computed for each location
using the Gaussian distribution:

pm f (x, y) = Ce− (x−x0)2+(y−y0)2

2σ2 (5)

This probability mass function controls the injection of
faults, where C is a constant that sets the density of the sim-
ulated faults, and σ is the standard deviation that controls
the diameter of defect clusters. The value of constant C is
related to grid size and nanodevices density. For each nan-
odevice, we generate a random number p between 0 and 1. A
fault is injected if p ≤ pm f (x, y). While other approaches
and mathematical distributions exist for simulating clustered

(a) (b)

Fig. 6 Defect maps: a randomly distributed defects map, b clustered
defects map when C = 0.7 and σ = a

3 . Nanodevices stuck-open defect
rate qnano = 30% and nanowires cut rate qwire = 10%.White dots rep-
resent non-programmable nanodevices (i.e., stuck-open), while black
dots represent programable ones

faults, we have chosen this approach as it ismore prominently
applied in literature [37].

For broken nanowires defects, a nanowire is cut if a ran-
domly generated number p is less than wires cut rate qwire,
and the cut point is randomly specified. All unreachable nan-
odevices on the cut nanowire are then encoded as if they
are stuck-open. In similar manner, CMOS cells are assumed
to be defective based on a defect rate qcell. Figure 6 shows
defect maps for stuck-open defect rate qnano = 30% and
wires cut rate qwire = 10%. The first map shows randomly
distributed defects and the second shows clustered defects
when C = 0.7 and σ = a

3 . White dots represent non-
programmable nanodevices (i.e., stuck-open), while black
dots represent programable ones.

5.2 Experimental Setup

Given defects distributions discussed in Sect. 5.1, we have
performed multiple experiments using three types of defect
maps: a randomly generated map (R1) and two clustered
maps (C1 and C2). Those maps have C = 0.8 and standard
deviation σ = 2a

3 and σ = 4a
3 for C1 and C2, respectively.

C and σ constants were chosen through experimentation by
trying different values and observing the effect on defect den-
sity. The values were chosen to correspondwith the grid sizes
of the circuits under test and the connectivity domain radius
a. Evaluation of search heuristics efficiency and performance
is done using the three defect scenarios shown in Table 1,
where qnano is the probability of a nanodevice is stuck-open
(type 1 defect), qwire is the probability of a nanowire is bro-
ken (type 2 defect), and qcell is the probability of a CMOS
cell is defective (type 3 defect). Scenario (i) includes five
experiments when qnano ranges between 10 and 50%, while
qwire = 20% and qcell = 0%, and similarly scenario (ii)
is comprised of seven experiments when qwire probability is
between 10 and 70% and qnano = 20%. Scenario (iii) has
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Table 1 Defect scenarios; scenario (i) includes 5 experiments for dif-
ferent qnano probabilities, scenario (ii) includes seven experiments for
different qwire probabilities, and scenario (iii) includes two experiments
for different qcell probabilities

Scenario qnano (%) qwire (%) qcell (%)

(i) 10–50 20 0

(ii) 20 10–70 0

(iii) 20 20 10–20

fixed qnano and qwire probabilities, and qcell equals to 10 or
20%.

Reconfiguration is applied to 19 circuits of different sizes
from ISCAS’89 benchmarks suite [38]. Further consider-
ation should be given to those benchmarks by replacing
sequential elements (i.e., flip-flop) inputs and outputs with
POs and PIs, respectively. Circuits are then mapped by SIS
synthesis tool [39] to a NOR netlist with maximum of five
inputs. Details of ISCAS’89 circuits are shown in Table 2;
the numbers ofCells includingGates, I nputs and Outputs
are given.

Table 2 also gives CMOL2Dgrids sizes, which are used to
implement ISCAS’89 benchmarks; Area (Row × Column)

indicates the number of Rows and Columns and the number

ofCMOLCellswhich a given benchmark uses. The grid sizes
given under qcell = 0% are those for circuits reconfiguration
in defect scenarios (i) and (ii). For scenario (iii), the used area
is shown under qcell = 10% and qcell = 20%. Defect maps
R1, C1 and C2 are generated for each grid size; benchmarks
that need similar CMOL gird sizes are reconfigured using
same defect maps. For each benchmark circuit, the grid uti-
lization is shown in the table; GU% represents the ratio of
used cells in CMOL gird.

Simulated evolution and TS are implemented using Java
programming language and run on a machine with 1.5GHz
Intel PentiumMprocessor and 512MBmemory. Technology
mapping is achieved using SIS logic synthesis tool [39]. Cir-
cuits verification and defect maps generation programs are
also written in Java. Comparisons between CMOL reconfig-
ured circuits and original benchmarks logical functionality
are carried out by HOPE simulator [40], which runs on a
LINUXmachine. Heuristics are regulated to stop when solu-
tion’s cost (i.e., number of defective nanodevices) becomes
zero or when a predefined number of iterations is reached;
in our case, we have set the number of iterations in SimE
to 4000 and used a larger number of iterations for TS. The
average value of results obtained from 20 successful recon-
figurations for each circuit is reported, where each run uses
different seeds for random numbers.

Table 2 ISCAS’89 benchmarks and corresponding CMOL’s grid sizes in (row × column), and grid utilization GU%, given different CMOS cells
defect (qcell) probabilities

Circ. Cells Gates Inputs Outputs qcell = 0% qcell = 10% qcell = 20%

Area
(row × column)

GU% Area
(row × column)

GU% Area
(row × column)

GU%

s27 19 8 7 4 25 (5 × 5) 76.00 – – – –

s208 136 109 18 9 169 (13 × 13) 80.47 – – – –

s298 122 85 17 20 144 (12 × 12) 84.72 – – – –

s344 180 130 24 26 196 (14 × 14) 91.84 – – – –

s349 184 134 24 26 196 (14 × 14) 93.88 – – – –

s382 175 124 24 27 196 (14 × 14) 89.29 – – – –

s386 164 138 13 13 196 (14 × 14) 83.67 – – – –

s400 188 137 24 27 196 (14 × 14) 95.92 – – – –

s420 299 248 34 17 361 (19 × 19) 82.83 – – – –

s444 187 136 24 27 196 (14 × 14) 95.41 – – – –

s510 304 266 25 13 361 (19 × 19) 84.21 – – – –

s526 273 222 24 27 324 (18 × 18) 84.26 – – – –

s641 302 206 54 42 676 (26 × 26) 44.67 676 (26 × 26) 44.67 676 (26 × 26) 44.67

s713 321 225 54 42 676 (26 × 26) 47.49 676 (26 × 26) 47.49 676 (26 × 26) 47.49

s820 447 400 23 24 529 (23 × 23) 84.50 576 (24 × 24) 77.60 625 (25 × 25) 71.52

s832 454 407 23 24 529 (23 × 23) 85.82 576 (24 × 24) 78.82 625 (25 × 25) 72.64

s838 606 507 66 33 676 (26 × 26) 89.64 729 (27 × 27) 83.13 784 (28 × 28) 77.30

s1196 675 613 31 31 729 (27 × 27) 92.59 841 (29 × 29) 80.26 900 (30 × 30) 75.00

s1238 724 662 31 31 784 (28 × 28) 92.35 900 (30 × 30) 80.44 961 (31 × 31) 75.34
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Table 3 Reconfiguration CPU computation time for defect scenario (i)
and defect maps R1, C1 and C2

Maps qnano (%) SimE TS

Max Avg. Max Avg.

R1 10 0.51 0.11 1.70 0.39

20 0.96 0.20 3.81 0.83

30 2.46 0.41 17.76 2.99

C1 10 0.64 0.14 1.28 0.39

20 1.38 0.25 3.20 0.79

30 2.72 0.52 44.96 5.27

C2 10 0.51 0.15 2.08 0.56

20 1.15 0.25 4.54 1.08

30 2.82 0.50 44.19 5.97

Max., maximum CPU computation time; Avg., average CPU computa-
tion time; qnano, probability of stuck-open nanodevices’ defects
(qnano = 10–30%—qwire = 20%—qcell = 0%)

5.3 Reconfiguration Results

This section presents the final results of CMOL reconfigura-
tion using SimE and TS iterative heuristics. To reconfiguring
circuits inCMOL,wehave adhered to the original description
of the connectivity domain shown in Fig. 1 with connectivity
radius a = 18.1 In SimE, we have used a bias B between
[−0.06, 0.05], where the small bias values are used for high
defect rates. Negative bias was required to reduce the number
of selected elements (especially in early iterations) to pre-
vent the heuristic from performing conflicting moves, which
may result in poor exploration of the search space. Results
reported in this section were not compared with those based
on Satisfiability [23] (discussed in Sect. 2), due to the limited
nature of that implementation, which included only a small
number of defects (less than 10%of the overall nanodevices).

Results for defect scenario (i) are given in the following
tables; Table 3 report the maximum and averaged CPU com-
putation times (in seconds), which SimE and TS needed to
reconfigure all benchmark circuits for random and clustered
defect maps when qnano is between 10 and 30%. For this
given range of stuck-open probabilities, both SimE and TS
were successful in reconfiguring circuits around all defective

1 Previous solutions for CMOL cells placement [21,23–26,28] defined
the connectivity domain based on Manhattan distance, where a cell is
said to be within the connectivity domain of another cell if the Manhat-
tan distance between them is less or equal to connectivity radius a = 12.
Here in this paper, we have defined the connectivity domain based on
the original description given in [22] as shown in Fig. 1. Given a partic-
ular connectivity radius a, the former definition has bigger connectivity
domains than the later one. For that reason, we have used a connectivity
radius a = 18 to compensate the difference between the two defini-
tions. (e.g., if a = 4 the size of the connectivity domain shown in Fig. 1
will be M = a2 − 2 = 14 cells, while if Manhattan distance is used
M = 40).

components. The table shows that SimE required less com-
putation time than TS as it employs an evolutionary goodness
and selection functions. For example, in clustered defect map
(C2) and for qnano = 30%, SimE average computation time
is equal to 0.50 whereas TS average time is 5.97. As defect
probability rises, the computation time increases. The maxi-
mum CPU time corresponds to the large benchmark circuits
(e.g., s1238) and those that has many multiple fan-in NOR
gates (e.g., s820, s832).

Table 4 shows SimE results for nanodevice stuck-open
defect probabilities qnano = 40–50%. Time is CPU compu-
tation time in seconds and Buffers is the number of inserted
buffers to resolve defective nets. For qnano = 40%, all cir-
cuites were reconfigured successfully, while for qnano =
50%, only s820 and s832 needed additional buffers to resolve
defective nets which SimE was unable to reconfigure. Those
two circuits also needed more buffers when defects are clus-
tered compared with randomly distributed defects (e.g., s832
required three buffers in R1, and six in C1 and C2). More-
over, SimE’s reconfiguration of clustered defects consumed
more CPU time compared with reconfiguration of random
defects. For example, C1 and C2 average CPU time is 3.11,
3.37 s, respectively, compared with 2.01 s for random map
R1.

Similarly, Table 5 gives TS results; the heuristic found
more costly results than those reported by SimE for both 40
and 50% probabilities. Furthermore, TS found its solutions
in considerably more computation time than SimE. TS has
failed to reconfigure s820 and s832 around clustered defects
(i.e., mapsC1 andC2)when qnano = 50%. The high-density
clustered defects rendered search space exploration difficult
leading to many unresolved nets, which make adding addi-
tional buffers using Net Resolving procedure not feasible.

Further, we have investigated the robustness of our heuris-
tics designs by reconfiguring benchmark circuit s1238 using
20 different clustered defect maps (i.e., 20 clustered defect
maps all for grid size of 28 × 28). All defect maps have
C = 0.8, σ = 4a

3 , defect rate qnano = 50% and cut rate
qwire = 20%. The heuristics were run for 40 times for
each map; reconfiguration was successful in 19 out of 20
maps, with overall successful reconfiguration rate of 60%
(i.e., 60% of the 40 run × 20 maps = 800 run). For defect
maps with defect rate qnano < 50%, the heuristics success-
fully reconfigured all of the 20 defect maps, and the overall
successful reconfiguration rate was over 95%.

Reconfiguration results for defect scenario (ii) are shown
in Tables 6 and 7. The reconfiguration of two circuits
(i.e., s820 and s1238) is performed when up to 70% of
the nanowires are cut and 20% of the nanodevices are
stuck-open. For both circuits, SimE has found successful
reconfigurations without the need for any additional buffers
even when the probability of broken wires is as high as
70%. While on the contrary, results found by TS required
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Table 4 Simulated evolution reconfiguration results for defect scenario (i) and defect maps R1,C1 andC2, when qnano = 40–50%—qwire = 20%–
qcell = 0%

Circ. R1 C1 C2

qnano = 40% qnano = 50% qnano = 40% qnano = 50% qnano = 40% qnano = 50%

Time Buffers Time Buffers Time Buffers Time Buffers Time Buffers Time Buffers

s27 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0

s208 0.03 0 0.03 0 0.03 0 0.03 0 0.06 0 0.03 0

s298 0.06 0 0.06 0 0.06 0 0.19 0 0.03 0 0.29 0

s344 0.03 0 0.06 0 0.06 0 0.10 0 0.06 0 0.10 0

s349 0.06 0 0.10 0 0.10 0 0.10 0 0.10 0 0.13 0

s382 0.10 0 1.22 0 0.26 0 0.32 0 0.19 0 1.28 0

s386 0.26 0 3.78 0 0.80 0 3.10 0 0.48 0 8.54 0

s400 0.13 0 0.64 0 0.32 0 0.64 0 0.29 0 0.48 0

s420 0.16 0 0.32 0 0.16 0 0.26 0 0.19 0 0.22 0

s444 0.16 0 0.77 0 0.32 0 0.35 0 0.26 0 0.74 0

s510 1.02 0 1.09 0 0.90 0 2.34 0 1.63 0 2.21 0

s526 1.06 0 2.21 0 0.90 0 1.06 0 2.18 0 6.34 0

s641 0.29 0 0.61 0 0.32 0 1.22 0 0.32 0 1.06 0

s713 0.38 0 0.64 0 0.38 0 1.79 0 0.32 0 0.61 0

s820 4.26 0 8.06 3 5.44 0 12.13 4 4.19 0 11.78 4

s832 6.50 0 9.18 3 6.50 0 18.27 6 7.07 0 15.84 6

s838 0.90 0 1.31 0 1.02 0 1.79 0 1.22 0 1.82 0

s1196 0.99 0 3.04 0 2.62 0 6.24 0 2.75 0 7.01 0

s1238 0.99 0 4.99 0 3.68 0 9.12 0 7.62 0 5.54 0

Avg. 0.92 0 2.01 0 1.26 0 3.11 1 1.53 0 3.37 1

Time: CPU processing time
Buffers: the number of inserted buffers to resolve defective nets
qnano: probability of Stuck-Open nanodevices’ defects

the insertion of buffers in order to have a functional and
defect-free circuits. For high wires cut rates, TS failed to
reconfigure s820 circuit, while it was successful for s1238.
Solution reported when defective nanodevices are randomly
distributed are better than those when nanodevices defects
are clustered. In both SimE and TS, computation time
increaseswhen the problembecomemore complex (i.e.,qwire
increases andnanodevices defects are clustered).Whenmany
nanowires are cut,CMOLcells connectivity domains become
considerably limited. Furthermore, clustered defects means
that some particular CMOL cells have many cells in their
connectivity domains unreachable.

Defect scenario (iii) results are shown in Table 8. Defec-
tive CMOS cells bring about a constraint for both Placement
and Reconfiguration design stages. To investigate this defect
type, we have run SimE to place logic gates into defect-
free CMOS cells and then reconfiguration rearranged gates
location to overcome nanofabric defects without relying on
CMOS defective cells. In this scenario, Placement follows
the formulation given in our previous work [28] along with
the constraint in Eq. 1a. SimE has found solutions with zero

buffers for all circuits under test except for circuit s820,
which required two buffers for qcell = 10% and three buffers
for qcell = 20%. The given T ime in Table 8 is the CPU time
for all design stages (i.e., forPlacement,Reconfiguration and
Net Resolving).

In comparing SimE and TS heuristics performance and
results, it is clear that SimE is finding better results in less
computation time for both randomand clustered defects. That
is attributed to the fact that SimE is applying an evolutionary
search space exploration in which cells that are ought to be
moved are selected based on goodness evaluation technique.
Although TS is a widely adopted search heuristic, but still it
has a shortcoming when circuits rely on multiple inter-cells
interconnect and in case of high nanofabric defect rates.

5.4 Solutions Verification

Each logic circuit implemented in CMOL uses a number of
nanodevices to connect its modules (i.e., gates). The final
outcome of CMOL cell mapping heuristics is the list of
defect-free nanodevices that should be programmed (i.e., set
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Table 5 Tabu Search reconfiguration results for defect scenario (i) and defect maps R1, C1 and C2, when qnano = 40–50%—qwire = 20%—
qcell = 0%

Circ. R1 C1 C2

qnano = 40% qnano = 50% qnano = 40% qnano = 50% qnano = 40% qnano = 50%

Time Buffers Time Buffers Time Buffers Time Buffers Time Buffers Time Buffers

s27 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0

s208 0.10 0 0.22 0 1.60 0 9.82 0 0.96 0 1.09 0

s298 0.22 0 1.28 0 0.26 0 4.32 0 0.19 0 5.25 0

s344 0.19 0 1.92 0 0.93 0 3.94 0 0.42 0 4.51 0

s349 0.38 0 6.43 0 3.30 0 29.95 0 0.93 0 26.75 0

s382 0.61 0 5.60 0 1.60 0 5.41 0 1.28 0 11.94 0

s386 2.43 0 69.95 1 21.06 0 69.38 1 22.21 0 65.76 2

s400 1.50 0 15.36 0 5.09 0 15.84 0 4.80 0 25.63 0

s420 0.64 0 1.50 0 0.64 0 2.46 0 0.90 0 2.46 0

s444 3.68 0 9.50 0 12.99 0 7.30 0 7.52 0 16.54 0

s510 12.64 0 85.98 1 11.90 0 80.48 1 18.62 0 70.40 1

s526 4.19 0 72.67 1 4.70 0 61.22 1 8.64 0 72.70 1

s641 2.21 0 37.38 1 2.66 0 37.15 1 4.13 0 46.18 2

s713 2.05 0 41.47 1 2.30 0 45.22 2 2.88 0 5.12 3

s820 97.98 2 160.16 8 90.05 1 – – 88.19 1 – –

s832 103.14 2 171.87 7 98.53 2 – – 92.42 1 – –

s838 3.04 0 11.10 0 4.38 0 23.14 0 5.50 0 63.84 0

s1196 57.38 0 99.26 0 48.26 0 136.93 0 52.29 0 133.25 0

s1238 33.22 0 153.54 0 49.50 0 184.06 3 98.24 0 156.03 0

Avg. 17.14 0 49.75 1 18.94 0 42.16 1 21.59 0 41.62 1

Time: CPU processing time
Buffers: the number of inserted buffers to resolve defective nets
qnano: probability of Stuck-Open nanodevices’ defects

Table 6 SimE and TS results for s820 circuit’s reconfiguration around cut nanowires (scenario ii), when qnano = 20%–qcell = 0%

qwire (%) Simulated evolution Tabu Search

R1 C1-σ = 2a
3 C2-σ = 4a

3 R1 C1 -σ = 2a
3 C2 -σ = 4a

3

Time Buffers Time Buffers Time Buffers Time Buffers Time Buffers Time Buffers

10 0.29 0 0.29 0 0.45 0 1.38 0 1.25 0 3.65 0

20 0.42 0 0.48 0 0.77 0 4.29 0 2.88 0 5.79 0

30 1.15 0 1.12 0 1.98 0 12.80 0 9.22 0 71.81 1

40 1.34 0 2.59 0 4.13 0 25.28 0 92.48 1 99.81 2

50 2.56 0 10.11 0 9.79 0 119.97 1 134.50 2 111.55 3

60 7.20 0 13.47 0 18.30 0 150.72 2 140.67 3 – –

70 13.60 0 26.14 0 22.85 0 190.21 2 – – – –

Avg. 3.79 0 7.74 0 8.32 0 72.09 1 63.50 1 58.52 1

Time: CPU processing time
Buffers: the number of inserted buffers to resolve defective nets
qwire: probability of nanowires cut

to “ON” state) and the list of defect-free CMOS cells. Com-
pletely mapped and reconfigured CMOL circuits at the end
of our proposed design flow are tested and verified following
the steps shown in Fig. 7.

Verification procedure starts by checking whether any
of the active nanodevices used to connect CMOL cells is
defective. This is done by cross-matching the list of used
nanodevices with defect information stored in the defect
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Table 7 Particle SimE and TS results for s1238 circuit’s reconfiguration around cut nanowires (scenario ii), when qnano = 20%—qcell = 0%

qwire (%) Simulated evolution Tabu Search

R1 C1 -σ = 2a
3 C2-σ = 4a

3 R1 C1-σ = 2a
3 C2-σ = 4a

3

Time Buffers Time Buffers Time Buffers Time Buffers Time Buffers Time Buffers

10 0.38 0 0.45 0 0.61 0 1.5 0 2.34 0 3.52 0

20 0.58 0 0.54 0 1.22 0 2.27 0 3.58 0 6.05 0

30 0.83 0 0.86 0 0.9 0 3.78 0 5.28 0 4.93 0

40 0.86 0 1.73 0 1.76 0 5.92 0 9.6 0 8.38 0

50 2.21 0 1.95 0 1.7 0 9.38 0 14.5 0 8.74 0

60 3.46 0 3.04 0 4.99 0 16.13 0 26.21 0 32.96 0

70 4.77 0 5.54 0 6.14 0 35.04 0 47.36 0 38.18 0

Avg. 1.87 0 2.02 0 2.47 0 10.57 0 15.55 0 14.68 0

Time: CPU processing time
Buffers: the number of inserted buffers to resolve defective nets
qwire: probability of nanowires cut

Table 8 Implementation of SimE for defect scenario (iii),whenqnano =
20%—qwire = 20%

Circ. qcell = 10% qcell = 20%

Time Buffers Time Buffers

s641 17.06 0 18.50 0

s713 23.17 0 28.22 0

s820 136.96 2 240.13 3

s838 60.48 0 95.04 0

s1196 295.68 0 320.90 0

s1238 390.88 0 415.30 0

Avg. 154.04 0 186.35 1

Time: CPU processing time.
Buffers: the number of inserted buffers to resolve defective nets.
qcell: probability of CMOS cells defects

map of the given CMOL gird. Then, the circuit netlists are
reconstructed per the description of the nanodevices list and
the circuit is written in. bench formate. The original circuit
description (i.e., the one before mapping) and the recon-
structed. bench file are forwarded to HOPE simulator [40]
along with randomly generated input patterns. We use perl

script to run the simulator and compare the output of the two
circuits to decidewhether theymatch. Based on the generated
outputs, we conclude whether the two circuits are function-
ally equivalent or not. The verification procedure make sure
that our heuristics perturbations do not change the circuit
description and verify that mapped circuits have the same
logical functionality as the original ones.

6 Conclusion

In this paper, we presented a design automation flow for
reconfiguration-based defect-tolerant in nanofabric architec-
tures. SimE and TS are utilized to optimize and reconfigure
defective CMOL circuits.We analyzed the problem behavior
and engineered heuristic solutions that exploit better under-
standing of the limitations imposed by CMOL connectivity
domain and defective components. Further, we analyzed the
heuristics performance and tuned their parameters. Results
obtained showed that circuits can be reconfigured to become
functional even if 50% of CMOL nanodevices are stuck-
open or if up to 70% of the architecture’s nanowires are
cut. Our findings show that reconfiguration is an effective

Fig. 7 Verification steps:
Mapped circuits are
cross-matched with defect map
information. The mapped and
original circuits are simulated
using HOPE simulator and
outputs compared to decide
whether circuits match
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defect-tolerance technique for the emerging nanofabric-
based systems, and nanofabric’s imprecise assembly can be
negated by elaborate CAD tools.
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