
Appl Intell (2015) 43:296–307
DOI 10.1007/s10489-014-0634-x

Engineering Simulated Evolution for Virtual Machine
Assignment Problem

Sadiq M. Sait ·Kh. Shahzada Shahid

Published online: 11 February 2015
© Springer Science+Business Media New York 2015

Abstract Cloud computing is a rapidly growing services
business in today’s IT market. Its sharp growth is producing
many challenges for cloud managers. One primary con-
cern is to efficiently manage the cloud resources, i.e., to
maximize utilization of hardware with minimum power con-
sumption. Virtual Machine (VM) consolidation is a very
helpful approach to achieve these goals. In this context, we
investigate the VM assignment problem. We describe the
engineering of a nondeterministic iterative heuristic known
as Simulated Evolution (SimE) to solve the well-known
NP-hard problem of assigning VMs to hardware hosts. A
‘goodness’ function which is related to the target objective
of the problem is defined. It guides the moves and helps
traverse the search space in an intelligent manner. In the
process of evolution, VMs with high goodness value have
a smaller probability of getting perturbed, while those with
lower goodness value may be reallocated via a compound
move. Results are compared with those published in previ-
ous studies, and it is found that the proposed approach is
efficient both in terms of solution quality and computational
time demand.

S. M. Sait (�)
Department of Computer Engineering and Center for
Communications and IT Research, Research Institute King Fahd
University of Petroleum & Minerals, Dhahran 31261,
Saudi Arabia
e-mail: sadiq@kfupm.edu.sa

Kh. S. Shahid
Department of Computer Engineering,
King Fahd University of Petroleum & Minerals,
Dhahran 31261, Saudi Arabia
e-mail: g201304230@kfupm.edu.sa

Keywords Combinatorial optimization · Evolutionary
metaheuristic · Simulated evolution · Virtual machine
placement · NP-hard · Nondeterministic algorithms.

1 Introduction

In recent years, cloud-based data centers have emerged as a
popular choice for hosting and delivering IT services. Due
to economies of scale and ease of accessibility, the IT indus-
try is rapidly adopting the cloud computing paradigm [1].
Public-cloud market growth rate was recently forecasted to
be 18.5% in the Gartner report 2013 [2]. With its fast grow-
ing market size, its energy consumption is also increasing
alarmingly. In 2010, electricity consumption by data cen-
ters was estimated to be 1.1–1.5% of total electricity usage
worldwide with an expectation of further growth [3, 4].
In data centers, energy is not only consumed for running
the physical machines but also for cooling the infrastruc-
ture. It is estimated that energy consumption accounts for
approximately 12% of monthly operational expenditures of
a typical data center [5]. Also, large-scale data centers are
facing regulatory restrictions on energy usage by govern-
mental agencies who are promoting green computing [6].
Hence, reducing energy consumption is a primary goal of
today’s data center operations.

Many techniques have been proposed to reduce the
energy consumption of data centers. These techniques sug-
gest better control of power distribution systems [7], effi-
cient cooling systems [8], optimized computer hardware [9],
virtualization technology [10], and load balancing mecha-
nisms [11, 12]. It is known that turning off some unused
machines by intelligently allocating the workload to the
smallest number of hosts is an effective approach to reduce
energy cost of a data center. For example, turning off a

mailto:sadiq@kfupm.edu.sa
mailto:g201304230@kfupm.edu.sa

Engineering Simulated Evolution for Virtual Machine 297

single x86 server from a data center can save approximately
$400 per annum [13]. This is because an idle machine
(running with no load) consumes 60–70% of its peak-load
power consumption [11, 12, 14]. Researchers are trying
to leverage this fact to save energy by optimizing virtual
machine (VM) assignment, an NP-hard problem [15–18].

VMs that run on the same physical machine (PM)
of course, share physical resources. Utilizing physical
machines beyond a certain limit can cause significant per-
formance degradation. Therefore, it is necessary to guaran-
tee that, while minimizing the total number of PMs used, no
PM gets utilized beyond a certain percentage of its maxi-
mum capacity. This is ensured by an appropriate upper limit
on maximum utilization of PM resources. Due to multidi-
mensional nature of VM requests, the assignment problem
is very challenging. Each VM has its own CPU, memory,
and bandwidth requirements. Similarly, every PM has a
fixed capacity across each of these dimensions. Hence VM
to PM assignment should minimize the total number of
PMs used without violating these capacity constraints. VM
assignment is formulated often as a vector bin packing prob-
lem (VBP) [19], where the VMs that are treated as objects
(o) are packed into PMs that are treated as bins (b). The
computational complexity of VBP is O(bo) [19]. Clearly,
it is impractical to enumerate all possible solutions for a
large number of VMs (objects). Even the one-dimensional
version of this problem is NP-hard.

We present a Simulated Evolution (SimE) based heuris-
tic to efficiently find a near-optimal solution in a reasonably
short amount of time. Its performance is compared with that
of another well known iterative heuristic, Simulated Anneal-
ing (SA), and with two popular constructive algorithms, the
improved versions of First Fit Decreasing algorithm referred
to here as FFDimp and Least Loaded algorithm referred to
here as LLimp, both proposed by Ajiro et al. [19]. Simula-
tion results are presented that demonstrate the effectiveness
of proposed algorithm compared to these approaches.

The remainder of this paper is organized as follows: In
Section 2 we briefly discuss the background of the problem
and overview of related work. Section 3 formally defines
the problem. Section 4 explains our proposed approach. In
Section 5 we provide comparison of the results with other
heuristics and provide performance analysis. Finally, we
conclude our discussion in Section 6.

2 Background and related work

Cloud computing provides three major types of services:
Software as a Service (SaaS), Platform as a Service (PaaS)
and Infrastructure as a Service (IaaS). In each of these, a
user can request as much or as little computing resources
as he desires. Efficient allocation of these requests to

hardware resources can significantly improve operational
cost through energy savings. Virtualization technology
allows co-existence of multiple operating systems on a sin-
gle PM. User requests are mapped to VMs with desired
characteristics, and each VM, with its own operating sys-
tem, works in an isolated environment while sharing the
underlying machine’s computing resources with other VMs.
Figure 1 illustrates the benefits of virtualization and how
optimal VM assignment helps to reduce the number of
active PMs in a data center. Consider the situation illustrated
in Fig. 1. Five applications are running on five different PMs
(Fig. 1a). None of these applications is using more than 50%
of the physical resources, resulting in huge resource wastage
and unnecessary power consumption. With virtualization
technology we can execute these applications in VMs, and
these VMs can then be placed in a fewer number of physi-
cal machines that better utilize the available resources with
reduced power cost (Fig. 1b). However, by making an opti-
mal placement of these VMs, we can achieve even higher
utilization with lower power consumption (Fig. 1c).

In the last few years, much effort has been made to find
methods for optimal VM placement with the objective of
minimizing the number of active PMs. This is to reduce both
capital and operational cost, including power and mainte-
nance. Jing Xu et al. proposed a modified genetic algorithm
to simultaneously minimize the total power consumption,
resource wastage and thermal dissipation using a fuzzy
multi-objective cost function [17]. Breitgand et al. modeled
the problem as a stochastic bin-packing problem using sta-
tistical multiplexing of physical resources [20]. Gao et al.
presented VMPACS, a modified ant colony optimization
algorithm which gives a Pareto set (non-dominated solu-
tions) that minimizes total resource wastage and power con-
sumption [16]. Recently, for large-scale machine reassign-
ment and packing problems that have multiple resources,
Masson et al. proposed a Multi-Start Iterated Local Search
for Packing Problems (MS-ILS-PP) [21]. Karmer et al. used
the concept of dynamic voltage/frequency scaling (DVFS)
along with VM consolidation to further improve the energy
efficiency. Their approach is based on trade-off between
power and performance [22].

In the category of deterministic heuristics, Doddvula
et al. proposed a Magnitude Classified algorithm for server
consolidation. Their algorithm first classifies the workload
based on their resource requirements and then places the
complementary workloads [23]. Other works such as that by
Jhawar et al. [24] and Shi et al. [25] also consider security
constraints along with maximizing utilization.

First Fit Decreasing (FFD) and its variants are other
common deterministic methods applied to find an approxi-
mate solution to the vector bin-packing problem [15]. FFD
algorithm first sorts the VMs in decreasing order of their
sizes and then places them in PMs according to First Fit (FF)

298 S. M. Sait, Kh. S. Shahid

Fig. 1 The above diagrams
show (a) poor utilization with
5 active PMs, (b) moderate
utilization with 3 active PMs,
and (c) optimal utilization with
2 active PMs only

strategy. In the context of data center energy optimization,
Lei Shi et al. presented and evaluated the performance of
six different FFD-based VBP algorithms [15]. Panigrahy
et al. systematically studied the family of FFD heuristics
and their limitations and suggested a new geometric based
heuristic approach for VBP [18].

Ajiro et al. [19] suggested improvements to the classical
FFD and least loaded (LL) algorithms. There are two differ-
ences between LL and FFD. First, LL restarts the placement
process each time a new PM is added, when it has failed to
place a VM into currently active PMs. Whereas FFD con-
tinues to place the subsequent VMs until all are placed.
Second, in order to place a VM into a least-loaded active
PM, LL sorts active PMs in ascending order of their cur-
rent utilizations each time before placing it. Improved FFD
(FFDimp) is different from conventional FFD in the sense
that it seeks near-optimal solution in multiple passes. In the
first pass VMs are sorted in decreasing order of their highest
resource demand, i.e., sum of all CPU demands or sum of
all memory demands, whichever is larger. Then an attempt
is made to pack all the VMs in number of PMs equal to the

theoretical lower bound. If any VM cannot be packed, then
it is moved to a priority queue and placement process is
aborted. In the next pass, VMs in the priority queue are
placed first, followed by the remaining VMs in the sorted
list. The above steps are repeated MAXR times. If all VMs
are not packed in MAXR iterations then the number of
destination PMs is incremented by one and the above pro-
cess is repeated until a solution is found, i.e., all VMs are
packed. LLimp is implemented in multi-passes in a similar
way employing the LL heuristic. These improved versions
provide better quality solutions than that of their single-pass
implementations. This improvement, however, comes at the
expense of increased run time [19].

In this work we engineer an evolutionary nondetermin-
istic optimization heuristic known as Simulated Evolution
(SimE). Similar to other nondeterministic algorithms, SimE
also possesses hill-climbing capability. One key require-
ment of SimE is to define an appropriate way to estimate the
goodness of the current assignment of a movable element,
in our case the movable elements are VMs. The process
of evolution, guided by goodness value, tends to converge

Engineering Simulated Evolution for Virtual Machine 299

reasonably fast to a good quality solution. Many other non-
deterministic heuristics, such as Simulated Annealing (SA),
tabu search, etc., lack this domain knowledge feature and
work mostly with random moves. Further details of good-
ness function developed for VM assignment are provided in
Section 4.

3 Problem statement and formulation

In a VM consolidation problem, the goal is to place the
VMs in the minimum number of possible PMs without per-
formance degradation. And, turn off the remaining PMs to
save power. When mutiple VMs are placed on a single PM,
the host operating system or hypervisor may consume some
extra resources, e.g., for resource scheduling, or context
switching [24]. To avoid performance degradation of PMs,
we set an upper-bound on the maximum utilization of any
resource of a PM with some threshold value. This threshold
value can be specified by the data center managers in terms
of percentages.

In the context of vector bin-packing problems, VMs may
be understood as objects that are packed into PMs that are
considered bins. The size of each object, i.e., VM, is defined
by its resource demand vector. Dimensions of these resour-
ces may include CPU, memory, bandwidth, disk space etc.,
as described in Section 1. Capacity of each bin, i.e., PM, is
bounded by the selected utilization threshold of its resour-
ces. Also note that placing multiple VMs on the same PM
has an additive effect on the PM’s utilization across each
dimension. For example, if (25%, 35%) is a pair of the CPU
and memory utilization of a VM, and (20%, 40%) is of
another VM, then, the utilization of a PM accommodating
these two is (45%, 75%), i.e., the vector sum.

3.1 Optimization formulation

In this paper, we consider two dimensions of resources,
CPU and memory. Suppose that there are n VMs to be
assigned. Each VM vi , i ∈ {1, 2, 3, . . . , n} is defined as
a 2-dimensional requirement vector, vi = {vc

i , v
m
i } where

each dimension represents a normalized value of one type
of resource requested (CPU and memory). These VMs are
to be assigned to q PMs. Let T c

k and T m
k be the threshold

values of CPU and memory resources, associated with each
PM pk , k ∈ {1, 2, 3, ..., q} respectively. The assignment
solution is represented by a q × n matrix A, where

Aki =
{
1 if VMi is assigned to PMk

0 otherwise

Let f (pk) be a function such that f (pk) = 1, if PM pk

is loaded with at least one VM and f (pk) = 0 otherwise.

The problem of assigning all VMs to the least number of
PMs, and subject to the constraints, can be formulated as
follows:

minimize
q∑

k=1

f (pk) (1)

subject to
n∑

i=1

Aki.v
c
i ≤ T c

k ∀k ∈ {1, 2, 3, ..., q} (2)

n∑
i=1

Aki.v
m
i ≤ T m

k ∀k ∈ {1, 2, 3, ..., q} (3)

q∑
k=1

Aki ≤ 1 ∀i ∈ {1, 2, 3, ..., n} (4)

Constraints (2) and (3) impose threshold limit on maximum
utilization while constraint (4) ensures that each VM will be
assigned to only one PM.

4 Proposed approach

In this section we describe our Simulated Evolution (SimE)
based VM consolidation algorithm. We begin with a brief
discussion of the basic SimE heuristic.

4.1 Simulated evolution

Simulated Evolution (SimE) is a general iterative heuristic
proposed by Kling and Banerjee [26]. This scheme com-
bines iterative improvement and constructive perturbation
and saves itself from getting trapped in local minima by fol-
lowing a stochastic approach. In SimE, the search space is
traversed by making intelligent moves, unlike in other non-
deterministic algorithms such as Simulated Annealing (SA),
where random moves are made. The core of the algorithm
is the goodness estimator. SimE assigns each moveable ele-
ment a goodness value. The goodness value indicates how
well a certain movable element is currently assigned. The
higher the goodness value, the lower is the probability of the
element being selected for reallocation.

The structure of the SimE algorithm is shown in the
flowchart in Fig. 2. SimE assumes that there exists a solu-
tion Φ of a set V containing n movable elements (VMs).
The algorithm starts from an initial assignmentΦi , and then,
following an evolution-based approach seeks to reach better
assignments from one generation to the next by perturbing
some ill-assigned elements (VMs) while retaining the near-
optimal ones. The algorithm has one main loop consisting of
three basic steps, evaluation, selection and allocation. The
three steps are executed in sequence until the solution aver-
age goodness reaches a maximum value, or no noticeable
improvement in solution quality is observed after a given
number of iterations [27].

300 S. M. Sait, Kh. S. Shahid

Fig. 2 Flowchart of SimE

4.1.1 Goodness evaluation

The Evaluation step consists of evaluating the goodness
(fitness) gi of each VM vi assigned to PM pk in current
solution Φ ′. Effective goodness measures can be thought of
based on the domain knowledge of the optimization prob-
lem [28]. The goodness measure must be a single number
expressible in the range [0, 1]. For our VM assignment
problem we define the goodness measure as:

gi = vc
i + vm

i

pc
k + pm

k

, pc
k ≤ T c

k & pm
k ≤ T m

k (5)

Where vc
i and vm

i are CPU and memory requirements of
VM vi , and pc

k and pm
k are the available CPU and memory

resources of partially used PM pk after removing VM vi

from PM pk in the current solution�′. Equation (5) assumes
a minimization of resource wastage in PM pk (maximiza-
tion of goodness). The goodness of a VM vi will be 1 if it
is assigned to such a partially used PM pk that vc

i = pc
k

and vm
i = pm

k . It means that the current assignment of
VM vi exactly packs the PM pk and hence optimally uti-
lizes the PM pk . For example, the goodness values of VMs
v1, v2 and v3 (in Fig. 3) are 1 as their combined placements

1

cv

2

cv

3

cv

4

cv

5

cv

6

mv

5

mv

4

mv

3

mv

2

mv

1

mv
6

cv

Fig. 3 Allocation of 6 VMs on 3 PMs

optimally utilize the resources of PM p1. On the other hand,
the goodness gi will be near 0, when a VM vi , with a
very small resource requirements, is placed in an empty PM
pk i.e., vc

i << pc
k and vm

i << pm
k . Such an assignment

will result in maximum resource wastage. The VM v6, in
(Fig. 3), has approximately zero goodness value. Note that
this goodness estimation is strongly related to the target
objective of the given problem. The quality of a solution can
also be estimated by summing up the goodness of all of its
constituent elements (VMs).

The goodness measure given in (5) can be generalized for
D-dimensional case as in (6):

gi = v
d1
i + v

d2
i + . . . v

dD

i

p
d1
k + p

d2
k + . . . p

dD

k

,

p
d1
k ≤ T

d1
k , p

d2
k ≤ T

d2
k , . . . , p

dD

k ≤ T
dD

k (6)

4.1.2 Selection

In this step, the algorithm probabilistically selects elements
for reallocation. Elements with low goodness values have
higher probabilities of getting selected. Selection step par-
titions Φ ′ into two disjoint sets; a selection set Vs and a
partial solution Φp containing the remaining elements of
the solution Φ ′. Each element in the solution is considered
separately from all other elements. The decision whether
to assign an element vi to the set Vs is based solely on its
goodness gi . The selection operator has a nondeterminis-
tic nature, i.e., an individual with a high goodness (close to
one) still has a non-zero probability of being assigned to the
selection set Vs . It is this element of nondeterminism that
gives SimE the capability of escaping local minima. Each
time a VM vi is considered for selection a random number
is generated. The inequalityRandom ≤ (1−gi +B) is used
for this purpose (see Fig. 4). A selection bias (B) is used to
compensate for errors made in the estimation of goodness.
Its objective is to inflate or deflate the goodness of elements.
A high positive value of bias decreases the probability

Engineering Simulated Evolution for Virtual Machine 301

Fig. 4 Simulated evolution algorithm for VM assignment

of selection while a negative value has the opposite effect.
Large selection sets may lead to a better solution, but will
require higher run time. On the other hand, small selection
sets will speed-up the algorithm, increasing the risk of an
early convergence to a sub-optimal solution (local minima).
Values of B are recommended to be in the range [−0.2, 0.2].
In many cases a value of B = 0 would be a reasonable
choice as in our case [27].

4.1.3 Allocation

Allocation is the SimE operator that has most impact on
the quality of solution. Allocation takes as input the set Vs

and the partial solution Φp and generates a complete new

solution Φ ′ with the elements of set Vs mutated accord-
ing to allocation strategy. The goal of Allocation is to favor
improvements over the previous generation, without being
too greedy [27]. Since the goodness of each individual
element is also tightly coupled with the target objective,
superior alterations are supposed to gradually improve the
individual goodness as well. Hence, Allocation allows the
search to progressively converge towards a configuration
where each individual is optimally located.

The choice of a suitable allocation function is problem
specific. Similar to the design of goodness function, the
choice of allocation strategy also requires ingenuity on the
part of the designer. In this work we adopted a variant of
FFD heuristic as our allocation strategy. The VMs selected
during the selection step are sorted in decreasing order of
their request sizes (Rvi) computed using equation (7).

Rvi = (vc
i)

2 + (vm
i)2 (7)

The active PMs in partial solution Φp are also sorted
in decreasing order of the linear sum of their occupied
resources (Opk) computed using equation (8):

Opk = (1 − pk
c) + (1 − pk

m) (8)

Subsequently, First Fit algorithm is applied to generate the
new solution �′.

To illustrate this, consider the placement solution in
Fig. 3. Suppose that v2 and v6 are selected for reallocation.
These VMs are sorted according to their size using equation
(7) and PMs are sorted according to their utilized size using
equation (8). This is illustrated in Fig. 5. In the next step,
the first fit algorithm will first attempt to place VM v2 in
PM p2. Since the remaining capacity of p2 is not sufficient
to accommodate v2, it will be placed in next PM, that is p1.
Next v6 will be attempted & successfully placed in p2. This
resulting solution is shown in Fig. 6. This new solution is
better than the previous one as it requires one less PM, and
it thereby results in energy saving.

Initial placement Φi is also obtained by this same allo-
cation strategy but with the difference that all the VMs are
treated as selected and are placed in an empty set of PMs.

Fig. 5 Sorted PMs and VMs for
allocation

302 S. M. Sait, Kh. S. Shahid

PM1

Threshold

PM2 PM3

Fig. 6 Allocation of selected VMs

4.2 Complexity analysis

Our proposed SimE-based algorithm consists of four steps
in a loop as illustrated in the flowchart in Fig. 2. The evalua-
tion step computes goodness value of all n VMs using
equation (5). This takes O(n) time. The selection step prob-
abilistically selects ill-assigned VMs and this also takes
O(n) time. In the sorting step prior to allocation, both the
lists of selected VMs and active PMs are sorted and this
takes O(n log n) time. In the allocation step, First Fit (FF)
algorithm sequentially checks if all selected VMs can be
packed into one of q current active PMs. FF then packs each
selected VM into a PM first found to be able to accommo-
date it. If a VM cannot be packed into any current active
PM, the (q+ 1)-th PM is turned ON to accommodate it.
The complexity of this step is O(n2). The overall complex-
ity of our algorithm is O(I.n2), where I is the number of
iterations. Experiments have indicated that I remains fairly
constant as n increases, e.g., I varies in the range of 65–75
when n is increased from 200 to 1000.

5 Performance analysis

In this section we provide performance evaluation of our
proposed approach with respect to solution quality and run
time. First, we compare it with the improved versions of
classic FFD (FFDimp) and LL (LLimp) algorithms proposed
by Ajiro et al. [19], and a well-known iterative heuristic,
Simulated Annealing (SA) [27]. Then we discuss the solu-
tion quality, performance, and scaling of the SimE heuristic.

5.1 Simulation setup

The programs for the proposed SimE algorithm, SA,
FFDimp and LLimp heuristics were coded in MATLAB and
run on an Intel coreT M i5 with 1.80GHz CPU and 4GB
RAM. FFDimp and LLimp try to pack all the VMs in number
of PMs equal to the theoretical lower bound (LB). If that
can not be achieved then a different packing sequence based

on reordered VMs (as explained in Section 2) is attempted
before a new PM is turned ON. This is done upto a maxi-
mum of MAXR times, where MAXR is a control parameter
that provides trade-off between quality of solution and time.
Details of implementation and experiments to determine the
appropriate value of MAXR are as discussed by Ajiro et al.
[19]. According to the experimental study, MAXR for
FFDimp is set to 10–30% and for LLimp equal to 10% of
total number of VMs [19].

The details of Simulated Annealing (SA) algorithm can
be found in [27]. SA has four important parameters which
need to be tuned very carefully. These are: initial tempera-
ture T0, cooling rate α, constant β, and M which represents
the time until the next parameter update. After trial runs,
appropriate values of these parameters were found to be
T0 = 36, α = 0.9, β = 1.1, M = 3 for place-
ment of 200VMs. For 500VMs, the best values of the
parameters used were T0 = 120, α = 0.9, β = 1.09,
M = 2.2. Our SimE algorithm was set to stop explor-
ing the search space if no improvement was observed in
the last 75 iterations. For SimE, Bias value was set to
0, and maximum size of selection set was restricted to
maxSelection = 40% of total VMs (reasons are discussed
in Section 4.1).

5.1.1 Work load

The problem instances were a set of two resource demand
vectors representing the CPU and memory utilization of
200 and 500VMs. PMs were assumed to be identical, that
is, all PMs have the same resource capacity fixed at 90%
although the proposed approach is equally applicable for
the heterogeneous case. Due to nondeterministic behaviour,
average of results obtained from 100 independent runs are
reported. In combinatorial problems, hardness is defined
according to a worst-case scenario. However, in practical
applications engineers invariably are more interested in
typical instances of an optimization task rather than looking
for the hardest possible instances. For this reason, suitably
parametrized random ensembles of instances of problems
are introduced. In this context, it was observed that in some
regions of the ensemble space instances are typically easy to
solve, while in other regions instances are found to be typi-
cally hard. This change in behaviour resembles the phase
transitions observed in physical systems [29]. Two prop-
erties that determine the phase transition in our case are:
(a) the correlation between the resource demand vectors
(that is between CPU and memory sizes); and (b) aver-
age size of the VM resource demand in the data set. If
the the CPU and memory utilization demands are almost
equal for all VMs, then this is a special case of strong-
positive correlation. Inthis case the instance is similar
to a one-dimensional bin-packing problem that is rela-

Engineering Simulated Evolution for Virtual Machine 303

Fig. 7 Pseudo code to generate random problem instances with
certain correlations

tively easier to solve than the two-dimensional problem
typically is [19].

However, for negatively correlated instances, more effort
is required to find good solutions [18]. High negative cor-
relation between CPU and memory requirements or high
average size of the VM resource demands makes it dif-
ficult to find a solution near the theoretical lower bound.
Such solutions either take more time, or for the same time
the quality of results obtained is lower than those where

the average size of the VM resource demands is small.
To make synthetic instances more representative and cover
a wide range of possible workloads, we generated prob-
lem instances with two different average resource values
and several correlations of CPU and memory utilizations,
employing the method proposed by Ajiro et al. [19]. The
pseudo code for this is given in Fig. 7.

In Fig. 7, rand (1) is a function that returns uniformly dis-
tributed random real numbers in the range [0,1); vc denotes
the average CPU utilization while vm represents the aver-
age memory utilization. The probability P is used to decide
whether both the utilization of CPU and memory would be
equal to or higher than the average values, or both utiliza-
tions would be lesser than the average values. By varying
this probability P, we can control the correlations of CPU
and memory utilizations to some extent.

In our experiment, we used two kinds of average val-
ues and five different probabilities. We set both vc and vm

to 25%, and then to 45%. The distributions of CPU and
memory utilizations were in the range of [0, 50%) when

Table 1 Performance comparison of FFDimp,LLimp , SA and SimE

VMs = 200 VMs = 500

Corr Algorithm MAXR q q/LB Time(Sec) q q/LB Time(Sec)

vc = vm = 25% Strong −ve FFDimp 20% 68.67 1.1884 10.5987 171.95 1.2091 568.4928

FFDimp 30% 65.68 1.1366 11.5814 163.90 1.1524 601.2377

LLimp 10% 63.47 1.0982 2.4263 156.15 1.0978 68.5390

SimE – 59.22 1.0246 1.1137 145.00 1.0193 8.8654

SA – 70.29 1.2173 7.7961 182.45 1.2793 122.7781

Weak −ve FFDimp 20% 65.79 1.1411 8.0819 162.85 1.1489 385.2580

FFDimp 30% 64.11 1.1118 9.5391 159.35 1.1242 471.4340

LLimp 10% 62.24 1.0789 1.9123 152.25 1.0736 47.0452

SimE – 58.86 1.0203 0.9870 144.35 1.018 7.0985

SA – 69.89 1.2153 7.7669 180.55 1.2664 126.7085

Zero FFDimp 20% 63.25 1.1122 6.5057 160.40 1.1364 365.4011

FFDimp 30% 62.51 1.0991 8.3291 158.95 1.1262 486.3127

LLimp 10% 60.26 1.0594 1.4108 149.85 1.0615 35.8382

SimE – 57.89 1.0177 0.9166 143.40 1.016 5.9491

SA – 69.74 1.2179 7.7257 180.1 1.2717 131.3036

Weak +ve FFDimp 20% 61.80 1.0849 5.0155 156.75 1.1004 307.2129

FFDimp 30% 61.62 1.0817 6.7264 156.35 1.0976 416.3680

LLimp 10% 60.04 1.0535 1.1589 150.00 1.0529 30.6913

SimE – 57.84 1.0152 0.9330 144.30 1.013 6.8773

SA – 69.10 1.2098 7.6981 178.15 1.2596 126.4890

Strong +ve FFDimp 20% 60.44 1.0650 3.6218 149.70 1.0708 175.7809

FFDimp 30% 60.40 1.0643 4.8976 149.70 1.0708 241.3745

LLimp 10% 59.53 1.0488 1.0285 146.50 1.0479 23.8151

SimE – 57.63 1.0155 0.8121 141.50 1.0122 5.3684

SA – 67.86 1.1917 7.6885 172.85 1.2432 118.1567

304 S. M. Sait, Kh. S. Shahid

Table 1 (continued)

VMs = 200 VMs = 500

Corr Algorithm MAXR q q/LB Time(Sec) q q/LB Time(Sec)

vc = vm = 45% Strong −ve FFDimp 20% 124.62 1.2065 28.35 300.20 1.1777 1330.0000

FFDimp 30% 123.91 1.1996 39.4475 298.25 1.1701 1820.0000

LLimp 10% 125.63 1.2163 8.6206 294.50 1.1553 464.8868

SimE – 121.47 1.1759 1.418 286.25 1.1229 10.5846

SA – 130.98 1.2634 10.1118 329.05 1.2885 154.7883

Weak −ve FFDimp 20% 123.16 1.1865 26.4677 301.05 1.1774 1260.0000

FFDimp 30% 122.03 1.1756 35.6037 298.35 1.1669 1690.0000

LLimp 10% 122.39 1.179 7.1789 293.50 1.1479 428.7857

SimE – 118.86 1.1449 1.4415 286.50 1.1205 10.0072

SA – 128.23 1.2436 9.5241 326.50 1.2766 150.9985

Zero FFDimp 20% 119.14 1.1618 21.7631 293.90 1.1534 1060.0000

FFDimp 30% 118.31 1.1536 29.4344 291.40 1.1436 1420.0000

LLimp 10% 118.82 1.1585 5.8913 287.45 1.1279 342.8841

SimE – 114.94 1.1205 1.3314 278.60 1.093 9.2724

SA – 126.36 1.2316 9.2873 318.25 1.2639 144.1075

Weak +ve FFDimp 20% 116.65 1.1361 17.3948 286.40 1.1263 798.6678

FFDimp 30% 116.18 1.1316 24.1385 285.15 1.1214 1110.0000

LLimp 10% 116.35 1.1331 4.8078 281.30 1.106 269.7920

SimE – 113.10 1.1013 1.2424 273.35 1.0746 8.5355

SA – 123.68 1.2103 9.1476 313.65 1.2395 141.7936

Strong +ve FFDimp 20% 112.74 1.1136 13.4092 278.65 1.1064 646.3755

FFDimp 30% 112.15 1.1077 18.5815 277.10 1.1002 885.2129

LLimp 10% 110.69 1.0932 3.1699 270.45 1.0738 151.7008

SimE – 108.10 1.0675 1.0909 264.60 1.0505 7.7824

SA – 119.59 1.1817 8.8983 303.25 1.2130 134.8037

vc = vm = 25%, and [0, 90%) when vc = vm = 45%.
For vc and vm = 25%, we set P equal to 0.00, 0.25, 0.50,
0.75, and 1.0, and for this the average correlation coeffi-
cients obtained are −0.7485, −0.3813, 0.0081, 0.3736,
and 0.7493 for each set of instances. These coefficients
correspond to strong-negative, weak-negative, no, weak-

positive, and strong-positive correlations. The same values
of P were used for vc and vm = 45% and then the correla-
tion coefficients were−0.7508, −0.3703, 0.0019, 0.3857,
and 0.7476. Threshold values of both utilizations were kept
at T c

k = T m
k = 90%, k ∈ {1, 2, 3, ..., q} throughout these

experiments.

Fig. 8 Run time of
FFDimp,LLimp, SA and SimE
with 200 VMs for cases of
(a) vc = vm = 25% and
(b) vc = vm = 45%

Engineering Simulated Evolution for Virtual Machine 305

Fig. 9 Change in number of
active PMs with iterations in
(a) SimE and (b) SA

5.2 Results and discussion

To evaluate the efficiency of the proposed SimE algorithm,
its performance is compared to that of FFDimp, LLimp,
and SA. The comparison metrics are the number of active
PMs (q), time to find the solution, and consolidation ratio
(q/LB) calculated as ratio of active PMs q to the theoreti-
cal lower bound LB which is estimated using equation (9).
A value q/LB closer to 1.0 represents higher efficiency.
Table 1 lists the average number of active PMs obtained
by these algorithms for different correlation and reference
mean values.

LB = max

(
�

n∑
i=1

vc
i

T c
�, �

n∑
i=1

vm
i

T m
�
)

(9)

From Table 1 we note the following:

– For all algorithms applied, consolidation ratio decreases
with change of correlation from strong-positive to
strong-negative.

– Similarly, consolidation ratio decreases by decreasing
average resource demand value from 45% to 25%.

– The timing performance of both FFDimp and LLimp

strongly depends on the correlation between CPU and
memory utilizations. They take more time to reach a
good solution for the instances with negative correla-
tion (see Fig. 8). On the other hand, execution time of
both SA and SimE only slightly varies across different
correlations.

– In each case our proposed algorithm SimE gives better
consolidation efficiency in a shorter amount of time as
compared to FFDimp, LLimp, and SA.

SimE performs better than the two deterministic algo-
rithms FFDimp and LLimp because these heuristics consider
only one dimension, CPU or memory, the sum of whichever
resource request is larger, when sorting them. The order
obtained may not be suitable for optimal assignment. There-
fore, the entire sorting and assignment steps are repeated

several times, each time giving priority to VMs that have
failed to be packed in currently active PMs. While our pro-
posed SimE only picks a small number of VMs with low
goodness value and sorts them considering both dimen-
sions of utilization. This precise selection of a small number
of VMs and proper sorting plays a key role in improv-
ing the solution quality and reducing run time. Although
SimE and SA both are iterative nondeterministic heuris-
tics, SimE is more intelligent, and thus requires fewer
iterations to converge towards a desirable solution [27].
Change in cost of SimE and SA with iterations is illus-
trated in Fig. 9. It is clearly seen that SimE quickly finds
a good solution through a few initial iterations. The plot
of average goodness of the solution with iteration is shown
in Fig. 10.

5.2.1 Scalability of SimE

In this subsection, we provide results of another set of exper-
iments that are conducted to study whether the proposed
algorithm is scalable to larger data centers and more VM

Fig. 10 SimE: change in the average goodness of VMs with iterations

306 S. M. Sait, Kh. S. Shahid

Fig. 11 SimE algorithm run-time versus number of VM requests for
different correlations

requests. In the experiment, the number of VMs is varied
from 200 to 2000 for three different levels of correlations
(strong-negative, zero and strong-positive correlations), and
for two average resource demand values (25% and 45%).
SimE was set to stop exploring the the search space when
the consolidation ratio is reduced to lower than 1.07, or no
improvement was observed in the last 35 iterations. The
behaviour of the heuristic is shown in Fig. 11. The execu-
tion time is measured on Intel coreT M2 Quad with 2.67
GHz CPU and 4 GB RAM by taking an average of 50 runs.
The algorithm takes less than a minute to solve a difficult
assignment problem with up to 2000 VMs.

6 Conclusions and future work

A major concern for today’s cloud service mangers is
reducing energy consumption. This study investigated a
multi-dimensional VM consolidation model to solve the
problem. In this paper we presented the engineering of
Simulated Evolution (SimE) search heuristic to find better
solutions for the combinatorial NP-hard optimization prob-
lem, virtual machine assignment. Solutions in Simulated
Evolution heuristic evolve based on the current goodness
value of the assignments of VMs to PMs. We developed a
goodness measure that enables SimE heuristic to quickly
find the near-optimal solution. We evaluated its perfor-
mance for a wide range of different problem instances.
The important finding from this study is that the required
run-time does not get affected by the correlation between
different dimensions of VMs. This feature makes this
heuristic desirable for all scenarios. In terms of consolida-
tion efficiency, simulation results obtained are better than
those published in literature and with savings in required
computation time.

In this work we considered the scenario where all the
VM requests are known before placement and the con-
troller allocates them at once, trying to find the optimal
allocation in accordance with the objectives and constraints.
Such situations arise when a data center starts its operation
after a maintenance state or when the data center opti-
mizer/controller takes a decision at the back-end. However,
in operational data centers VM requests arrive incrementally
over time. In order to address this issue, it is recommended
that future studies look into modifications of the algorithm
that would work for an online scenario. In such cases exist-
ing VMs may have to be migrated for better allocation of
new VMs.

Acknowledgments The authors acknowledge King Fahd University
of Petroleum & Minerals (KFUPM) for all support. The work was
conducted as part of project COE-572132-1. Special thanks to Ms.
Fathima Chinoy and Dr. Blair Paul Bremberg for their help in editing
and improving the quality of the manuscript.

Engineering Simulated Evolution for Virtual Machine 307

References

1. Zhang Q, Zhani MF, Zhang S, Zhu Q, Boutaba R, Hellerstein JL
(2012) In: Proceedings of the 9th International Conference on
Autonomic Computing (ACM, 2012), pp 145–154

2. Gartner report (2013) http://www.gartner.com/newsroom/id/
2352816

3. Koomey J (2011) Growth in data center electricity use 2005 to
2010. A report by Analytical Press, completed at the request of
The New York Times

4. Beloglazov A (2013) Energy-efficient management of virtual
machines in data centers for cloud computing. Ph.D. thesis,
Department of Computing and Information Systems, The Univer-
sity Of Melbourne

5. Technology research - Gartner Inc. (2010) http://www.gartner.
com/newsroom/id/1442113

6. Energy star computers specification (2012)
http://www.energystar.gov/sites/default/files/specs//private/ES
Computers Draft 1 Version 6.0 Specification.pdf

7. Raghavendra R, Ranganathan P, Talwar V, Wang Z, Zhu (2008)
In: ACM SIGARCH Computer Architecture News (ACM, 2008),
vol 36, pp 48–59

8. Bash CE, Patel CD, Sharma RK (2006) In: Thermal and
Thermomechanical Phenomena in Electronics Systems, 2006.
ITHERM’06. The Tenth Intersociety Conference on (IEEE, 2006),
pp 445–452

9. Von Laszewski G, Wang L, Younge AJ, He X (2009) In: Cluster
Computing and Workshops, 2009. CLUSTER’09. IEEE Interna-
tional Conference on (IEEE, 2009), pp 1–10

10. Verma A, Dasgupta G, Nayak TK, De P, Kothari R (2009) In: Pro-
ceedings of the 2009 Conference on USENIX Annual Technical
Conference (USENIX Association, 2009), p 28

11. Chen G, He W, Liu J, Nath S, Rigas L, Xiao L, Zhao F (2008) In:
NSDI, vol 8, pp 337–350

12. Fu Y, Lu C, Wang H (2010). In: Parallel & Distributed Processing
(IPDPS),IEEE International Symposium on (IEEE,2010), pp 1–11

13. Technology research - Gartner Inc. (2009) http://www.gartner.
com/newsroom/id/1234513

14. Gulati A, Holler A, Ji M, Shanmuganathan G, Waldspurger C,
Zhu X (2012) VMware Tech J 1(1):45

15. Shi L, Furlong J, Wang R (2013) In: Computers and Commu-
nications (ISCC), 2013 IEEE Symposium on (IEEE, 2013), pp
000,009–000,015

16. Gao Y, Guan H, Qi Z, Hou Y, Liu L (2013) J Comput Syst Sci
79(8):1230

17. Xu J, Fortes JA (2010) In: Green Computing and Communica-
tions (GreenCom), 2010 IEEE/ACM Int’l Conference on & Int’l
Conference on Cyber, Physical and Social Computing (CPSCom)
(IEEE, 2010), pp 179–188

18. Panigrahy R, Talwar K, Uyeda L, Wieder U (2011) Heuristics for
vector bin packing. research. microsoft. com

19. Ajiro Y, Tanaka A (2007) In: Int. CMG Conference, pp 399–406
20. Breitgand D, Epstein A (2012) INFOCOM. In: Proceedings IEEE

(IEEE, 2012), pp 2861–2865
21. Masson R, Vidal T, Michallet J, Penna PHV, Petrucci V, Subra-

manian A, Dubedout H (2013) Expert Syst Appl 40(13):5266
22. Kramer HH, Petrucci V, Subramanian A, Uchoa E, Comput Ind

Eng (2012) 63(3):652
23. Doddavula SK, Kaushik M, Jain A (2011) In: Cloud Com-

puting Technology and Science (CloudCom), 2011 IEEE Third
International Conference on (IEEE, 2011), pp 332–339

24. Jhawar R, Piuri V, Samarati P (2012) In: CSE, pp 170–177
25. Shi L, Butler B, Botvich D, Jennings B (2013) In: Integrated

Network Management (IM 2013), 2013 IFIP/IEEE International
Symposium on (IEEE, 2013), pp 499–505

26. Kling RM, Banerjee P (1987). In: Proceedings of the 24th
ACM/IEEE Design Automation Conference (ACM, 1987), pp
60–66

27. Sait SM, Youssef H (1999) Iterative Computer Algorithms with
Applications in Engineering: Solving Combinatorial Optimization
Problems (IEEE Computer Society Press)

28. Sait SM, Youssef H (1994) VISI physical design automation:
Theory and practice. McGraw-Hill, New York

29. Hartmann A (2005) Phase transitions in combinatorial optimiza-
tion problems - Basics, Algorithms and Statistical Mechanics.
Wiley-VCH, New York

Sadiq M. Sait obtained a
Bachelor’s degree in Electron-
ics from Bangalore University
in 1981, and Master’s and PhD
degrees in Electrical Engineer-
ing from King Fahd Univer-
sity of Petroleum & Miner-
als (KFUPM), Dhahran, Saudi
Arabia in 1983 & 1987 respec-
tively. Since 1987 he has been
working at the Department of
Computer Engineering where
he is now a Professor.In 1981
Sait received the best Elec-
tronic Engineer award from
the Indian Institute of Electri-

cal Engineers, Bangalore (where he was born). In 1990, 1994 & 1999
he was awarded the ‘Distinguished Researcher Award’ by KFUPM.
In 1988, 1989, 1990, 1995 & 2000 he was nominated by the Com-
puter Engineering Department for the ‘Best Teacher Award’ which
he received in 1995, and 2000. Sait has authored over 200research
papers, contributed chapters to technical books, and lectured in over
25 countries. Sadiq M. Sait is the principle author of the books (1)
VLSI PHYSICALDESIGNAUTOMATION: Theory & Practice, pub-
lished by McGraw-Hill Book Co., Europe, (and also co-published
by IEEE Press), January 1995, and (2) ITERATIVE COMPUTER
ALGORITHMS with APPLICATIONS in ENGINEERING (Solving
Combinatorial Optimization Problems): published by IEEE Computer
Society Press, California, USA, 1999. He was the Head of Com-
puter Engineering Department, KFUPM from January 2001 - Decem-
ber 2004, Director of Information Technology and CIO of KFUPM
between 2005 and 2011, and now is the Director of the Center for
Communications and IT Research at the Research Institute of KFUPM.

Kh. Shahzada Shahid is an
MSc. student in Computer
Engineering department at
King Fahd University of
Petroleum & Minerals. He
obtained his Bachelor’s degree
in Electrical Engineering from
UET Lahore in 2012. He
worked as a research assistant
in Al-Khawarzmi Institute
of Computer Science for one
year in Pakistan. His area
of interests includes cloud
computing, combinatorial
optimization and heuristic
algorithms.

http://www.gartner.com/newsroom/id/2352816
http://www.gartner.com/newsroom/id/2352816
http://www.gartner.com/newsroom/id/1442113
http://www.gartner.com/newsroom/id/1442113
http://www.energystar.gov/sites/default/files/specs//private/ES_Computers_Draft_1_Version_6.0_Specification.pdf
http://www.energystar.gov/sites/default/files/specs//private/ES_Computers_Draft_1_Version_6.0_Specification.pdf
http://www.gartner.com/newsroom/id/1234513
http://www.gartner.com/newsroom/id/1234513

	Engineering Simulated Evolution for Virtual Machine
	Abstract
	Introduction
	Background and related work
	Problem statement and formulation
	Optimization formulation

	Proposed approach
	Simulated evolution
	Goodness evaluation
	Selection
	Allocation

	Complexity analysis

	Performance analysis
	Simulation setup
	Work load

	Results and discussion
	Scalability of SimE

	Conclusions and future work
	Acknowledgments
	References

