Computers and Electrical Engineering 44 (2015) 13-23

Contents lists available at ScienceDirect

Computers and

Electrical Engineering

Computers and Electrical Engineering

journal homepage: www.elsevier.com/locate/compeleceng —

State assignment for area minimization of sequential circuits @CmssMark
based on cuckoo search optimization ™

Aiman H. El-Maleh?, Sadiq M. Sait *>*, Abubakar Bala*®

2 Computer Engineering Department, KFUPM, Dhahran, Saudi Arabia
b Center for Communications and IT Research, Research Institute, KFUPM, Dhahran, Saudi Arabia

ARTICLE INFO ABSTRACT
Affic{e history: A major optimization problem in the synthesis of sequential circuits is State Assignment or
Received 5 November 2014 State Encoding in Finite State Machines (FSMs). The state assignment of an FSM determines

Received in revised form 9 March 2015
Accepted 9 March 2015
Available online 21 April 2015

the complexity of its combinational circuit and thus area, delay, testability and power
dissipation. Since optimal state assignment is an NP-hard problem and existing deter-
ministic algorithms produce solutions far from best known solutions, we resort to the use
of non-deterministic iterative optimization heuristics. This paper proposes the use of
cuckoo search optimization (CSO) algorithm for solving the state assignment problem
(SAP) of FSMs with the aim of minimizing area of the resulting sequential circuit. Results

Keywords:
Cuckoo search
State Assignment

Heuristics obtained from the CSO algorithm are compared with those obtained from binary particle
Sequential circuit swarm optimization (BPSO) algorithm, genetic algorithm (GA), and the well-known deter-
Area minimization ministic methods of NOVA and JEDI. The results indicate that CSO outperforms deter-
Finite state machines ministic methods as well as other non-deterministic heuristic optimization methods.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As the density and size of integrated circuits (ICs) keep increasing rapidly, area and power dissipation have become
and are still a significant concern in Very Large Scale Integration (VLSI) designs. VLSI systems by nature are mostly
sequential circuits and are modeled as finite state machines (FSMs). In FSMs, the behavior of sequential circuits is
characterized by using symbolic names to represent states. State assignment is the mapping of the state names of an
FSM to a set of binary codes. This mapping has a significant impact on the circuit area and power dissipation [1]. An
example of an FSM is given in Table 1, which has 4 states, one input and one output. To understand the example in
Table 1, consider the case when Present State=S0. If input X=0, then Next State=S0 and Output=1, but if X=1, then Next
State=S2 and Output=0.

Since there are 4 states in the FSM, a 2-bit code is sufficient for encoding each state. Table 2 shows two typical state
assignments for the FSM labeled as “Ass. 1” and “Ass. 2”. The number of literals of the Boolean equations that implement
the FSM as a multi-level circuit with “Ass. 1” is 6 literals while that with “Ass. 2” is 14 literals. The number of literals is a
cost measure that correlates with the number of transistors in the circuit and hence its area.

* Reviews processed and approved for publication by the Editor-in-Chief.
* Corresponding author at: Computer Engineering Department, KFUPM-#673, Dhahran-#31261, Saudi Arabia.
E-mail addresses: aimane@kfupm.edu.sa (A.H. EI-Maleh), sadiq@kfupm.edu.sa (S.M. Sait), g201201620@kfupm.edu.sa (A. Bala).

http://dx.doi.org/10.1016/j.compeleceng.2015.03.014
0045-7906/© 2015 Elsevier Ltd. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compeleceng.2015.03.014&domain=pdf
http://dx.doi.org/10.1016/j.compeleceng.2015.03.014
mailto:aimane@kfupm.edu.sa
mailto:sadiq@kfupm.edu.sa
mailto:g201201620@kfupm.edu.sa
http://dx.doi.org/10.1016/j.compeleceng.2015.03.014
http://www.sciencedirect.com/science/journal/00457906
http://www.elsevier.com/locate/compeleceng

14 A.H. ElI-Maleh et al./Computers and Electrical Engineering 44 (2015) 13-23

Table 1
An example of an FSM.

Present state Next state Output

X=0 X=1 X=0 X=1

SO SO S2 1 0

S1 S0 S2 0 0

S2 S1 S3 0 0

S3 S1 S3 0 1
Table 2

State assignment for “Ass. 1” and “Ass. 2” and their resulting
literal count.

State “Ass. 17 “Ass. 2"
S0 00 01
S1 01 10
S2 10 11
S3 11 00
Area (no. of literals) 6 14

.

CLK

(b) Clircuitresultingfrom “Ass.2”.

Fig. 1. Multi-level circuits synthesized based on “Ass. 1” and “Ass. 2” for the FSM example.

The multi-level circuits resulting from synthesizing the FSM example using “Ass. 1” and “Ass. 2” are shown in Fig. 1. This
example demonstrates the significant impact of state assignment on the area of a synthesized sequential circuit.

Formally, the state-assignment problem of an FSM is one that maps state symbols to binary codes using the mapping
function f : S — B", where n is the code length, n > [log,|S|], B" is an n-dimensional Boolean hypercube and |S| is the number
of states. To encode S states, using k bits, the number of possible state-assignment combinations is given in Eq. (1).

(24!
(2"~ |s)! W

As an illustration, if we have an FSM with 10 states, then each state will require 4 bits for distinctive encoding. As a result, the
number of possible state assignments for these 10 states as obtained from Eq. (1) is 29,059,430,400. Hence, exhausting all the

A.H. ElI-Maleh et al./Computers and Electrical Engineering 44 (2015) 13-23 15

possible combinations in order to find the state assignment that optimizes a certain objective will require a very huge
amount of time. Clearly, SAP is computationally hard [2].

Among the best-known methods that were employed for state assignments is that of partitions and decomposition [3].
However, not all state machines have useful closed partitions and can be minimized using these techniques. Implicant
merging, code covering and disjunctive coding [4,5] are previous deterministic methods employed for area minimization
of two-level combinational circuit implementations of FSMs. These techniques work well for certain FSMs and produce
good results but for others they may not apply effectively. This is because these techniques rely mainly on symbolic
minimization of state tables and not all FSMs can be minimized symbolically to lead to the best state assignment
solutions.

The objective of state assignment targeting multi-level circuit implementation is that of finding state assignments that
result in common expressions and maximum literal savings. Devadas et al. suggested two algorithms [6]. One of these algo-
rithms is fan-in oriented and looks for state pairs with higher numbers of incoming transitions from the same states.
Subsequently, higher weights are assigned to those pairs of states to be given close codes in terms of Hamming distance.
The Hamming distance between the codes of two states is the number of positions of non-identical bits between the codes
of the two states. The aim is to maximize the frequency of common cubes in the encoded next-state functions. The second
algorithm is fan-out oriented and assigns close codes to state pairs that have similar next-state transitions. A similar deter-
ministic method is JEDI [7], which calculates the encoding affinity cost as a function of how often a pair of states is repre-
sented in the next-state and output functions. Wang et al. [8] attempted to solve the problem of state assignment in order to
minimize both area and power dissipation for FSMs. They suggested a novel matching-based state assignment algorithm that
takes into account area and state transitions simultaneously. The experimental results they obtained show that they outper-
form NOVA [4] in both area and power.

Due to limitations of existing deterministic algorithms and the intractable nature of the state-assignment problem [9],
a lot of work has been done in the area of employing non-deterministic optimization heuristic methods. Some of these
methods have been used to solve many combinatorial optimization problems successfully. Examples of these heuristics
include simulated annealing, tabu search, particle swarm optimization, cuckoo search and genetic algorithms [2].
Several non-deterministic optimization heuristic methods have been applied to solve SAP. Chaudhury et al. [10] used a
genetic algorithm (GA) based state encoding to solve SAP targeting area and power optimization. A unified approach is
used targeting static and dynamic power along with area trade-off. Other efforts in the use the GAs to solve SAP include
the work by Almaini et al. [11,12], EI-Maleh et al. [13], and others [14,15]. Other heuristic optimization techniques for
solving SAP include the use of simulated annealing (SA) [16], simulated evolution (SE) [17] and binary particle swarm
optimization (BPSO) [18].

This paper proposes the application of a recent heuristic algorithm, the cuckoo search optimization (CSO) algorithm
[19,20] integrated with Lévy walk [21], which enables the algorithm to make random walks in the design space for the
state-assignment problem (SAP) targeting area minimization. The CSO algorithm has been applied successfully to many
computationally difficult problems [22,23]. The main advantage of the CSO algorithm is its simplicity when it comes to
implementation as it involves the tuning of few parameters [19].

The rest of the paper is organized as follows. In Section 2 the proposed algorithm is presented. In Section 3 we provide an
illustrative example of running the CSO algorithm on a typical benchmark circuit. Subsequently, in Section 4 the experimen-
tal results are presented. Finally, Section 5 concludes the paper.

2. CSO algorithm

Yang et al. [19] developed a new meta-heuristic optimization algorithm called cuckoo search (CS). Cuckoos are
fascinating birds due to their reproduction strategy. Cuckoos lay their eggs in communal nests and may remove others’
eggs to increase the hatching probability of their own eggs. They are often very specialized in laying eggs that mimic
the color and pattern of that of their hosts. This reduces the probability that their eggs will be identified by the host
and thus get discarded. As a result, this increases their reproductivity. They often choose a nest where the host bird has
just laid its own eggs. In general, the cuckoo’s eggs hatch slightly earlier than their hosts’ eggs. Once the first cuckoo
chick is hatched, it blindly propels other eggs out of the nest in order to increase the share of food it gets from the host
bird.

This section briefly discuses the modified cuckoo search optimization (CSO) algorithm [20] for solving the state-
assignment problem (SAP) of sequential circuits." The modification of the cuckoo search algorithm in [20] resulted from
the inadequacy of the original cuckoo search algorithm developed by Yang et al. [19] to have a faster convergence rate. This
modified version presented two improvements in order to make the cuckoo search have a wider application but at the same
time not losing the attractive features of the original method.

! The terms egg and nest are used interchangeably because each of the nests contains a single solution termed egg.

16 A.H. ElI-Maleh et al./Computers and Electrical Engineering 44 (2015) 13-23

Algorithm 1. CSO algorithm

Py — 0.75,y +— 1.62, MAXiter — 350
: Initialize the Population
: Rank the entire population according to cost
:for G=1 to MAXiter do
partition the population into top and bottom nests
for all X; in bottom nests do
use Lévy flight to create a new nest X from X;
replace X; with X,
end for
10 : Rank the entire population again according to cost
11: for all X; such that X; is in top nests do

12 Select another random top nest X;

13: if (Xl = X]) then

14 : perform Lévy flight from X; to create a new nest X,
15: Select a random nest X;

16: if (Cost(Xy) < Cost(X;)) then

17 : replace X; with X,

18: end if

19: else

20: Move a distance dy = |X; — X;|/y from X; to create a new nest X,
21: validate X,

22: Select a random nest X;

23: if (Cost(Xy) < Cost(X;)) then

24 : replace X; with X,

25: end if

26: end if

27: end for

28 : Rank the nests according to their costs

29: end for

30 : Save the best achieved state assignment and its cost

For solving the SA problem, the CSO algorithm, shown in Algorithm 1, starts by setting some essential variables such as
the size of the population, percentage of nests to be abandoned P,, Maximum iteration MAXiter, golden ratio (/) (a constant
number approximately = 1.62 [24]). The population is then initialized with random state assignment solutions. The entire
generated population is then ranked according to the cost of each nest. The cost used is the literal count which is obtained
by the sequential interactive synthesis (SIS) tool [25]. Low literal count implies low cost and thus less area for the resulting
sequential circuit. After the population is ranked, a procedure is repeated for a number of times up to the MAXiter value.

This procedure commences by partitioning the population into top and bottom nests. Then for each of the bottom nests
(nests to be abandoned), we generate a Lévy flight from the particular nest and generate a new nest to replace the existing
nest. The value of the Lévy flight function determines the number of code-pair swaps to be made. A code-pair swap picks
randomly two of the available codes and swaps their positions. For example, if code 000 is assigned to state S1 and code
111 is assigned to state S2, and the two codes 000 and 111 are picked to swap, then the code for S1 becomes 111 and
the code of S2 becomes 000. Similarly, if code 000 is assigned to state S1 and code 111 is unassigned and the two codes
are swapped, the code for S1 becomes 111 and the code 000 becomes unassigned. In essence, all the existing bottom nests
are replaced by fresh nests by performing Lévy flight from each of the bottom nests.

In contrast, for each of the top nests, X;, we select another random nest, X;, from the top nests. If the second randomly
chosen nest X; is the same as the present top nest, then Lévy flight is conducted from X; to generate a new nest X;.
Furthermore, another nest, X, is then selected randomly from the entire population. If the cost of X, is less than that of
X, then the nest X; is replaced with X.

On the other hand, if the second nest selected from the top nests, X, is not the same as the first selected nest, X;, then we
determine dy (dy is found by taking the Hamming distance between X; and X; and dividing the result by the golden ratio
which is approximately = 1.62 [24]). Then, a new nest X, is generated from X; by replacing d, bits from X; with their
corresponding bits from X;. The bits replaced in X; are the first d, non-identical bits between X; and X;. The new generated
solution, X;, needs to be validated to avoid the assignment of the same code to two or more states. If any duplicate code is
found then it is replaced with one of the unassigned codes. Minimum Hamming distance criterion is used to pick a code from
a set of unassigned codes to replace a duplicate code. Subsequently, we select a random nest, X), from the entire population
and compare the cost of X; with X,. If X has a lower cost than X), then it replaces it.

A.H. ElI-Maleh et al./Computers and Electrical Engineering 44 (2015) 13-23 17

Finally, the nests are ranked according to their cost. The algorithm then repeats the larger loop until the maximum itera-
tion number is reached. Since the entire bottom nests are replaced at the beginning of each iteration via Lévy flights, the
average cost is bound to rise and fall rather than improve steadily. This is similar to hill climbing in elitist algorithms where
the best solution is always retained while non-determinism (via Lévy flights) guides the introduction of other solutions.

The CSO algorithm has the advantage that it has few parameters to tune, namely the percentage of nests to be abandoned
(Py), the golden ratio () and the function used to compute the Lévy flight. Suggestions for empirical values for the golden
ratio () and the function used to compute the Lévy flight are available in the literature [19,20]. In essence, CSO has only P, to
tune. This is in contrast to other evolutionary algorithms that involve more parameters to tune such as the genetic algorithm
which has at least four parameters to tune [2].

2.1. Lévy flight

Numerous findings have revealed that characteristics of Lévy flight are being demonstrated by the flight behavior of many
insects and animals. Contemporary research by Reynolds and Frye have confirmed that fruit flies explore their landscape
using a series of straight flight paths disrupted by a sudden 90° turn, thus leading to a Lévy-flight-style irregular scale free
search pattern. Recent application of such behavior in optimization and optimal search have produced good results [26,27].
The random walk around the design space is essentially provided by the Lévy flight with the random step length drawn from
a Lévy distribution. Fig. 2 shows a typical plot of the Lévy flight. In our work, the Lévy flight is performed by swapping a
number of code pairs according to the random step length generated.

The number of code pairs to swap, k, called, the Lévy flight step length, is computed by the following equation [28]:

k=1—u"" (2)

where u is a uniform random variable in the range [0,1] and o = i'/?, where i is the iteration number.

3. Illustrative example

In this section, the CSO algorithm is demonstrated with an illustrative example. The example chosen is the dk14 circuit,
which is one of the MCNC/LGSynth [29] benchmark circuits. The dk14 circuit has 7 states, 3 inputs and 5 outputs. We opti-
mize this circuit using the proposed CSO algorithm and show how the cost (literal count) converges to the near optimal with
iterations. Since the circuit has 7 sates, we need a minimum of 3 bits to encode each of the states uniquely.

In this illustrative example, we set the population size to 10, which is generated initially randomly, and the percentage of
nests to abandon as 70%. The population is then ranked according to cost with the nest with minimum cost at the top, as
shown in Fig. 3.

Iteration 1: We begin the first iteration by dividing the population into top and bottom nests as shown by the shaded and
unshaded rows in Fig. 3, respectively. Then, perturbations are performed on the bottom part of the population by using Lévy
flights. These newly generated nests are made to replace the old ones. For example, for the first bottom nest, N4, the Lévy
flight step length generated is 1. So N4 changes from {011,110,100,111,010, 101,000} to {011,100,110,111,010,101,000},
which has a cost of 151. It can be seen that the codes of S2 and S3 have swapped positions. Similarly, Lévy flight step length is
generated for each of the other nests in the bottom nests, and perturbations are carried out accordingly. Consequently, all of
the bottom nests are replaced with the newly generated ones. The resulting new generated bottom nests are as shown in
Fig. 4.

Fig. 2. Typical plot of Lévy flight.

18 A.H. ElI-Maleh et al./Computers and Electrical Engineering 44 (2015) 13-23

S1 S2 S3 S4 S5 Sé S7 cost

100 | 111 101
N5 110 [010 | 101 | 011 | 001 | 000 | 100 [126

N6 001 | 011 | 010 | 000 | 111 | 101 | 110 | 130
N7 011 | 010 | 110 | 100 | 111 | 001 | 000 | 133
N8 001 | 011 | 111 | 010 | 100 | 110 | 101 [136
N9 010 | 000 | 111 | 110 | 011 | 101 | 001 | 140
N1io | 000 | 110 | 111 | 100 | 011 | 101 | 010 | 147

Fig. 3. Initial population after ranking.

s1 s2 s3 sS4 S5 S6 s7 cost
N4 011 § 100 § 110 | 111 J 010) 101 jJ 000 | 151
NS 111 J 101 J 010 | 001 | 100 J 110 jJ O11 § 132
N6 001 J 011 | 110 | 000 | 111 J 101 J 010 | 143
N7 101 § 010 | 110 | 100 J 111 J 001 J 000 | 146
N8 000 011 § 111 | 010 J 101 110 J 100 § 149
N9 101 | 000 | 111 | 110 | 011 | 010 | 001 | 130
N10 | 101 | 001 | 111 | 100 | 011 | 000 | 010 | 114

Fig. 4. Newly generated bottom nests.

s1 s2 s3 sS4 S5 s6 s7 cost
N1 101 | 001 J 111 | 100 | 011 | 000 | 010 | 114
N2 111 | 010 | 101 | 000 | 011 | 001 | 110 | 115
N3 011 | 111 J 010 | 101 | 110 | 000 | 001 | 117
N4 010 | 011 | 111 | 101 | 110 | 001 | 000 | 120
NS 101 | 000 | 111 | 110 | 011 | 010 J 001 | 130
N6 111 | 101 | 010 | 001 | 100 | 110 | 011 | 132
N7 001 | 011 | 110 | 000 | 111 | 101 | 010 | 143
N8 101 | 010 | 110 | 100 | 111 | 001 | 000 | 146
N9 000 | 011 | 111 | 010 | 101 | 110 | 100 | 149
N10 | 011 | 100 | 110 | 111 | 010 | 101 | 000 | 151

Fig. 5. Ranked population after merging newly generated bottom nests.

Next, the newly generated bottom nests are merged with the top nests, and the entire population is ranked again as
shown in Fig. 5. Then we proceed to top nests perturbation. For the first top nest N1: {101,001,111,100,011,000,010},
we pick another random top nest. In this case the second random top nest selected is N2: {111,010,101,000,011,
001,110}. Since the second nest picked is not the same as the first top nest, we compute the Hamming distance between
the two nests (equal to 7) divided by the golden ratio (1.62) [24] to generate the perturbation number 4. Then, we create
a new nest, X;, by replacing 4 bits from N1 with their corresponding 4 bits from N2. The replaced bits in N1 are the first
non-identical 4 bits between N1 and N2. The resulting nest X, is {111,010,101,100,011,000,110} with a cost of 127. Next
we select a random nest from the entire population X; which is N7: {001,011,110,000,111,101,010} whose cost is 143.
Since the cost of X, is lower than that of X}, X, is replaced with X,.

A similar procedure is carried out for the second and third top nests. Finally, the population is ranked and the best nest
and its resulting cost are reported. The best nest in this case is {101,001,111,100,011,000,010}, and its cost is 114. The
ranked population after iteration 1 is shown in Fig. 6.

Iteration 2: A similar procedure is repeated in iteration 2 and the final population is as shown in Fig. 7 with the best nest
being {101,001,111,100,011,000, 010} with a cost of 114.

A.H. ElI-Maleh et al./Computers and Electrical Engineering 44 (2015) 13-23

s1 S2 s3 sS4 S5 S6 s7 cost

N1 101 § 001 j 111 § 100 | O11 | 000 | 010 | 114
N2 111 | 010 j 101 | 000 | 011 | 001 | 110 | 115
N3 011 | 111 § 010 § 101 | 110 | 000 j 001 | 117
N4 010 | 011 | 111 | 101 | 110 | 001 | 000 | 120
NS 111 § 010 | 101 | 100 | O11 | 000 | 110 | 127
N6 011 | 111 § 010 | 101 | 000 | 001 | 110 | 127
N7 101 | 000 J 111 | 110 | 011 | 010 J 001 | 130
N8 111 | 101 J 010 J 001 | 100 | 110 § 011 | 132
N9 000 | 011 | 111 J 010 | 101 | 110 | 100 | 149
N10 | 011 | 100 | 110 | 111 | 010 | 101 | 000 | 151

Fig. 6. Ranked population after iteration 1.

s1 s2 s3 s4 S5 S6 s7 cost

N1 101 § 001 111) 100) 011 J 000 J 010114
N2 111 | 010 §J 101 | 000 j 011 | 001 § 110 | 115
N3 111 | 010 | 101 | 100 | 011 | 000 J 001 | 116
N4 011 | 111 J 010 | 101 J 110§ 000 J 001 | 117
NS 111 1101 J 010 001 | 000) 100011121
N6 101 § 001 J 111) 011 | 000 § 110 | 010 J 123
N7 100 | 000 | 111 | 110 | 011) 010 J 001 | 129
N8 001 | 111 | 010 | 101 J 000 | 011 | 110 | 130
NS 010 | 001 | 111 § 101 J 110 | 000) 011 | 140
N10 | 011 | 100 | 01C | 111 | 110 | 101 | 000 | 151

Fig. 7. Ranked population after iteration 2.

s1 s2 s3 sS4 S5 S6 s7 cost
ER 010 | 011 | 110 | 111 | 001 | 000 | 100 | 101
N2 010 | 011 | 110 | 111 | 001 | 000 J 100 | 101
N3 010 | 011 | 110 | 111 | 001 | 000 | 100 | 101
N4 010 | 011 | 110 | 111 | 001 | 000 | 100 | 101
N5 010 | 011 | 110 | 111 J 001 | 101 | 100 | 106
N6 110 J 011 | 010 | 111 J 001 J 101 J 100 | 121
N7 111 | 001 | 100 | 101 | 010 | 011 J 000 | 129
N8 010 | 011 | 111 | 110 J 001 | 101 | 100 | 136
N9 010 | 000 | 111 | 110 | 100 | 011 | 101 | 136
N10 [010 | 101 | 011 | 110 [ooL | 11t | 100 | 143

Fig. 8. Ranked population after iteration 20.

19

Iteration 20: The same procedure is repeated and at the end of iteration 20 the final ranked population obtained is as
shown in Fig. 8. In this case the best nest seen so far after the 20th iteration is {010,011,110,111,001,000,100} with a result-
ing cost of 101. It can be seen that the algorithm has begun to converge.

4. Experimental results

The MCNC/LGSynth [29] benchmark circuits were employed to test the efficiency and competitiveness of the proposed
CSO algorithm as compared with other existing algorithms in the literature. The characteristics of these benchmark circuits
are listed in Table 3. For each benchmark circuit, the number of states, number of inputs and number of outputs are shown.

The SIS 1.3 package [25] is used to compute the literal count for each of the benchmark circuits. The stg_to_network -e 2
command is used for single-output two-level circuit optimization and then the fx (fast extraction) command is used for
multi-level circuit optimization. The area cost is the number of literals of the synthesized multi-level circuit. We have used

20 A.H. ElI-Maleh et al./Computers and Electrical Engineering 44 (2015) 13-23

Table 3
Benchmark circuits.
Circuit States Inputs Outputs
bbara 10 4 2
bbsse 16 7 7
cse 16 7 7
planet 48 7 19
dk14 7 3 5
ex2 19 2 2
ex3 10 2 2
keyb 19 7 2
lion9 9 2 1
pma 24 8 8
s1 20 8 6
s1494 48 8 19
s832 25 18 19
sand 32 11 9
styr 30 9 10
tbk 32 6 3
train11 11 2 1

Table 4
Literal count comparison of CSO with other state assignment techniques.
Circuit CSO BPSO[18] GA [13] Jedi [8] Nova [4]
Best Avg. Worst Time (s) Best Avg. Worst Time (s) Best Avg. Worst Time (s)
bbara 49 50.8 53 1704 49 52.5 55 793 49 49.4 58 1204 73 57
bbsse 97 101.6 106 1992 102 107.1 111 823 99 101.6 107 1351 134 140
cse 182 183.5 185 2205 184 191 198 987 179 184.2 190 1744 240 214
dk14 98 98.3 99 1909 98 99.8 102 784 102 103.1 105 1543 108 111
ex2 67 87.7 104 1976 66 99.5 117 861 64 90.1 120 1374 123 127
ex3 49 52.6 54 1824 51 54 56 796 54 54.7 58 1149 65 71
keyb 145 153.7 158 2219 143 163.8 178 1480 142 152.4 165 2096 260 201
lion9 10 10.9 11 1798 10 11.7 13 786 10 10 10 1084 19 27
planet 475 490.2 504 3207 494 526.1 561 2288 462 501.6 562 3775 603 591
pma 149 159.4 167 2374 155 164.6 181 1163 160 165.3 180 1677 263 241
s1 171 203.1 244 2376 173 231.7 278 1592 131 215.5 310 2271 282 340
s1494 527 561.2 589 4481 588 602 628 3073 560 589.6 623 3885 679 715
s832 216 233.2 242 2684 216 245.4 267 1751 230 256.7 280 2255 357 274
sand 476 495.6 521 3282 488 510.1 527 2374 498 519.8 557 3003 554 558
styr 417 438.9 466 3444 412 437.5 455 2326 405 422.5 520 3506 518 502
tbk 303 3225 350 9090 261 368.2 458 6671 343 376.3 429 8061 305 365
train11 12 13.6 15 1849 12 13.7 15 773 18 18.5 20 1102 34 32
Total 3443 3656.8 3868 48414 3502 3878.7 4200 29321 3506 38113 4294 41080 4617 4566

a population size of 64 and a number of iterations equal to 350 for all the compared techniques. We have adopted the use of
the value of 75% for the percentage of nests to abandon (P,) and the value of the golden ratio (i) equal to 1.62 based on the
findings in [19,20]. We have also validated their suitability for the state assignment problem based on experimental analysis.

Table 4 presents the results for the proposed CSO algorithm along with the results for BPSO [18], GA [13], and the
deterministic techniques NOVA [4] and Jedi [8]. Each of the non-deterministic optimization algorithms is run 10 times for
each benchmark circuit and the best, average and worst costs are recorded.

The CPU time, in seconds, taken by each technique for one run is also reported in the table. Experiments were run on
Linux machine with Quad-core processors and 4 GB of RAM.

Initially it can be seen from Table 4 that non-deterministic heuristic optimization algorithms i.e., CSO, BPSO [18] and GA
[13] outperform deterministic methods of Nova [4] and Jedi [8] in terms of literals. Even the worst obtained solutions have
overall less literal count than those obtained by the deterministic techniques.

The CSO algorithm performs better than BPSO [18] and GA [13] in terms of overall best, worst and average literal counts.
This is evident from the last row of Table 4. Based on the best results achieved, our proposed CSO state assignment algorithm
achieved better results than BPSO [18] for 8 benchmark circuits and equal results in 5. However, CSO achieved better results
than GA [13] for 9 benchmark circuits and equal results in 2.

CSO achieved better results than other compared algorithms as it mimics the natural behavior of cuckoo birds to increase
productivity. The use of Lévy flights, as seen in birds and bees, helps traverse the search space both locally, and with sudden
jumps to distant solutions thereby combining the local search with diversification. This is in addition to the way top nests are
perturbed by combining good features from other top nests.

A.H. ElI-Maleh et al./Computers and Electrical Engineering 44 (2015) 13-23 21

740
o — GA
710 4
680
£ 650
3
S Y ‘v T,
= 620
[
e
[
=
Sseod Y ™s Ssesmeeeenees
560
530 L i W
500 T T ! - . :
0 50 100 150 200 250 300 350
Iterations
(a) 51494
630 4 - = CSO cecees BPSO — GA
-
c
3
o
o
©
I
[
=
5
450

Iterations

(b) planet

Literal Count

0 50 100 150 200 250 300 350
Iterations

(c) tbk

Fig. 9. Literal count versus iterations of best results for the three benchmark circuits, s1494, planet and tbk.

The CPU time of CSO is higher than BPSO [18] and GA [13]. This is because the current implementation of CSO performs a
sorting step twice in every iteration. This results in increasing the CPU time. The sorting step can be replaced by a more effi-
cient implementation that separates the population into top and bottom nests based on computing the average and standard
deviation cost of the entire population. Then, the bottom nests can be marked as those whose cost fall below the average cost
by a certain amount determined by the standard deviation of the population cost.

22 A.H. ElI-Maleh et al./Computers and Electrical Engineering 44 (2015) 13-23
Table 5
Effect of population size on cost of obtained solutions by CSO.
Circuit Population Best Avg. Worst
s1494 32 563 580.8 598
64 527 561.2 589
128 513 537.2 573
planet 32 464 513.5 536
64 475 490.2 504
128 459 492.5 516
tbk 32 305 3473 474
64 303 3225 350
128 301 333.0 464
Table 6
Effect of the percentage of nests to abandon (Pa) on cost of obtained solutions by CSO.
Circuit P, Best Avg. Worst
s1494 0.5 539 564.0 607
0.75 527 561.2 589
0.85 529 567.1 586
planet 0.5 477 494.4 530
0.75 475 490.2 504
0.85 483 502.6 529
tbk 0.5 300 352.0 460
0.75 303 3225 350
0.85 290 356.0 425
Table 7
Product term comparison of CSO with other state assignment techniques.
Circuit CSo Nova [4] GA [12] SA [16]
bbara 21 24 22 22
bbsse 26 29 28 27
cse 41 45 43 43
keyb 44 48 46 46
planet 80 86 81 81
s1 48 80 43 43
sand 86 89 94 92
styr 79 94 78 78
train11 6 9 10 10

Fig. 9 shows a plot of literal count (area) against iterations for the CSO, BPSO [18] and GA [13] algorithms for three of the
largest benchmark circuits: s1494, planet and tbk. Behavior of iterative search heuristics is best understood and illustrated
using large test cases. CSO achieves a better literal count than BPSO [18] and GA [13] in two out of the three compared cir-
cuits. CSO has a faster convergence rate than BPSO [18] in two out of the three compared circuits. However, although the
convergence rate of GA [13] is slightly better, CSO achieves overall better results.

In order to show the effect of population size on the cost of obtained solutions by the CSO algorithm, we have run experi-
ments using population sizes of 32, 64 and 128 for the benchmark circuits: s1494, planet and tbk. Table 5 shows the best,
average and worst results obtained based on 10 runs. Considering the average cost achieved, it can be seen that the results
improved when the population size was increased from 32 to 64. However, the results improved only for one circuit when
the population size was increased from 64 to 128.

In order to show the effect of the percentage of nests to be abandoned (P,) on the cost of obtained solutions by the CSO
algorithm, we have run experiments using P, values of 0.5, 0.75 and 0.85 for the benchmark circuits: s1494, planet and tbk
based on a population size of 64. Table 6 shows the best, average and worst results obtained based on 10 runs. Considering
the results achived, it can be seen that the impact of P, is not significant on the obtained results. However, considering the
average cost, using P, = 0.75 achieved better results.

A number of state assignment techniques existing in the literature target the implementation of sequential circuits using
two-level circuits instead of multi-level circuits. The area optimization criteria in this case is the number of product terms
instead of the number of literals. We have run the CSO algorithm targeting the optimization of the number of product terms
and compared the results with two recent implementations based on Genetic Algorithm [12] and Simulated Annealing (SA)
[16]. Table 7 shows the number of product terms obtained by the proposed CSO algorithm, Nova [4], GA [12] and SA [16].

A.H. El-Maleh et al./ Computers and Electrical Engineering 44 (2015) 13-23 23

CSO achieved better results than Nova [4] for all the compared circuits. In addition, it achieved better results than GA [12]
and SA [16] in 7 out of the 9 compared circuits.

5. Conclusion

This paper presented the application of a recent optimization method, the cuckoo search optimization algorithm, to solve
the state assignment problem in FSM. Experimental results on MCNC/LGSynth benchmark circuits show that CSO achieved
better results than other non-deterministic heuristic optimization methods such as Genetic algorithm (GA) and binary par-
ticle swarm optimization (BPSO), and the well-known deterministic methods of NOVA and JEDI. CSO achieved better results
than other compared algorithms due to the built-in diversification of search via Levy flights. In addition to this it has fewer
parameters and therefore easy to tune.

Acknowledgment
Authors acknowledge King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, for all support.

References

[1] Xia'Y, Almaini AEA. Genetic algorithm based state assignment for power and area optimisation. In: IEE proceedings computers and digital techniques;
2002, vol. 149, p. 128-33.
[2] Sait SM, Youssef H. Iterative computer algorithms with applications in engineering: solving combinatorial optimization problems. IEEE Computer
Society Press; 1999.
[3] Eschermann B. State assignment for hardwired VLSI control units. ACM Comput Surv (CSUR) 1993;25(4):415-36.
[4] Villa T, Sangiovanni-Vincentelli A. Nova: state assignment of finite state machines for optimal two-level logic implementations. In: 26th ACM/IEEE
design automation conference; 1989. p. 327-32.
[5] Ashar P, Devadas S, Newton AR. Sequential logic synthesis. Kluwer Academic Publishers; 1992.
[6] Devadas S, Ma H-K, Newton AR, Sangiovanni-Vincentelli A. Mustang: state assignment of finite state machines targeting multilevel logic
implementations. IEEE Trans Comput-Aided Des Integr Circ Syst 1988;7(12):1290-300.
[7] Lin B, Newton AR. Synthesis of multiple level logic from symbolic high-level description languages. In: Proceedings of the international conference on
VLSI; 1989, vol. 187, p. 196.
[8] Wang KH, Wang WS, Hwang T, Wu ACH, Lin YL. State assignment for power and area minimization. In: Proceedings of IEEE international conference on
computer design, ICCD'94.; 1994. p. 250-4.
[9] Micheli GD. Synthesis and optimization of digital circuits. McGraw Hill; 1994.
[10] Chaudhury S, Sistla KT, Chattopadhyay S. Genetic algorithm-based FSM synthesis with area-power trade-offs. Integr, VLSI] 2009;42(3):376-84.
[11] Ali B, Almaini AEA, Kalganova T. Evolutionary algorithms and theirs use in the design of sequential logic circuits. Genet Program Evol Mach
2004;5(1):11-29.
[12] Al Jassani AE, Urquhart N, Almaini AEA. State assignment for sequential circuits using multi-objective genetic algorithm. IET Comput Digit Tech
2011;5:296-305.
[13] EI-Maleh A, Sait SM, Nawaz Khan F. Finite state machine state assignment for area and power minimization. In: Proceedings IEEE international
symposium on circuits and systems, ISCAS 2006; 2006. p. 5303-6.
[14] Chyzy M, Kosinski W. Evolutionary algorithm for state assignment of finite state machines. In: Proceedings Euromicro symposium on digital system
design; 2002. p. 359-62.
[15] Amaral JN, Tumer K, Ghosh]. Designing genetic algorithms for the state assignment problem. IEEE Trans Syst, Man Cybern 1995;25(4):687-94.
[16] Yang M. State assignment for finite state machine synthesis.] Comput 2013;8(6):1406-10.
[17] Sait SM, Arafeh A, Oughali F. FSM state-encoding for area and power minimization using simulated evolution algorithm. J Appl Res Technol
2012;10(6):845-58.
[18] El-Maleh AH, Sheikh AT, Sait SM. Binary particle swarm optimization (BPSO) based state assignment for area minimization of sequential circuits. Appl
Soft Comput 2013;13(12):4832-40.
[19] Yang X-S, Deb S. Engineering optimisation by cuckoo search. Int] Math Model Numer Optim 2010;1(4):330-43.
[20] Walton S, Hassan O, Morgan K, Brown M. Modified cuckoo search: a new gradient free optimisation algorithm. Chaos, Solit Fract 2011;44(9):710-8.
[21] Rhee I, Shin M, Hong S, Lee K, Kim SJ, Chong S. On the Lévy-walk nature of human mobility. IEEE/ACM Trans Network (TON) 2011;19(3):630-43.
[22] Gandomi AH, Yang X-S, Alavi AH. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput
2013;29(1):17-35.
[23] Layeb A. A novel quantum inspired cuckoo search for knapsack problems. Int J Bio-Inspired Comput 2011;3(5):297-305.
[24] Dunlap RA. The golden ratio and Fibonacci numbers. World Scientific; 1997.
[25] Sentovich EM, Singh K], Lavagno L, Moon C, Murgai R, Saldanha A, et al. SIS: a system for sequential circuit synthesis; 1992. <http://www.eecs.berkeley.
edu/Pubs/TechRpts/1992/2010.html >.
[26] Pavlyukevich I. Cooling down Lévy flights.] Phys A: Math Theoret 2007;40(41):12299.
[27] Shlesinger MF. Mathematical physics: search research. Nature 2006;443(7109):281-2.
[28] Brown CT, Liebovitch LS, Glendon R. Lévy flights in dobe Ju/hoansi foraging patterns. Human Ecol 2007;35(1):129-38.
[29] http://www.cbl.ncsu.edu:16080/benchmarks/LGSynth89/fsmexamples.

Aiman EI-Maleh is an Associate Professor in the Computer Engineering Department at King Fahd University of Petroleum & Minerals (KFUPM). He holds a
PhD in Electrical Engineering, with dean’s honor list, from McGill University, Canada, in 1995. His research interests are in the areas of synthesis, testing, and
verification of digital systems.

Sadiq M. Sait is a professor in the Department of Computer Engineering at KFUPM. Sait has authored over 200 research papers, contributed chapters to
technical books, and lectured in over 25 countries. He is the principle author of two books, and now the Director of the Center for Communications and IT
Research at the Research Institute of KFUPM.

Abubakar Bala is a Graduate Assistant with Bayero University Kano, Nigeria. He holds a masters degree in computer engineering from King Fahd University
of petroleum & Minerals, in 2015. Before then he had obtained a bachelor degree in computer engineering from Bayero University Kano in 2010. His
research interests include: optimization, cloud computing and renewable energy.

http://refhub.elsevier.com/S0045-7906(15)00101-9/h0010
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0010
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0015
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0025
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0030
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0030
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0045
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0050
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0055
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0055
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0060
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0060
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0075
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0080
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0085
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0085
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0090
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0090
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0095
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0100
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0105
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0110
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0110
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0115
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0120
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0130
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0135
http://refhub.elsevier.com/S0045-7906(15)00101-9/h0140
http://www.cbl.ncsu.edu:16080/benchmarks/LGSynth89/fsmexamples

	State assignment for area minimization of sequential circuits based on cuckoo search optimization
	1 Introduction
	2 CSO algorithm
	2.1 Lévy flight

	3 Illustrative example
	4 Experimental results
	5 Conclusion
	Acknowledgment
	References

