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Introduction

Combinatorial optimization problems are encountered everywhere, in science,
engineering, as well as in industrial management, economics, etc. Most Engi-
neering and business schools offer several courses in algorithms and optimization.
The advent of the digital computer is credited for all of this explosion in the
amount of algorithmic solutions to combinatorial optimization problems. Such
solution techniques were unthinkable before this magnificent invention.

In this chapter we are concerned with one class of combinatorial optimiza-
tion algorithms: general iterative non-deterministic algorithms. The growing
interest in this class of algorithms is attributed to their generality, ease of
implementation, and mainly, the many success stories reporting very positive
results. We shall limit ourselves to five dominant iterative non-deterministic
algorithms, which, in order of popularity are: (1) Simulated Annealing (SA),
(2) Genetic Algorithm (GA), (3) Tabu Search (TS), (4) Simulated Evolution,
and (5) Stochastic Evolution. All five search heuristics have several important
properties in common.

1. They are blind, in that they do not know when they reached the optimal
solution. Therefore they must be told when to stop.

2. They are approximation algorithms, that is, they do not guarantee finding
an optimal solution.

3. They have ‘hill climbing’ property, that is, they occasionally accept uphill
(bad) moves.

4. They are easy to implement. All that is required is to have a suitable
solution representation, a cost function, and a mechanism to traverse the
search space.

5. They are all ‘general’. Practically they can be applied to solve any com-
binatorial optimization problem.
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6. They all strive to exploit domain specific heuristic knowledge to bias the
search toward “good” solution subspace. The quality of subspace searched
depends to a large extent on the amount of heuristic knowledge used.

7. Although they asymptotically converge to an optimal solution, the rate
of convergence is heavily dependent on the adequate choice of several
parameters.

The last two properties are the hidden bone in the five combinatorial opti-
mization strategies. Our goal in this chapter is to briefly introduce these five
heuristics.

Most literature on computer algorithms mainly addresses deterministic
heuristics. Recently, due to the increase in size and complexity of a large num-
ber of combinatorial optimization problems, there has been a growing interest
in general iterative non-deterministic algorithms.

The chapter is organized into 6 sections. In the following 5 sections, we
introduce the five iterative algorithms: namely, Simulated Annealing, Genetic
Algorithm, Tabu Search, Simulated Evolution, and Stochastic Evolution. Only
an intuitive discussion given and an essence of the heuristic is given. Pointers to
other details such as convergence analysis, parallel implementation, applications
etc., are given in bibliograpy.

1 Simulated Annealing

Simulated Annealing is one of the most well developed and widely used iterative
techniques for solving optimization problems.

It is a general adaptive heuristic and belongs to the class of non-deterministic
algorithms [NSS89]. It has been applied to several combinatorial optimization
problems from various fields of science and engineering. These problems include
TSP (traveling salesman problem), graph partitioning, quadratic assignment,
matching, linear arrangement, and scheduling. In the area of engineering, sim-
ulated annealing has been applied to VLSI design (placement, routing, logic
minimization, testing), image processing, code design, facilities layout [AK89],
network topology design [EP93], etc.

One typical feature of simulated annealing is that, besides accepting solu-
tions with improved cost, it also, to a limited extent, accepts solution with
deteriorated cost. It is this feature that gives the heuristic the hill climbing
capability. Initially the probability of accepting inferior solutions (those with
larger costs) is large; but as the search progresses, only smaller deteriorations are
accepted, and finally only good solutions are accepted. A strong feature of the
simulated annealing heuristic is that it is both effective and robust. Regardless
of the choice of the initial configuration it produces high quality solutions. It is
also relatively easy to implement. Let us begin this section by first introducing
annealing from an intuitive point of view.
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1.1 Background

The term annealing refers to heating a solid to a very high temperature (whereby
the atoms gain enough energy to break the chemical bonds and become free to
move), and then slowly cooling the molten material in a controlled manner
until it crystallizes. By cooling the metal at a proper rate, atoms will have an
increased chance to regain proper crystal structure with perfect lattices. During
this annealing procedure the free energy of the solid is minimized.

As early as 1953, Metropolis and his colleagues introduced a simple algorithm
to simulate the evolution of a solid in a heat bath to its thermal equilibrium
[M+53]. Their simulation algorithm is based on Monte Carlo techniques and
generates a sequence of states of the solid as follows. Given a current state Si of
the solid with energy Ei, a subsequent state Sj with energy Ej is generated by
applying a perturbation mechanism. This perturbation transforms the current
state into a next state with slight distortion. For instance a new state can be
constructed by randomly selecting a particle and displacing it by some random
amount. If the energy associated with the new state is lower than the energy of
the current state, that is, ∆E = Ej−Ei ≤ 0, then the displacement is accepted,
and the current state becomes the new state. However, if the energy of the new
state is higher (the energy difference greater than zero), then the state Sj is
accepted with a certain probability, which is given by

Prob(accept) = e
−( ∆E

KBT ) (1)

where KB is the Boltzmann constant and T denotes temperature. The ac-
ceptance rule described above is repeated a very large number of times. The
acceptance criterion is known as the Metropolis step, named after its inventor,
and the procedure is known as the Metropolis algorithm.

In the early eighties, thirty years after the idea of the Metropolis loop was
introduced, a correspondence between annealing and combinatorial optimization
was established, first by Kirkpatrick, Gelatt and Vecchi [KCGV83] in 1983,
and independently by C̆erny [C̆er85] in 1985. These scientists observed that
there is a correspondence between, on one hand, a solution to the optimization
problem and a physical state of the material, and between the cost of a solution
of the combinatorial optimization problem and free energy in the molten metal.
As a result of this analogy they introduced a solution method in the field of
combinatorial optimization. This method is thus based on the simulation of the
physical annealing process, and hence the name simulated annealing [KCGV83,
C̆er85].

As explained by Kirkpatrick et al. and C̆erny, a solution in combinatorial
optimization is equivalent to a state in the physical system and the cost of the
solution is analogous to the energy of that state. If we compare optimization
to the annealing process, the attainment of global optimum is analogous to
the attainment of a perfect crystal structure (a minimum energy state for the
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material), and attainment of a structure with imperfections will correspond to
getting trapped in a local optimum.

Every combinatorial optimization problem may be discussed in terms of
a state space. A state is simply a configuration of the combinatorial objects
involved. For example, consider the problem of partitioning a graph of 2n nodes
into two equal sized subgraphs such that the number of edges with vertices in
both subgraphs is minimized. In this problem, any division of 2n nodes into
two equal sized blocks is a configuration. There is a large number of such
configurations. Only some of these correspond to global optima, i.e., states
with optimum cost.

An iterative improvement scheme starts with some given state, and examines
a local neighborhood of the state for better solutions. A local neighborhood of a
state S, denoted by ℵ(S), is the set of all states which can be reached from S by
making a small change to S. For instance, if S represents a two-way partition
of a graph, the set of all partitions which are generated by swapping two nodes
across the partition represents a local neighborhood. The iterative improvement
algorithm moves from the current state to a state in the local neighborhood if
the latter has a better cost. If all the local neighbors have larger costs, the
algorithm is said to have converged to a local optimum. This is illustrated in
Figure 1. Here, the states are shown along the x-axis, and it is assumed that

Cost

States

S

L
G

X

X

X

Figure 1: Local versus global optima.

two consecutive states are local neighbors. It is further assumed that we are
discussing a minimization problem. The cost curve is non-convex, i.e., it has
multiple minima. A greedy iterative improvement algorithm may start off with
an initial solution such as S in Figure 1, then slide along the curve and find a
local minimum such as L. There is no way such an algorithm can find the global
minimum G of Figure 1, unless it “climbs the hill” at the local minimum L.
In other words, an algorithm which occasionally accepts inferior solutions can
escape from getting trapped in a local optimum. Simulated annealing is such a
hill-climbing algorithm.
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During annealing, a metal is maintained at a certain temperature T for a
pre-computed amount of time, before reducing the temperature in a controlled
manner. The atoms have a greater degree of freedom to move at higher tem-
peratures than at lower temperatures. The movement of atoms is analogous to
the generation of new neighborhood states in an optimization process. In order
to simulate the annealing process, much flexibility is allowed in neighborhood
generation at higher “temperatures”, i.e., many ‘uphill’ moves are permitted at
higher temperatures. The temperature parameter is lowered gradually as the al-
gorithm proceeds. As the temperature is lowered, fewer and fewer uphill moves
are permitted. In fact, at absolute zero, the simulated annealing algorithm turns
greedy, allowing only downhill moves.

We can visualize simulated annealing by considering the analogy of a ball
placed in a hilly terrain, as shown in Figure 2. The hilly terrain is nothing
but the variation of the cost function over the configuration space, as shown
by Figure 1. If a ball is placed at point S, it will roll down into a pit such as
L, which represents a local minimum. In order to move the ball from the local
minimum to the global minimum G we do the following. We enclose the hilly
terrain in a box and place the box in a water bath. When the water bath is
heated, the box begins to shake, and the ball has a chance to climb out of the
local minimum L.

If we are to apply simulated annealing to this problem, we would initially
heat the water bath to a high temperature, making the box wobble violently. At
such high temperatures, the ball moves rapidly into and out of local minima. As
time proceeds, we cool the water bath gradually. The lower the temperature, the
gentler the movement of the box, and lesser the likelihood of the ball jumping
out of a minimum. The search for a local minimum is more or less random at
high temperatures; the search becomes more greedy as temperature falls. At
absolute zero, the box is perfectly still, and the ball rolls down into a minimum,
which, hopefully, is the global minimum G.

1.2 Simulated Annealing Algorithm

The simulated annealing algorithm is shown in Figure 3. The core of the al-
gorithm is the Metropolis procedure, which simulates the annealing process at
a given temperature T (Figure 4) [M+53]. The Metropolis procedure receives
as input the current temperature T , and the current solution CurS which it
improves through local search. Finally, Metropolis must also be provided with
the value M , which is the amount of time for which annealing must be applied
at temperature T . The procedure Simulated annealing simply invokes Metropo-
lis at decreasing temperatures. Temperature is initialized to a value T0 at the
beginning of the procedure, and is reduced in a controlled manner (typically in
a geometric progression); the parameter α is used to achieve this cooling. The
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Figure 2: Design space analogous to a hilly terrain.

amount of time spent in annealing at a temperature is gradually increased as
temperature is lowered. This is done using the parameter β > 1. The variable
Time keeps track of the time being expended in each call to the Metropolis. The
annealing procedure halts when Time exceeds the allowed time.

The Metropolis procedure is shown in Figure 4. It uses the procedure Neigh-
bor to generate a local neighbor NewS of any given solution S. The function
Cost returns the cost of a given solution S. If the cost of the new solution
NewS is better than the cost of the current solution CurS, then the new so-
lution is accepted, and we do so by setting CurS=NewS. If the cost of the
new solution is better than the best solution (BestS) seen thus far, then we
also replace BestS by NewS. If the new solution has a higher cost in compari-
son to the original solution CurS, Metropolis will accept the new solution on a
probabilistic basis. A random number is generated in the range 0 to 1. If this
random number is smaller than e−∆Cost/T , where ∆Cost is the difference in
costs, (∆Cost= Cost(NewS) −Cost(CurS)), and T is the current temperature,
the uphill solution is accepted. This criterion for accepting the new solution
is known as the Metropolis criterion. The Metropolis procedure generates and
examines M solutions.

The probability that an inferior solution is accepted by the Metropolis is
given by P (RANDOM < e−∆Cost/T ). The random number generation is as-
sumed to follow a uniform distribution. Remember that ∆Cost > 0 since we
have assumed that NewS is uphill from CurS. At very high temperatures,
(when T →∞), e−∆Cost/T ' 1, and hence the above probability approaches 1.
On the contrary, when T → 0, the probability e−∆Cost/T falls to 0.

In order to implement simulated annealing on a digital computer we need to
formulate a suitable cost function for the problem being solved. In addition, as in
the case of local search techniques we assume the existence of a neighborhood
structure, and need perturb operation or Neighbor function to generate new
states (neighborhood states) from current states. And finally, we need a control
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Algorithm Simulated annealing(S0, T0, α, β, M, Maxtime);
(*S0 is the initial solution *)
(*BestS is the best solution *)
(*T0 is the initial temperature *)
(*α is the cooling rate *)
(*β a constant *)
(*Maxtime is the total allowed time for the annealing process *)
(*M represents the time until the next parameter update *)

Begin
T = T0;
CurS=S0;
BestS=CurS;/* BestS is the best solution seen so far */
CurCost=Cost(CurS);
BestCost=Cost(BestS);
Time = 0;

Repeat
Call Metropolis(CurS, CurCost, BestS, BestCost, T , M);
Time = Time + M ;
T = αT ;
M = βM

Until (Time ≥ MaxTime);
Return (BestS)

End. (*of Simulated annealing*)

Figure 3: Procedure for simulated annealing algorithm.

Algorithm Metropolis(CurS, CurCost, BestS, BestCost, T , M);
Begin

Repeat
NewS= Neighbor(CurS); /* Return a neighbor from aleph(CurS) */
NewCost=Cost(NewS);
∆Cost=(NewCost−CurCost);
If (∆Cost< 0) Then

CurS=NewS;
If NewCost< BestCost Then

BestS= NewS
EndIf

Else
If (RANDOM < e−∆Cost/T ) Then

CurS=NewS;
EndIf

EndIf
M = M − 1

Until (M = 0)
End. (*of Metropolis*)

Figure 4: The Metropolis procedure.
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parameter to play the role of temperature and a random number generator. The
actions of simulated annealing are best illustrated with the help of an example.
For the solution of the two way partitioning problem using SA, please refer to
[?].

This all goes in one section, section 7 summarised in few sentences.
The convergence aspects of the simulated annealing algorithm have been the

subject of extensive studies. For a thorough discussion of simulated annealing
convergence we refer the reader to [AK89, AL85, OvG89].

put this in one sentence in the algorithm Parameters of the SA Algorithm
In the previous paragraphs we demonstrated that, if simulated annealing is

allowed to run for an infinitely long time, starting with a high value of T , and
allowing T → 0, then it will find a desired optimal configuration. In practice,
however, simulated annealing is only run for a finite amount of time. A finite
time implementation can be realized by generating homogeneous Markov chains
of finite lengths for a sequence of decreasing values of temperature. To achieve
this, a set of parameters that govern the convergence of the algorithm must
be specified. This set of parameters is commonly referred to as the “cooling
schedule” [AK89, OvG89, KCGV83].

Again cite the book and summarize the above para.
It is customary to determine the schedule by trial and error. However, some

researchers have proposed cooling schedules that rely on some mathematical
rigor [?].

SA Requirements? SA Applications
TimberWolf3.2
A popular package that uses simulated annealing for VLSI standard-cell

placement and routing is the TimberWolf3.2 package [SSV86].
Parallelization of SA
Conclusions and Recent Work

8



2 Genetic Algorithms

Genetic Algorithm (GA), is a powerful, domain-independent, search technique
that was inspired by Darwinian theory. It emulates the natural process of
evolution to perform an efficient and systematic search of the solution space to
progress toward the optimum. It is based on the theory of natural selection that
assumes that individuals with certain characteristics are more able to survive,
and hence pass their characteristics to their offsprings.

Genetic algorithm is an adaptive learning heuristic. Similar to simulated
annealing, it also belongs to the class of general non-deterministic algorithms.
Several variations of the basic algorithm (modified to adapt to the problem at
hand) exist. We will henceforth refer to this set as genetic algorithms (in plural).

Genetic algorithms (GAs) operate on a population (or set) of individuals
(or solutions) encoded as strings. These strings represent points in the search
space. In each iteration, referred to as a generation, a new set of strings that
represent solutions (called offsprings) is created by crossing some of the strings
of the current generation [Gol89]. Occasionally new characteristics are injected
to add diversity. GAs combine information exchange along with survival of the
fittest among individuals to conduct the search.

Since their appearance, GAs have been applied to solve several combinatorial
optimization problems from various fields of science, engineering and business
(see Section ??).

Let us begin this section with a brief introduction to background and termi-
nology and subsequently present the basic genetic algorithm.

Schema Theorem
In living organisms, as members of the population mate, they produce off-

springs that have a significant chance of retaining the desirable characteristics
of their parents, and sometimes even combine or inherit the ‘best’ characteris-
tics of both parents. By establishing a correspondence between, on one hand, a
solution to the optimization problem and the element of the population (repre-
sented by the chromosome), and between the cost of a solution and the fitness
of an individual in the population, a solution method in the field of combina-
torial optimization is introduced. The method thus simulates the process of
natural evolution based on Darwinian principles, and hence the name Genetic
Algorithm[Gol89, Hol75].

Genetic algorithms (GAs) were invented by John Holland and his colleagues
[Hol75] in the early 1970s. Holland incorporated features of natural evolution
to propose a robust, computationally simple, and yet powerful technique for
solving difficult optimization problems.

When employing GAs to solve a combinatorial optimization problem one has
to find an efficient representation of the solution in the form of a chromosome
(encoded string). Associated with each chromosome is its fitness value. If
we simulate the process of natural reproduction, combined with the biological
principle of survival of the fittest, then, as each generation progresses, better
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and better individuals (solutions) with higher fitness values are expected to be
produced.

Robustness
Genetic algorithms, on the other hand, are both effective and robust [Dav91,

Gol89, ?]. The main characteristics of GA are listed below:

They work with coding of parameters: GAs work with a coding of the pa-
rameter set, not the parameters themselves. Therefore, one requirement
when employing GAs to solve a combinatorial optimization problem is to
find an efficient representation of the solution in the form of a chromosome
(encoded string).

They search from a set of points: In other optimization methods such as
simulated annealing or tabu search we move from a single point in the
search space, using some transition rule, to the next point. This type
of point to point movement most often causes trapping in local optima.
In contrast, GAs simultaneously work from a rich collection of points (a
population of solutions). Therefore, the probability of getting trapped in
false valleys (in case of minimization problem) is reduced.

They only require objective function values: GAs are not limited by as-
sumptions about the search space (such as continuity, existence of deriva-
tives, etc.,), and they do not need or use any auxiliary information. To
perform an effective search for better and better structures, they only
require objective (cost) function values.

They are non-deterministic: GAs use probabilistic transition rules, not de-
terministic rules. Mechanism for choice of parents to produce offsprings,
or for combining of genes in various chromosomes are probabilistic.

They are blind: They are blind in the sense that they do not know when
they hit the optimum, and therefore they must be told when to stop.

The structure that encodes how the organism is to be constructed is called a
chromosome. One or more chromosomes may be associated with each member
of the population. The complete set of chromosomes is called a genotype and
the resulting organism is called a phenotype. Similarly, the representation of
a solution to the optimization problem in the form of an encoded string is
termed as a chromosome. In most combinatorial optimization problems a single
chromosome is generally sufficient to represent a solution, that is, the genotype
and the chromosome are the same.

The symbols that make up a chromosome are known as genes. The different
values a gene can take are called alleles.

The fitness value of an individual (genotype or a chromosome) is a positive
number that is a measure of its goodness. When the chromosome represents a
solution to the combinatorial optimization problem, the fitness value indicates
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the cost of the solution. In the case of a minimization problem, solutions with
lower cost correspond to individuals that are more fit.

This is not the only way in which one can map costs to fitness values. There
are other effective schemes which we discuss later in Section ??.

GAs work on a population of solutions. An initial population constructor is
required to generate a certain predefined number of solutions. The quality of
the final solution produced by a genetic algorithm depends on the size of the
population and how the initial population is constructed. The initial population
generally comprises random solutions. Later we elaborate on other schemes to
construct the initial population (see Section ??).

GAs work on chromosomes or pairs of chromosomes to produce new solutions
called offsprings. Common genetic operators are crossover (χ) and mutation.
They are derived by analogy from the biological process of evolution. Crossover
operator is applied to pairs of chromosomes. The two individuals selected for
crossover are called parents. Mutation is another genetic operator that is ap-
plied to a single chromosome. The resulting individuals produced when genetic
operators are applied on the parents are termed as offsprings.

Choice of Parents The choice of parents for crossover from the set of indi-
viduals that comprise the population is probabilistic. In keeping with the ideas
of natural selection, we assume that stronger individuals, that is those with
higher fitness values, are more likely to mate than the weaker ones. One way to
simulate this is to select parents with a probability that is directly proportional
to their fitness values. That is, the larger the fitness of a certain chromosome,
the greater is its chance of being selected as one of the parents for crossover.

To accomplish this type of selection we may use the roulette-wheel method.
In this method a wheel is constructed on which each member of the population is
given a sector whose size is proportional to the relative fitness of that individual.
To select a parent the wheel is spun, and whichever individual comes up becomes
the selected parent. Therefore, in this method, individuals with lower fitness
values also have a finite but lower probability of being selected for crossover
[Gol89].

Crossover (χ) is the main genetic operator. It provides a mechanism for the
offspring to inherit the characteristics of both the parents. It operates on two
parents (P1 and P2) to generate offspring(s).

There are several crossover operators that have been proposed in the lit-
erature. Depending on the combinatorial optimization problem being solved
some are more effective than others. One popular crossover that will also help
illustrate the concept is the simple crossover. It performs the “cut-catenate”
operation. It consists of choosing a random cut point and dividing each of the
two chromosomes into two parts. The offspring is then generated by catenating
the segment of one parent to the left of the cut point with the segment of the
second parent to the right of the cut point.

Mutation (µ) produces incremental random changes in the offspring by ran-
domly changing allele values of some genes. In case of binary chromosomes it
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corresponds to changing single bit positions. It is not applied to all members of
the population, but is applied probabilistically only to some. Mutation has the
effect of perturbing a certain chromosome in order to introduce new character-
istics not present in any element of the parent population. For example, in case
of binary chromosomes, toggling some selected bit produces the desired effect.

A generation is an iteration of GA where individuals in the current popula-
tion are selected for crossover and offsprings are created. Due to the addition
of offsprings, the size of population increases. In order to keep the number of
members in a population fixed, a constant number of individuals are selected
from this set which consists of both the individuals of the initial population,
and the generated offsprings. If M is the size of the initial population and No

is the number of offsprings created in each generation, then, before the begin-
ning of next generation, we select M new parents from M + No individuals. A
greedy selection mechanism is to choose the best M individuals from the total
of M + No.

We will now summarize the main aspects of the basic genetic algorithm.

2.1 Genetic Algorithm

In order to implement the genetic algorithm on a digital computer, one of the
most important steps is to encode the solution of the combinatorial optimiza-
tion as a string of symbols, also known as chromosome. This encoding must
be amenable to genetic operations. In addition to this, unlike in other search
techniques, GAs do not operate on one solution but a collection of solutions
termed population. An initial population constructor is required to generate a
certain predefined number of solutions. The quality of final solution depends
upon the size of the population and how the initial population is constructed.
The population comprises random solutions, or, a combination of random solu-
tions and those produced using known constructive heuristics. We also need a
mechanism to generate offsprings from parent solutions.

During each generation of the genetic algorithm a set of offsprings are pro-
duced by the application of the crossover operator. The crossover operator
ensures that the offsprings generated have a mixture of parental properties. In
order to introduce new alleles into the chromosome, with a certain probability,
mutation is also applied. Following this, from the entire pool comprising both
the parents and their offsprings, a fixed number of individuals are chosen that
form the population of the new generation. If the M best individuals are chosen
from this pool, then the fitness of the best individual, will be the same or better
than the fitness of the best individual of the previous generation. Similarly, the
average fitness of the population will be the same or higher than the average
fitness of the previous generation. Thus the fitness of the entire population and
the fitness of the best individual increase in each generation. The structure of
the simple genetic algorithm is given in Figure 5.
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Procedure (Genetic Algorithm)
M= Population size. (*# Of possible solutions at any instance.*)
Ng= Number of generations. (*# Of iterations.*)
No= Number of offsprings. (*To be generated by crossover.*)
Pµ= Mutation probability. (*Also called mutation rate Mr.*)
P ← Ξ(M) (*Construct initial population P. Ξ is population constructor.*)
For j = 1 to M (*Evaluate fitnesses of all individuals.*)

Evaluate f(P[j]) (*Evaluate fitness of P.*)
EndFor
For i = 1 to Ng

For j = 1 to No

(x, y) ← φ(P) (*Select two parents x and y from current population.*)
offspring[j] ← χ(x, y) (*Generate offsprings by crossover of parents x and y.*)
Evaluate f(offspring[j]) (*Evaluate fitness of each offsprings.*)

EndFor

For j = 1 to No (*With probability Pµ apply mutation.*)
mutated[j] ← µ(y)
Evaluate f(mutated[j])

EndFor
P ← Select(P, offsprings) (*Select best M solutions from parents & offsprings.*)
EndFor
Return highest scoring configuration in P.

End

Figure 5: Structure of a simple genetic algorithm.
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3 Schema Theorem and Implicit Parallelism

In this section we throw more light on what is processed by GAs and show how
this processing will lead to optimal results in our optimization problems. We
will see how crossover, the critical accelerator of the search process combines
parts of good solutions from diverse chromosomes [Gol89, Hol75, ?].

To study the what and how of GAs performance, we resort to the notion of
schema.

4 GA Convergence Aspects

One of the desirable properties that a stochastic iterative algorithm should
possess is the convergence property, i.e., the guarantee of converging to
one of the global optima if given enough time. In this section, we exam-
ine the convergence properties of the GA heuristic. Convergence aspects
of GA using Markovian analysis has been addressed by several researchers
[GS87, NV93, EAH90, DP91, DP93, Mah93, Rud94]. Fogel [Fog95] provides
a concise treatment of the main GA convergence results.

5 GA In Practice

Before we look into more examples and case studies of GAs in the field of science
and engineering,

Inversion

Inversion is the third operator of GA and like mutation it also operates on a
single chromosome. Its basic function is to laterally invert the order of alleles
between two randomly chosen points on a chromosome.

Other Issues GA Applications Genetic algorithms applications Parallelization
of GA

GAs may suffer from the problem of premature convergence. Their effec-
tiveness can be increased by including some features of other heuristics. For
example, GAs are combined with simulated annealing to introduce more diver-
sity into the population thereby preventing premature convergence. A complete
section in is dedicated to this issue, where we discuss combination of GAs with
other heuristics (such as tabu search and simulated annealing) discussed in this
chapter [?].
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6 Conclusions

In this section we presented the basics of genetic algorithms. These algorithms
emulate the natural process of evolution. Unlike other search heuristics, they
conduct the search by operating on a set of solutions called the population.
They work with chromosomal representations (encoded strings) of solutions,
require only objective function values, and search from a set of points. The
basic idea is to combine solutions called parents to produce new solutions called
offsprings, with the objective that the offsprings will inherit some parental char-
acteristics. To accomplish this, crossover is used. It is the crossover operator
that distinguishes GAs from other optimization algorithms. We discussed sev-
eral crossover operators. Mutation is another operator that is used to inject
new characteristics in the individuals.

In this section, we also shed some light on the fundamental theorem of genetic
algorithms, the schema theorem.

Several variations of the basic technique, convergence related issues, and
practical considerations for implementation of GAs on a digital computer, were
discussed. Implementation aspects of this powerful iterative heuristics were
presented with applications and case studies. A brief survey of various problems
to which GAs have been successfully applied was presented. We also touched
upon techniques for parallelizing GAs, and summarized several recent related
issues.
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All five heuristics described in this chapter constitute very general and ef-
fective optimization techniques. Recently, SA, GA, and TS has been designated
by the Committee of the Next Decade of Operations Research as ‘extremely
promising’ for the future treatment of practical applications1. It is our belief
that Simulated Evolution and Stochastic Evolution are equally promising tech-
niques to a wide array of combinatorial optimization problems.

7 Tabu Search

In the previous section we discussed simulated annealing, which was inspired
by the cooling of metals, and genetic algorithms, which imitate the biological
phenomena of evolutionary reproduction. In this section we present a more
recent optimization method called Tabu Search (TS) which is based on selected
concepts of artificial intelligence (AI).

Tabu search was introduced by Fred Glover [Glo89, Glo90b, GTdW93, GL97]
as a general iterative heuristic for solving combinatorial optimization problems.
Initial ideas of the technique were also proposed by Hansen [Han86] in his
steepest ascent mildest descent heuristic.

Tabu search is conceptually simple and elegant. It is a form of local neighbor-
hood search. Each solution S ∈ Ω has an associated set of neighbors ℵ(S) ⊆ Ω.
A solution S′ ∈ ℵ(S) can be reached from S by an operation called a move to
S′. Normally, the neighborhood relation is assumed symmetric. That is, if S′

is a neighbor of S then S is a neighbor of S′.
Tabu search is a generalization of local search. At each step, the local neigh-

borhood of the current solution is explored and the best solution in that neigh-
borhood is selected as the new current solution. Unlike local search which stops
when no improved new solution is found in the current neighborhood, tabu
search continues the search from the best solution in the neighborhood even if
it is worse than the current solution. To prevent cycling, information pertaining
to the most recently visited solutions are inserted in a list called tabu list. Moves
to tabu solutions are not allowed. The tabu status of a solution is overridden
when certain criteria (aspiration criteria) are satisfied. One example of an aspi-
ration criterion is when the cost of the selected solution is better than the best
seen so far, which is an indication that the search is actually not cycling back,
but rather moving to a new solution not encountered before.

Tabu search is a metaheuristic, which can be used not only to guide search
in complex solution spaces, but also to direct the operations of other heuristic
procedures. It can be superimposed on any heuristic whose operations are
characterized as performing a sequence of moves that lead the procedure from
one trial solution to another. In addition to several other characteristics, the
attractiveness of tabu search comes from its ability to escape local optima.

1F. Glover, E. Taillard, and D. de Werra. A user’s guide to tabu search. Annals of
Operations Research, 41:3–28, 1993.
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Tabu search differs from simulated annealing or genetic algorithm which
are “memoryless”, and also from branch-and-bound, A* search, etc., which are
rigid memory approaches. One of its features is its systematic use of adaptive
(flexible) memory. It is based on very simple ideas with a clever combination of
components, namely [Glo90a, SM93]:

1. a short-term memory component; this component is the core of the tabu
search algorithm,

2. an intermediate-term memory component; this component is used for re-
gionally intensifying the search, and,

3. a long-term memory component; this component is used for globally di-
versifying the search.

As will be elaborated in this section, the central idea underlying tabu search
is the exploitation of the above three memory components. Using the short-term
memory, a selective history H of the states encountered is maintained to guide
the search process. Neighborhood ℵ(S) is replaced by a modified neighborhood
which is a function of the history H, and is denoted by ℵ(H, S). History deter-
mines which solutions may be reached by a move from S, since the next state
S is selected from ℵ(H, S). The short-term memory component is implemented
through a set of tabu conditions and the associated aspiration criterion.

The major idea of the short-term memory component is to classify certain
search directions as tabu (or forbidden). By doing so we avoid returning to
previously visited solutions. Search is therefore forced away from recently visited
solutions, with the help of a memory known as tabu list T. This memory contains
attributes of some k most recent moves. The size of the tabu list denoted by k is
the number of iterations for which a move containing that attribute is forbidden
after it has been made. The tabu list can be visualized as a window on accepted
moves as shown in Figure 6. The moves which tend to undo previous moves
within this window are forbidden.

Previously accepted moves
no longer in Tabu List

Recently Accepted Moves in Tabu List

Figure 6: The tabu list can be visualized as a window over accepted moves.

Cycling back to previously visited solutions is prevented by the tabu list(s).
However, since only move attributes (not complete solutions) are stored in tabu
lists, these tabu moves may also prevent the consideration of some solutions
which were not visited earlier. To relax the actions of tabu lists, aspiration
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criteria are introduced. Then, solutions that are the result of moves having at-
tributes found in the tabu list are also considered if they satisfy the aspiration
criteria. A flow chart illustrating the basic short-term memory tabu search algo-
rithm is given in Figure 7. Intermediate-term and long-term memory processes
are used to intensify and diversify the search respectively, and have been found to
be very effective in increasing both quality and efficiency [Glo95, Glo96, DV93].

Best
Solution

New
Solution

New
Solution

Current
Solution

Current
Solution

Regenerate
Moves

Current
Solution

TABU
?

‘‘Best’’

Aspiration
Criterion
Passed?

Move n

Move 1

NO

YES

YES

NO

Figure 7: Flow chart of the tabu search algorithm.

We first introduce the basic tabu search algorithm based on the short-term
memory component (Section 8). Then we will build the necessary background
and the required terminology. Following this we present some practical issues
of the tabu search algorithm for implementation on a digital computer (Sec-
tion ??). Limitations of short-term memory, uses of intermediate and long-term
memories, and strategies for diversifying the search are explained in Sections ??
and ??.
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8 Tabu Search Algorithm

An algorithmic description of a simple implementation of the tabu search is given
in Figure 8. The procedure starts from an initial feasible solution S (current

Ω : Set of feasible solutions.
S : Current solution.
S∗ : Best admissible solution.
Cost : Objective function.
ℵ(S) : Neighborhood of S ∈ Ω.
V∗ : Sample of neighborhood solutions.
T : Tabu list.
AL : Aspiration Level.

Begin
1. Start with an initial feasible solution S ∈ Ω.
2. Initialize tabu lists and aspiration level.
3. For fixed number of iterations Do
4. Generate neighbor solutions V∗ ⊂ ℵ(S).
5. Find best S∗ ∈ V∗.
6. If move S to S∗ is not in T Then
7. Accept move and update best solution.
8. Update tabu list and aspiration level.
9. Increment iteration number.
10. Else
11. If Cost(S∗) < AL Then
12. Accept move and update best solution.
13. Update tabu list and aspiration level.
14. Increment iteration number.
15. EndIf
16. EndIf
17. EndFor

End.

Figure 8: Algorithmic description of short-term Tabu Search (TS).

solution) in the search space Ω. A neighborhood ℵ(S) is defined for each S.
A sample of neighbor solutions V∗ ⊂ ℵ(S) is generated. An extreme case is
to generate the entire neighborhood, that is to take V∗ = ℵ(S). Since this is
generally impractical (computationally expensive), a small sample of neighbors
(V∗ ⊂ ℵ(S)) is generated called trial solutions (|V∗| = n ¿ |ℵ(S)|). From these
trial solutions the best solution, say S∗ ∈ V∗, is chosen for consideration as the
next solution. The move to S∗ is considered even if S∗ is worse than S, that is,

19



Cost(S∗) > Cost(S). A move from S to S∗ is made provided certain conditions
are satisfied.

Selecting the best move in V∗ is based on the assumption that good moves
are more likely to reach optimal or near-optimal solutions. As mentioned above,
the best candidate solution S∗ ∈ V∗ may or may not improve the current so-
lution, but is still considered. It is this feature that enables escaping from
local optima. However, even with this strategy, it is possible to reach a lo-
cal optimum, ascend (in case of a minimization problem) since moves with
Cost(S∗) > Cost(S) are accepted, and then in a later iteration return back to
the same local optimum. That is, there is a possibility of cycling by returning
back to previously visited solutions. This may cause the search to go through
the same subset of solutions for ever.

A tabu list is maintained to prevent returning to previously visited solutions.
This list contains information that to some extent forbids the search from re-
turning to a previously visited solution. It is not a list of solutions, since storing
previously visited solutions, even a small number of them, and comparing them
with newly generated ones would be expensive both in terms of computation
time and memory requirement. Instead, selected move attributes are stored in
the tabu list. Tabu restrictions therefore may also forbid moves to attractive
unvisited solutions. For example, if a move is made tabu in iteration i and its
reversal comes in iteration j, where j = i+ l and 1 < l < |T|, then it is possible
that the reverse move, although tabu, may take the search into a new region
because of the effects of l−1 intermediate (previous) moves. It is therefore nec-
essary to relax the actions of the tabu list and overrule the tabu status of moves
in certain situations. This is done with the help of the notion of aspiration
criterion.

Aspiration criterion is a device used to override the tabu status of moves
whenever appropriate. It temporarily overrides the tabu status if the move is
sufficiently good. The aspiration criterion must make sure that the reversal
of a recently made move (i.e., a move in the tabu list) leads the search to an
unvisited solution, generally a better one.

Several aspiration criteria have been suggested and used in the literature.
The customary one, also the simplest and most commonly used, overrides the
tabu status if the reversal of a move in the tabu list produces a solution better
than the best obtained thus far during the search. This is also known as best
solution aspiration criterion. Other aspiration criteria will be discussed later
(see Section ??).

Refering again to the algorithmic description in Figure 8, initially the current
solution is the best solution. Copies of the current solution are perturbed with
moves to get a set of new solutions. The best among these is selected and
if it is not tabu then it becomes the current solution. If the move is tabu
its aspiration criterion is checked. If it passes the aspiration criterion then it
becomes the current solution. If the move to the next solution is accepted, then
the move or some of its attributes are stored in the tabu list. Otherwise moves
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are regenerated to get another set of new solutions. If the current solution is
better than the best seen thus far, then the best solution is updated. Whenever a
move is accepted the iteration number is incremented. The procedure continues
for a fixed number of iterations, or until some pre-specified stopping criterion is
satisfied.

Tabu restrictions and aspiration criterion have a symmetric role. The order
of checking for tabu status and aspiration criterion may be reversed, though
most applications check if a move is tabu before checking for aspiration crite-
rion [Glo90c].

Below we explain some phrases and terms frequently used in this section.
We will illustrate the working of the basic tabu search algorithm with the help
of an example. Following this, we discuss various implementation related issues.

e8

e5

e3
e2

e1

e4

e6

e7

Figure 9: Graph for Problem in Example ??. Cost of tree =
9+1+3+7+2×100=220.

Implementation Related Issues In the previous example we illustrated some
basic characteristics of the short-term tabu search heuristic. There are several
variations of the above method that can be incorporated. Below we give a flavor
of some of these variations which are related to moves and their attributes, tabu
lists and their sizes, possible data structures, aspiration criteria, etc. [GL95]
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8.1 Move Attributes

8.2 Tabu List and Tabu Restrictions

8.3 Data Structure to Handle Tabu-lists

8.4 Other Aspiration Criteria

9 Limitations of Short-Term Memory

In many applications, the short-term memory component by itself has produced
solutions superior to those found by alternative procedures, and usually the
use of intermediate-term and long-term memory is bypassed. However, several
studies have shown that intermediate and long-term memory components can
improve solution quality and/or performance [MGPO89, Rya89, IE94, DV93].

9.1 Intermediate-Term Memory (Search Intensification)

The basic role of the intermediate-term memory component is to intensify the
search. By its incorporation, the search becomes more aggressive. As the name
suggests, memory is used to intensify the search.

This type of intensification strategy is useful for solving large problems be-
cause the search focuses on generating solutions that are good, and only a subset
of decision elements are incorporated in these solutions.

9.2 Long-Term Memory (Search Diversification)

The goal of long-term memory component is to diversify the search. The prin-
ciples involved here are just the opposite of those used by the intermediate-term
memory function. Instead of more intensively focusing the search with regions
that contain previously found good solutions, the function of this component
is to drive the search process into new regions that are different from those
examined thus far.

Diversification is used to explore new regions of the solution space. Most
heuristic search techniques use or have a built in mechanism for diversifying the
search. Without diversification, the search can become localized in a small area
of the solution space, eliminating the possibility of finding a global optimum.

The introduction of randomization to achieve diversification is common
among search procedures such as simulated annealing and genetic algorithms.
Simulated annealing incorporates randomization to make diversification a func-
tion of temperature. Genetic algorithms also use randomization in crossover,
mutation, and, selection, to diversify the search. Diversification strategies in
tabu search are designed and used in a number of ways. The long-term memory
component is used to incorporate diversification. Generally there appears to
be a hidden assumption that diversification must tantamount to randomization
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[KLG94]. However, in tabu search, deterministic diversification is employed
with the help of short- and long-term memories.

Diversification using long-term memory in tabu search can be accomplished
by creating an evaluator whose task is to take the search to new starting
points [Glo89]. For example, in the TSP, a simple form of long-term mem-
ory is to keep a count of the number of times each edge has appeared in the
tours previously generated. Then, an evaluator can be used to penalize each
edge on the basis of this count, thereby favoring the generation of “other hope-
fully good” starting tours that tend to avoid those edges most commonly used
in the past. This sort of approach is viewed as a frequency based tabu cri-
terion in contrast to the recency based (tabu list) illustrated earlier. Such a
long-term strategy can be employed by means of a long-term tabu list (or any
other appropriate data structure) which is periodically activated to employ tabu
conditions of increased stringency, thereby forcing the search process into new
territory.

It is easy to create and test the short-term memory component first, and
then incorporate the intermediate/long components for additional refinements.
Below we illustrate this by two examples. One is an optimization problem
based on the short-term memory component. The other example illustrates
how frequency can be accommodated in the previous example to diversify the
search. Examples of other techniques used for diversification are discussed in
Section ??.

Penalizing Frequent Moves

We now illustrate how the long-term memory can be incorporated to diversify
the search process. To do this, we use the same matrix data structure used in our
earlier example (Example ??, Page ??). Recall that the upper diagonal matrix
was used to store the recency information. We will use the lower diagonal matrix
to store the frequency of moves made. That is, each entry (i, j) in the lower
diagonal matrix stores the number of times the swap (i, j) was made. We can
then use this information to define a move evaluator E(H, S), which is a function
of both the cost of the solution, and the frequency of the swaps stored. Our
objective is to diversify the search by giving more consideration to those swaps
that have not been made yet, and to penalize those that frequently occurred
[LG93]. Therefore, the design of the evaluator must be such that moves that
most frequently occurred in the past are given less consideration. For example,
if a swap (i, j) was made to take the solution from current state S to a new
state S∗, and the term Freq(i, j) is the number of times swap (i, j) was made,
then the evaluation of the move can be expressed as follows:

E(H, S∗) =
{

Cost(S∗) Cost(S∗) ≤ Cost(S)
Cost(S∗) + α× Freq(i, j) Cost(S∗) > Cost(S)
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α is constant which depends on the range of the objective function values, the
number of iterations, the span of history considered, etc. Its value (α’s) is such
that cost and frequency are appropriately balanced.

Examples of Diversifying Search TS Convergence Aspects TS Applications
Parallelization of TS Other Parallel Implementations:

10 Conclusions

In this section we presented the basics of tabu search heuristic. Several imple-
mentation issues such as moves and their attributes, tabu-lists (static/dynamic)
and tabu restrictions, data structures to handle tabu lists, and various aspiration
criteria were presented with examples (Section ??).

Tabu search is different from other search techniques in several respects.
One, of course, is the use of memory. In addition, reasonably sized subset of
neighborhood is explored and the best move amongst these is chosen. Further,
unlike other search techniques where ‘best’ generally refers to the best cost of
the solution, in tabu search best refers to change in the evaluation function
which depends not only on the objective/cost function, but also on the search
history, region being searched, etc.

The core of the tabu search algorithm is the short-term memory component,
implemented with the help of tabu list(s) and aspiration criterion. Intermediate
and long-term memory components are also used for intensification and diversifi-
cation (Sections 9.1 and 9.2). Diversification techniques that penalize frequently
occurring moves, and others that are suitable for permutation problems, were
discussed in Section ??.

Convergence aspects were discussed in Section ??. Deterministic tabu search
is not guaranteed to converge, on the other hand probabilistic tabu search would
converge if run for a large amount of time.

In the section on tabu search applications (Section ??) we illustrated how
tabu search can be engineered to solve several hard combinatorial optimization
problems. Two such applications have been discussed in detail.

Tabu search has been able to find optimal solutions for many relatively
small problems instances in reasonably small time. The runtime can grow to
unacceptable proportion for large problem size. Several parallelization strategies
have been proposed for tabu search All of them resulted in significant speed up
(Section ??).

Other important, recent, and often neglected issues were discussed in Sec-
tion ??. Target analysis presented in Section ?? helps in designing suitable
evaluators useful when applying diversification strategies. Neighborhood has a
different meaning in tabu search than in other search methods. Often, the term
neighboring solutions refers to a solution that is obtained by means of a small
perturbation to the current solution. However, in tabu search, when intensi-
fication and diversification are applied using intermediate-term and long-term
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memory processes, ℵ(H, S) may contain solutions not in ℵ(S). For example,
these may include high quality local optima (elite solutions) encountered at
various points during the search process.

A common phenomenon in most combinatorial optimization problems is that
the amount of computational effort needed to generate all the available moves
grows faster than linearly with increase in the problem dimension. Complete
examination of all alternatives then becomes computationally expensive. In
such cases, the number of solutions examined can be restricted using what is
known as ‘candidate list strategies’. Various proposed candidate list strategies
that help increase the efficiency of search were discussed (Section ??). Using
such strategies, search can also be restricted to certain regions, thereby causing
intensification.

Strategic oscillation is a critical component in some tabu search applica-
tions [KGA93]. The general concept (Section ??) is one of varying the weights
applied to different parts of the problem when evaluating moves [Glo89, Glo77].
In the study presented in [KGA93], the importance of feasibility during the
search procedure is dynamically varied. In tabu search, sometimes infeasible
neighboring solutions are also considered. By allowing feasible as well as infea-
sible solutions to occur, the search is able to traverse more of the solution space
and locate better solutions in the process.

In order to generate new starting solutions, path relinking is employed (see
Section ??). In path relinking, some elite solutions are selected, one of them
serves as an initiating solution. Then, smallest number of moves are made that
take the initiating solution to the remaining solutions (guiding solutions). The
intermediate points (or solutions) can be used as new starting solutions. New
elite solutions may also be found in this process, since the process is similar to
that of combining good characteristics of various solutions.

——————–

11 Conclusion

Simulated annealing, like all other iterative techniques, is very greedy with re-
spect to run time. The acceleration of simulated annealing has been an extensive
area of research since the introduction of the algorithm. Among the widely re-
searched acceleration techniques is parallelization. The various parallelization
strategies of simulated annealing are also discussed in this chapter (Section ??).

All five iterative algorithms are very greedy with respect to execution time no
matter how well tuned the parameters are. The proliferation of a large number
of parallel computers has forced extensive research on the parallelization of
these algorithms. For each technique, a section is dedicated to this issue of
parallelization. A bibliography is provided at the end of each chapter,

In Section xx we provide a comparative analysis of the five algorithms such as
similarities, differences, solution qualities, and look into hybridization aspects.
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We also provide a brief introduction to fuzzy logic and neural networks, and
show how fuzzy logic can help ease the formulation of multi-criteria optimization
problems.

Convergence related issues are discussed in Section ??. In Section ?? we
discuss some engineering applications, with case studies and examples, that fur-
ther illustrate the implementation aspects of this powerful iterative technique.
Parallelization related issues are discussed in Section ??. Other important and
neglected issues such as target analysis, candidate list strategies, strategic os-
cillation, path relinking, etc., are discussed in Section ??.

Finally, we acknowledge the support provided by King Fahd University of
Petroleum and Minerals under Project Code # COE/xxxxx/187.
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