
Voice Privacy in Wireless-Phone, Mobile, Communication
by Pseudo Random Number Generator and Tompkin-Paig Algorithm

Shahram Etemadi Borujeni, Mohammad Reza Reshadi Nezhad
Computer Engineering Department, University of Isfahan, Iran

etemadi@eng.ui.ac.ir, reshadi@eng.ui.ac.ir

Abstract -The art of security of voice

communication in what is known as encryption or
scrambling. The main attraction of this method arises from
the fact that it can be used with the existing satellite and
mobile communication systems without the use of a modem,
provided the scrambled signal occupies the same bandwidth
as the original signal. The scrambling algorithm is based on
the permutation of the samples and provides highly secured
scrambled signal by permuting a large number of those
samples. The algorithm for generation the permutation
matrices is explained. Important items to be considered in
designing the system are discussed such as choice and
construction of permutation matrices, and configuration of
the practical scrambling system. The results of simulation
and tests shows that proposed scrambling achieve extremely
high-level security.

The method of choice and generation of permutation
matrices, Tompkin-Paig algorithm and maximum length
shift register are concerned. Simulations of different parts of
the system, include scrambler, descrambler and generation
of permutation matrices programs are provided.
Miscellaneous methods of objective tests are described.
Hardware implementation with ADSP-2100 series processor
and assembly language programming of the system is
described.

Index terms---Voice privacy, Mobile Cryptography,
Block Clipper, Information Security.

I. Introduction

Fig. 1 shows a typical encryption system. The key
'K' determines the transformation from the set of all
possible samples to the set of all possible scrambled
samples.

A cipher system is a finite set 'T' of
transformations from a finite sample space 'M' onto a
scrambled sample space 'C'. Each sample has associated
with it a probability which reflects the chance of its being
sent and, similarly, for each transformation there is a
probability which reflects the likelihood of it being used.
The knowledge of the scrambled sample and the
transformation should enable the recipient to determine the

sample uniquely. It means that each of the transformation
in 'T' must be reversible, so that if a sample 'm' is
transformed into the scrambled sample 'c' by
transformation 't', if c=t(m), then we must have m=t (c),
where 't ' is the inverse of 't'. The scrambled sample 'c'
and only the a priori probabilities of the various t’s will be
known to the interceptor. For a good encryption system we
would hope that this information does not help him to
work out, or even to guess, the sample 'm'. Indeed, ideally
we would not like that it enables him to eliminate any
possibilities for 'm'.

1−

1−

This is the basic objective behind a concept called perfect
security that is a highly desirable property. For perfect
security we need the number of key's, i.e. transformations,
to be at least as large as the total number of possible
sample. Shannon [6] showed that if the encryption system
has the same number of samples, scrambled samples and
keys then it has perfect secrecy if, and only if
(1) For any given sample 'm' and any given scrambled
sample 'c' there is exactly one key transforming 'm' into 'c',
i.e. there is a unique transformation 't' with c=t(m) , and
(2) All keys are equally likely
If this is the case, then we say that the system is
unbreakable. In radio communication, including satellite
and mobile communication, it is almost impossible to
prevent unauthorized people from eavesdropping. When a
message is broadcasted from a satellite, it is usually
receivable over a very large area. Mobile radio networks
are also relatively open to interception. Therefore, the
problem of providing some form of privacy with a high
level of security is becoming increasingly important. In
order to generate permutation matrices in real time, special
high speed microprocessor is required. The latest one with
enhanced mathematical capabilities are especially suitable
for our purpose such as ADSP-2100 family of digital signal
processors.

II. Practical Cryptography and Properties of
Permutation

However in any practical system we want to
transmit a reasonable amount of information. This, of
course, requires a large sample space that in turn implies a
large number of keys. The distribution of a large number
of key material is liable to cause horrendous management
problems. In a practical system, a cryptanalyst will have to
worry about time and facilities. Often, the time taken to
solve a scrambled sample will be of utmost importance to
him. It is quite likely that communicators will only need
their samples to be secret for a limited time period, called
their required cover time. Thus it is certainly possible for a
theoretically insecure system to provide adequate
practical security[3].

mailto:etemadi@eng.ui.ac.ir
mailto:reshadi@eng.ui.ac.ir

If we can set the cryptanalyst a task requiring too much
storage or sufficiently large number of operations, then we
may regard our system as practically secure. Therefore, we
must estimate the number of operations or storage
elements needed to break a secure system and then decide
if the cover time is sufficient for our purposes. The only
safe assumption that the cryptographer can make is that
any would be cryptanalyst has as much knowledge and
intelligence information as possible. When assuming the
security level the cryptographer should assume the
following three worst case conditions:
(1) Cryptanalyst has a complete knowledge of the
encryption system.
(2) He has obtained a considerable amount of scrambled
samples.
(3) He knows the descrambled sample equivalent of a
certain amount of the scrambled samples.

A permutation key is put in at the transmitter to
select a permutation for the sample. At the receiver, an
inverse permutation key is put in, to select an inverse
permutation for those permuted components of the
received sample. If "L" samples are permuted, the number
of possible permutation is L!. It is clear however, that all
of these permutations can not be used. A subset of
permutation has to be selected out of the L! permutations
for use in the scrambling system. It is determined that this
set satisfies the following requirement [1]:
(1) Any permutation in this set must not produce an
intelligible scrambled sample.
(2) Any wrong permutation within this set must not
produce an intelligible descrambled sample.

III. Pseudo-Random Binary Sequence (PRBS)
Generator and Tompkin-Paig Algorithm

A shift register with feedback from specific
stages can generate a continuous, though repetitive,
random sequence of 1's and 0's. A schematic of this shift
register is indicated in fig. 2.

Fig.2.Pesudo random binary sequence generator

 It can be shown that the maximum length before

repetition is given by Nmax=2 -1, where "M" is the
number of stages in the shift register. The sequence itself
is determined by the position of feedback taps on the shift
register. Only certain feedback taps result in a maximum
length sequence and these are given in table 1 up to
"M=25" stages maximum length shift register [4].

M

All possible state vectors except all zeros, 00..0, can be an
initial state and it occurs once among the first "2 -1"
states of the shift register during the generation of a
sequence.

M

As mentioned earlier, since typically, we might wish to
have a choice of about a million permutation matrices, the
number of stages in the shift register "M" is chosen to be

"20". For generating the corresponding maximal length
sequence, stages "0" and "17" should be connected to the
modulo-2 adder (XOR) as a feedback.

The Tompkin-Paig algorithm [2] is an algorithm

to generate a one-to-one mapping between the integers and
permutations. In this algorithm, the target permutation is
generated as a product of "L-1" simple permutations of
order "i+1" and degree g i where "L" is the number of
components to be permuted and 1 ≤ g ≤ L-1
 i=1,2,.....,L-1
The simple permutation [5] of order "L-m 1 +1" and degree

"m -m 1 " is generally defined as indicated in the
following

2

+++−

+−+−
1..1..11..21

..11..11..21

211221

222111

mmmLmmm
Lmmmmmm

For example, when L=5, the simple permutation of order
four and degree two is

32541
54321

and, the target permutation for given set of four g i 's is
obtained as a product of four simple permutation of order
i+1 and degree g i where i=1,2,3,4 and

 1≤ g i ≤ 4
In the encryption system, the number of samples to be
permuted, "L", are assumed 100 and therefore the target
permutation is obtained from "99"(L-1) simple
permutations of order i+1 and degree g i 's where

i=1,2,3,...,99 and 1≤ g i 99 ≤

IV. Generation of the Permutation Matrices

The number of possible permutation is
"L!=100!". Not all of those permutations can be used. The
permutation matrices should have as little closeness as
possible to the identity permutation matrix. Permutation
matrices that are close to any circularly shifted versions of
the identity permutation matrix produce scrambled sample
of very high closeness to original sample.
In order to protect the system against someone, who has
similar encryption equipment, the number of possible

permutations must be sufficiently large. Assuming that the
required number of possible permutations is one million, a
20-stage PRBS generator is used as a first stage of the
permutation matrices generation process, because the
maximum length of a 20-stage shift register sequence is
1048575, i.e. 2 -1. 20

The key is entered as a five digit hexadecimal number,
which is converted to 20 binary bits and used as an initial
state of the 20-stage PRBS generator. Let b i (i=1,2,3...) be
the i'th output bit of the PRBS generator according to the
given initial state. "99" random integers (g i 's) are

generated from these b i 's by using the formulas [5]:

g 1 =1

g =[(2b 0 +b 1)/(2 -1)]+1 2
2

g =[(2b +b)/(2 -1)]+1 3
2

3
2

.

.
g i =[(2 b +2 b +…+b)(i-1)/(2 -1)]+1 1−j

k
2−j

1+k 1−+ jk
j

where j=[log 2 I]+1 and k=∑ s] +1} and

“[x]” ,here, is the maximum integer less than or equal to
“x”. Then a permutation matrix is generated from the set
of "L-1=99" integers, g 1 g 2 g 3 g 4 . . . g and g ,
by applying the Tompkin-paig algorithm which gives a
one-to-one correspondence between the integer and
permutation. So, the target permutation matrix is generated
as the product of "99" simple permutation matrices of
order "i+1" and degree "g i ” where i=1,2...99.

−

=

1

2
2{[log

i

s

98 99

There are four steps in this algorithm, which are
explained as follows:
First of all, a key is entered as a five hexadecimal digit
number and the program is able to provide a 20-bit binary
number equivalent to the given key. This number is used
as the initial state of a 20-bit maximum length PRBS
generator with suitable feedback. For the calculation of
g i 's, 481 b i 's are necessary. Therefore, a string of "481"
bits (b[1] to b[481]) is generated by module-2 addition of
first and 18th bits(i.e. stages '0' and '17') of shift register.
Then, the integer random numbers (g[1] to g[99]), are
generated by using those equations. Finally, the Tompkin-
Paig algorithm is implemented on a sequential array from
"oa[1]=1" to "oa[100]=100" with order i+1 and degree g i ,
where "i" starts from "99" and finishes at "1". The
permutation array is generated as a na[i] and is copied onto
the oa[i] array. The results are then stored in a permutation
file and graph of normal and permutation configuration are
plotted.

V. ADSP-2100 Family of Processors

ADSP-2100 is a programmable single-chip

microprocessor optimized for digital signal processing
(DSP) and other high-speed numeric processing
applications.The ADSP-2100 chip contains three

independent computational units; arithmetic/logic unit
(ALU), multiplier/accumulator (MAC) and barrel shifter
that operate on 16-bit fixed-point data. There are two data
address generators and a program sequencer; data and
program memories are external. The ADSP-2101 is a
programmable single-chip microcomputer based on the
ADSP-2100. Like the ADSP-2100, the ADSP-2101
contains computational units, as well as a program
sequencer and dual address generators. Additionally, there
are 1K words of data memory and 2K words of program
memory on chip, two serial ports, a timer, boot circuitry
(for loading on-chip program memory at reset) and
enhanced interrupt capabilities. Because the ADSP-2101 is
code-compatible with the ADS-2100, the programs can be
executed on these chips as well.A modified low cost
version of ADSP-2101 has come out recently. The ADSP-
2105 is same as the ADSP-2101 with half the on-chip
memory (512 words of data memory and 1K words of
program memory) and one serial port instead of two. It is
pin and code compatible with the ADSP-2101. The ADSP-
2105 is ideally suited to high speed low cost DSP
applications. It is preferred to use ADSP-2105 instead of
ADSP-2101 in the system and take care of one missing
serial port and reduced internal memory by suitable
modifications in the software and hardware design. Block
diagram of ADSP-2100 system is indicated in fig.6.1.

Fig.3.ADSP-2100 System

In ADSP-2100 family of processors each

computational unit contains a set of dedicated input and
output registers which are indicated in table 6.1.
Computational operations generally take their operands
from input register and load the result into an output
register. The registers act as a stopover point for data
between the external memory and the computational
circuitry, effectively introducing one pipeline level on
input and one level on output. The computational units are
arranged side by side rather than in cascade. To avoid
excessive pipeline delays when a series of different
operations are performed, the internal result (R) bus allows
any of the output registers to be used directly (without
delay) as the input to another computation. For a wide
variety of calculation, it is desirable to fetch two operands
at the same time, one from data memory and one from

program memory. Fetching data from program memory,
however, makes it impossible to fetch the next instruction
from program memory on the same cycle; an additional
cycle would be required. To avoid this overhead, the
ADSP-2100 incorporates an instruction cache which holds
sixteen words. The benefit of the cache architecture is
most apparent when executing a program loop that can be
totally contained in the cache memory. In this situation,
the ADSP-2100 works like a three-bus system with an
instruction fetch and two operands fetches taking place at
the same time. Many algorithms are readily coded in loops
of sixteen instructions or less because of the parallelism
and high-level syntax of the ADSP-2100 assembly
language.

VI. ADSP-2100 Based Addon Card

 The addon-card have been put directly on the PC
and works under the supervision of the host processor
which in this case is the PC itself. The hardware consists
of two codecs (coder, decoder) which sample the speech,
encode it, compand it, and transmit it serially to the
ADSP-2101/2105 serial ports. The ADSP-2101/2105
processes the received signal and transmit it back via the
ADSP codec link. The basic hardware structure of the
system for real time testing is indicated in Fig.4.

Fig.4.Block diagram of Hardware implementation

The block diagram of the stand alone hardware unit is
depicted in Fig.5. For compact implementation and
flexible operation, all the signal processing is performed in
one DSP processor. The unit is roughly divide into five
section:
1) Analog circuitry
2) Scrambler,

 3) Descrambler,
 4) Permutation matrices generator and

5) Control section.

VII. ADSP Assembly Language Overview

 The ADSP-2100 family's assembly language uses
an algebraic syntax for ease of coding and readability. The
sources and destinations of computations and data
movements are written explicitly in each assembly
statement. Each assembly statement, however, corresponds
to a single 24-bit instruction, executable in one cycle.
Register mnemonics are listed in table 2.
 The ADSP-2101 instruction set is an upward-
compatible superset of the ADSP-2100 instruction set;

thus, programs written for the ADSP-2100 can be
executed on the ADSP-2101 with practically no changes.

Table.2.Computational I/O Registers

 The ADSP assembly language coding for
generation of permutation matrices has been written by
using information in section IV. This assembly language
program is modular and consists of two sub-routines
which are called by a main program as a divider and a
multiplier. The explanation of different parts of the
assembly language program is as follows;

1) Accepting 20-bit external key as a input
2) Initializing maximum length shift register with this key
values.
3) Generating of 481 bits, which are called b[i]'s,and
storing them in data memory.
4) Calculation of 86 g[i] values from b[i]'s with using
5) Applying Tompkin-Paig algorithm to normal
configuration of coefficients by using g[i]'s value
and generating a permutation matrix which

VIII. Objective Tests and Conclusion

As discussed, the generated permutations should
have as little closeness to the identity permutation as
possible. Permutations, which are close to any circularly
shifted versions of the identity permutation, produce
scrambled sample of very high residual intelligibility. The
closeness between two permutations will be measured by
means of auto-correlation and rank correlation. The auto-
correlation of each permutation order should be impulsive
in nature. Actual formula for calculation of auto-
correlation is given here:

R(j)= ∑
−

=
− +

1

1

1)()(
N

i
jN jixix

where N=L-1=99 and x(i)=oa(i)
 The auto-correlation of most keys have been

calculated and plotted. All of them seem to have the
desired properties mentioned above.

It was concluded that the possibility of a generated
permutation using this technique lying close to the identity
permutation is extremely small and therefore no more
screening of permutations is necessary. A cryptanalysis of
the system requires original and scrambled samples.

The same objective results are seen by evaluating
rank correlation. One of the most frequently used rank
correlation samples for comparing two permutation "A",
identity permutation, and "B", the objective permutation of
"L" objects is the Spearman's rank correlation [3], α ,
which is defined as : The disadvantage of this attack is that a very large matrix

has to be inverted. α =1-
LL
dS
−3

2)(6 where S(d) is sum of squares of rank

wise difference between the permutations. The range of
this samples, is from "-1" to "1", with magnitudes close to
"0" showing small correlation and magnitude near to "1"
representing large correlation.

2
The attack could be avoided by changing the permutation
more frequently and employing multi-frame permutation
method. This attack also required the cryptanalyst to
obtain some amount of original samples. In most cases this
could be impractical because of the extra number of keys.
This method could be utilize for information security in
many fields such as database, network, signal and so on.

In the designed permutation algorithm, the
histogram of rank correlation was calculated and plotted
by running a 'C' language program. It shows that the
distribution of permutations generated using this algorithm
is approximately a normal distribution spread over the
interval -0.4<a<0.55 which means that the possibility of a
permutation to be close to the identity permutation or a
shifted version of it is extremely small.

References
[1] Beker H.J. and Piper F.C., "Secure Speech
Communications", Academic Press Inc., London, 1985.
[2] Beckenback E.F., "Applied Combinatorial
Mathematics", 1964.
[3] Kak S.C., "Overview of analog signal encryption", IEE
Proceedings, Vol.130, No.5, pp.399-404, Aug. 1983.

The algorithm to generate the permutation matrices,
permutation orders, enables generation of "20!"
permutation matrices out of "100!" possible permutation
matrices, by choosing five-digit hexadecimal numbers.
The distribution of the permutations generated utilizing
this algorithm is approximately a normal distribution.

[4] Proakis J.G., "Digital Communications", McGraw-Hill
1997.
[5] Sakurai K., Koga K., and Muratani T., "A Speech
Scrambler", IEEE Journal on selected areas in
communication, Vol.SAC-2, No.3, pp.434-442, May 1984.
[6] Shannon C.E., "Communication theory of secrecy
systems", Bell Syst. Tech. J.28, pp 656-715, 1994.
[7] Ash R., “Information Theory”, Interscience Publishers,
New York, 1990.
[8] L’Ecuyer P., “Random Number Generators”, Proc. Of
Winter Simulation Conference, Vol. I, 1998, pp.97-104.
[9] Kerouedan S., Adde P., “Block Turbo Codes”, Proc.
Of 8’th IEEE ICECS2001 Conference, Vol. II, 2001,
pp.1219-1222. Fig.5.Hardware unit,Transmitter side/Receiver side
[10] Etemadi S., “Speech Encryption based on Fast
Fourier Transform Permutation”, IEEE-ICECS2000
Conference,pp.290-294, Dec. 2000.

	Voice Privacy in Wireless-Phone, Mobile, Communication
	by Pseudo Random Number Generator and Tompkin-Paig Algorithm
	Computer Engineering Department, University of Isfahan, Iran
	
	I. Introduction
	II. Practical Cryptography and Properties of Permutation
	VIII. Objective Tests and Conclusion
	References

	Home:
	Top:

