
Voice Privacy in Wireless-Phone, Mobile, Communication 
by Pseudo Random Number Generator and Tompkin-Paig Algorithm 

 
Shahram Etemadi Borujeni, Mohammad Reza Reshadi Nezhad 
Computer Engineering Department, University of Isfahan, Iran 

etemadi@eng.ui.ac.ir, reshadi@eng.ui.ac.ir 
 

  
Abstract -The art of security of voice 

communication in what is known as encryption or 
scrambling. The main attraction of this method arises from 
the fact that it can be used with the existing satellite and 
mobile communication systems without the use of a modem, 
provided the scrambled signal occupies the same bandwidth 
as the original signal. The scrambling algorithm is based on 
the permutation of the samples and provides highly secured 
scrambled signal by permuting a large number of those 
samples. The algorithm for generation the permutation 
matrices is explained. Important items to be considered in 
designing the system are discussed such as choice and 
construction of permutation matrices, and configuration of 
the practical scrambling system. The results of simulation 
and tests shows that proposed scrambling achieve extremely 
high-level security. 

The method of choice and generation of permutation 
matrices, Tompkin-Paig algorithm and maximum length 
shift register are concerned. Simulations of different parts of 
the system, include scrambler,  descrambler and  generation 
of permutation matrices programs are provided. 
Miscellaneous methods of objective tests are described. 
Hardware implementation with ADSP-2100 series processor 
and assembly language programming of the system is 
described. 

Index terms---Voice privacy, Mobile Cryptography, 
Block Clipper, Information Security. 
 
 
I.  Introduction 

Fig. 1 shows a typical encryption system. The key 
'K' determines the transformation from the set of all 
possible samples to the set of all possible scrambled 
samples.  

 

A cipher system is a finite set 'T' of 
transformations from a finite sample space 'M' onto a 
scrambled sample space 'C'. Each sample has associated 
with it a probability which reflects the chance of its being 
sent and, similarly, for each transformation there is a 
probability which reflects the likelihood of it being used. 
The knowledge of the scrambled sample and the 
transformation should enable the recipient to determine the 

sample uniquely. It means that each of the transformation 
in 'T' must be reversible, so that if a sample 'm' is 
transformed into the scrambled sample 'c' by 
transformation 't', if c=t(m), then we must  have m=t (c), 
where 't ' is the inverse of 't'. The scrambled sample 'c' 
and only the a priori probabilities of the various t’s will be 
known to the interceptor. For a good encryption system we 
would hope that this information does not help him to 
work out, or even to guess, the sample 'm'. Indeed, ideally 
we would not like that it enables him to eliminate any 
possibilities for 'm'. 
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This is the basic objective behind a concept called perfect 
security that is a highly desirable property. For perfect 
security we need the number of key's, i.e. transformations, 
to be at least as large as the total number of possible 
sample. Shannon [6] showed that if the encryption system 
has the same number of samples, scrambled samples and 
keys then it has perfect secrecy if, and only if 
(1) For any given sample 'm' and any given scrambled 
sample 'c' there is exactly one key transforming 'm' into 'c', 
i.e. there is a unique transformation 't' with c=t(m) , and 
(2) All keys are equally likely 
If this is the case, then we say that the system is 
unbreakable. In radio communication, including satellite 
and mobile communication, it is almost impossible to 
prevent unauthorized people from eavesdropping. When a 
message is broadcasted from a satellite, it is usually 
receivable over a very large area. Mobile radio networks 
are also relatively open to interception. Therefore, the 
problem of providing some form of privacy with a high 
level of security is becoming increasingly important. In 
order to generate permutation matrices in real time, special 
high speed microprocessor is required. The latest one with 
enhanced mathematical capabilities are especially suitable 
for our purpose such as ADSP-2100 family of digital signal 
processors. 

 
II. Practical Cryptography and Properties of 
Permutation 
 

However in any practical system we want to 
transmit a reasonable amount of information. This, of 
course, requires a large sample space that in turn implies a 
large number of keys. The distribution of a large number 
of key material is liable to cause horrendous management 
problems. In a practical system, a cryptanalyst will have to 
worry about time and facilities. Often, the time taken to 
solve a scrambled sample will be of utmost importance to 
him. It is quite likely that communicators will only need 
their samples to be secret for a limited time period, called 
their required cover time. Thus it is certainly possible for a 
theoretically  insecure system to provide adequate 
practical security[3]. 
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If we can set the cryptanalyst a task requiring too much 
storage or sufficiently large number of operations, then we 
may regard our system as practically secure. Therefore, we 
must estimate the number of operations or storage 
elements needed to break a secure system and then decide 
if the cover time is sufficient for our purposes. The only 
safe assumption that the cryptographer can make is that 
any would be cryptanalyst has as much knowledge and 
intelligence information as possible. When assuming the 
security level the cryptographer should assume the 
following three worst case conditions: 
(1) Cryptanalyst has a complete knowledge of the 
encryption system. 
(2) He has obtained a considerable amount of scrambled 
samples. 
(3) He knows the descrambled sample equivalent of a 
certain amount of the scrambled samples. 

A permutation key is put in at the transmitter to 
select a permutation for the sample. At the receiver, an 
inverse permutation key is put in, to select an inverse 
permutation for those permuted components of the 
received sample. If "L" samples are permuted, the number 
of possible permutation is L!. It is clear however, that all 
of these permutations can not be used. A subset of 
permutation has to be selected out of the L! permutations 
for use in the scrambling system. It is determined that this 
set satisfies the following requirement [1]: 
(1) Any permutation in this set must not produce an 
intelligible scrambled sample. 
(2) Any wrong permutation within this set must not 
produce an intelligible descrambled sample. 

 
III. Pseudo-Random Binary Sequence (PRBS) 
Generator and Tompkin-Paig Algorithm 

A shift register with feedback from specific 
stages can generate a continuous, though repetitive, 
random sequence of 1's and 0's. A schematic of this shift 
register is indicated in fig. 2. 

 
Fig.2.Pesudo random binary sequence generator 

 
 It can be shown that the maximum length before 

repetition is given by Nmax=2 -1, where "M" is the 
number of stages in the shift register.  The sequence itself 
is determined by the position of feedback taps on the shift 
register. Only certain feedback taps result in a maximum 
length sequence and these are given in table 1 up to 
"M=25" stages maximum length shift register [4]. 

M

All possible state vectors except all zeros, 00..0, can be an  
initial state and it  occurs once among the first "2 -1" 
states of the shift register during the generation of a 
sequence. 

M

As mentioned earlier, since typically, we might wish to 
have a choice of about a million permutation matrices, the 
number of stages in the shift register "M" is chosen to be 

"20". For generating the corresponding maximal length 
sequence, stages "0" and "17" should be connected to the 
modulo-2 adder (XOR) as a feedback. 

 

 
The Tompkin-Paig algorithm [2] is an algorithm 

to generate a one-to-one mapping between the integers and 
permutations. In this algorithm, the target permutation is 
generated as a product of "L-1" simple permutations of 
order "i+1" and degree g i  where "L" is the number of 
components to be permuted and  1 ≤  g ≤    L-1 
 i=1,2,.....,L-1 
The simple permutation [5] of order "L-m 1 +1" and degree 

"m -m 1 " is generally defined as indicated in the 
following                               
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For example, when L=5, the simple permutation of order 
four and degree two is                    
     

  







32541
54321

and, the target permutation for given set of four g i 's is 
obtained as a product of four simple permutation of order 
i+1 and degree g i   where i=1,2,3,4  and 

 1≤   g i ≤  4 
In the encryption system, the number of samples to be 
permuted, "L", are assumed 100 and therefore the target 
permutation is obtained from "99"(L-1) simple 
permutations of order i+1 and degree g i 's where 

i=1,2,3,...,99 and 1≤  g i  99 ≤
 
IV. Generation of the Permutation Matrices 

The number of possible permutation is 
"L!=100!". Not all of those permutations can be used. The 
permutation matrices should have as little closeness as 
possible to the identity permutation matrix. Permutation 
matrices that are close to any circularly shifted versions of 
the identity permutation matrix produce scrambled sample 
of very high closeness to original sample. 
In order to protect the system against someone, who has 
similar encryption equipment, the number of possible 



permutations must be sufficiently large. Assuming that the 
required number of possible permutations is one million, a 
20-stage PRBS generator is used as a first stage of the 
permutation matrices generation process, because the 
maximum length of a 20-stage shift register sequence is 
1048575, i.e. 2 -1. 20

The key is entered as a five digit hexadecimal number, 
which is converted to 20 binary bits and used as an initial 
state of the 20-stage PRBS generator. Let b i  (i=1,2,3...) be 
the i'th output bit of the PRBS generator according to the 
given initial state. "99" random integers (g i 's) are 

generated from these b i  's  by using the formulas [5]: 
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where   j=[log 2 I]+1    and   k=∑ s ] +1}  and  

“[x]” ,here, is the maximum integer less than or equal to 
“x”. Then a permutation matrix is generated from the set 
of "L-1=99" integers, g 1   g 2   g 3   g 4  . . . g and   g , 
by applying the Tompkin-paig algorithm which gives a 
one-to-one correspondence between the integer and 
permutation. So, the target permutation matrix is generated 
as the product of  "99" simple permutation matrices of 
order "i+1" and degree  "g i ” where i=1,2...99. 
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There are four steps in this algorithm, which are 
explained as follows: 
First of all, a key is entered as a five hexadecimal digit 
number and the program is able to provide a 20-bit binary 
number equivalent to the given key. This number is used 
as the initial state of a 20-bit maximum length PRBS 
generator with suitable feedback. For the calculation of 
g i 's, 481 b i 's are necessary. Therefore, a string of "481" 
bits (b[1] to b[481]) is generated by module-2 addition of 
first and 18th bits(i.e. stages '0' and '17') of shift register. 
Then, the integer random numbers (g[1] to g[99]), are 
generated by using those equations. Finally, the Tompkin-
Paig algorithm is implemented on a sequential array from 
"oa[1]=1" to "oa[100]=100" with order i+1 and degree g i , 
where "i" starts from "99" and finishes at "1". The 
permutation array is generated as a na[i] and is copied onto 
the oa[i] array. The results are then stored in a permutation 
file and graph of normal and permutation configuration are 
plotted. 

 
V. ADSP-2100 Family of Processors 

 
ADSP-2100 is a programmable single-chip  

microprocessor optimized for digital signal processing 
(DSP) and other high-speed numeric processing 
applications.The ADSP-2100 chip contains three 

independent computational units; arithmetic/logic unit 
(ALU), multiplier/accumulator (MAC) and barrel shifter 
that operate on 16-bit fixed-point data. There are two data 
address generators and a program sequencer; data and 
program memories are external. The ADSP-2101 is a 
programmable single-chip microcomputer based on the 
ADSP-2100. Like the ADSP-2100, the ADSP-2101 
contains computational units, as well as a program 
sequencer and dual address generators. Additionally, there 
are 1K words of data memory and 2K words of program 
memory on chip, two serial ports, a timer, boot circuitry 
(for loading on-chip program memory at reset) and 
enhanced interrupt capabilities. Because the ADSP-2101 is 
code-compatible with the ADS-2100, the programs can be 
executed on these chips as well.A modified low cost 
version of ADSP-2101 has come out recently. The ADSP-
2105 is same as the ADSP-2101 with half the on-chip 
memory (512 words of data memory and 1K words of 
program memory) and one serial port instead of two. It is 
pin and code compatible with the ADSP-2101. The ADSP-
2105 is ideally suited to high speed low cost DSP 
applications. It is preferred to use ADSP-2105 instead of 
ADSP-2101 in the system and take care of one missing 
serial port and reduced internal memory by suitable 
modifications in the software and hardware design. Block 
diagram of ADSP-2100 system is indicated in fig.6.1. 

 
 
 

Fig.3.ADSP-2100 System 
 
In ADSP-2100 family of processors each 

computational unit contains a set of dedicated input and 
output registers which are indicated in table 6.1. 
Computational operations generally take their operands 
from input register and load the result into an output 
register. The registers act as a stopover point for data 
between the external memory and the computational 
circuitry, effectively introducing one pipeline level on 
input and one level on output. The computational units are 
arranged side by side rather than in cascade. To avoid 
excessive pipeline delays when a series of different 
operations are performed, the internal result (R) bus allows 
any of the output registers to be used directly (without 
delay) as the input to another computation. For a wide 
variety of calculation, it is desirable to fetch two operands 
at the same time, one from data memory and one from 



program memory. Fetching data from program memory, 
however, makes it impossible to fetch the next instruction 
from program memory on the same cycle; an additional 
cycle would be required. To avoid this overhead, the 
ADSP-2100 incorporates an instruction cache which holds 
sixteen words. The benefit of the cache architecture is 
most apparent when executing a program loop that can be 
totally contained in the cache memory. In this situation, 
the ADSP-2100 works like a three-bus system with an 
instruction fetch and two operands fetches taking place at 
the same time. Many algorithms are readily coded in loops 
of sixteen instructions or less because of the parallelism 
and high-level  syntax of the ADSP-2100 assembly 
language. 

 
VI. ADSP-2100 Based Addon Card 

  The addon-card have been put directly on the PC 
and works under the supervision of the host processor 
which in this case is the PC itself. The hardware consists 
of two codecs (coder, decoder) which sample the speech, 
encode it,  compand it, and transmit it serially to the 
ADSP-2101/2105 serial ports. The ADSP-2101/2105 
processes the received signal and transmit it back via the 
ADSP codec link. The basic hardware structure of the 
system for real time testing is indicated in Fig.4.  
 

 
Fig.4.Block diagram of Hardware implementation 
 
 
The block diagram of the stand alone hardware unit is 
depicted in Fig.5. For compact implementation and 
flexible operation, all the signal processing is performed in 
one DSP processor. The unit is roughly divide into five 
section: 
1) Analog circuitry 
2) Scrambler, 

  3) Descrambler, 
   4) Permutation matrices generator and 

5) Control section. 
 
VII. ADSP Assembly Language Overview 

 
 The ADSP-2100 family's assembly language uses 
an algebraic syntax for ease of coding and readability. The 
sources and destinations of computations and data 
movements are written explicitly in each assembly 
statement. Each assembly statement, however, corresponds 
to a single 24-bit instruction, executable in one cycle. 
Register mnemonics are listed in table 2. 
 The ADSP-2101 instruction set is an upward-
compatible superset of the ADSP-2100 instruction set; 

thus, programs written for the ADSP-2100 can be 
executed on the ADSP-2101 with practically no changes. 
 
Table.2.Computational I/O Registers 

 
 
 
 The ADSP assembly language coding for 
generation of permutation matrices has been written by  
using information in section IV. This assembly language 
program is modular and consists of two sub-routines 
which are called by a main program as a divider and a 
multiplier. The explanation of different parts of the 
assembly language program is as follows; 
 
1) Accepting 20-bit external key as a input 
2) Initializing maximum length shift register with this key 
values. 
3) Generating of 481 bits, which are called b[i]'s,and       
storing them in data memory. 
4) Calculation of 86 g[i] values from b[i]'s with using 
5) Applying Tompkin-Paig algorithm to normal      
configuration of coefficients by using g[i]'s value      
and generating a permutation matrix which 

 
VIII. Objective Tests and Conclusion 

As discussed, the generated permutations should 
have as little closeness to the identity permutation as 
possible. Permutations, which are close to any circularly 
shifted versions of the identity permutation, produce 
scrambled sample of very high residual intelligibility. The 
closeness between two permutations will be measured by 
means of auto-correlation and rank correlation. The auto-
correlation of each permutation order should be impulsive 
in nature. Actual formula for calculation of auto-
correlation is given here: 

R(j)= ∑
−

=
− +

1

1
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where N=L-1=99  and       x(i)=oa(i)   
 The auto-correlation of most keys have been 

calculated  and  plotted.  All of them seem to have the 
desired properties mentioned above.  



It was concluded that the possibility of a generated 
permutation using this technique lying close to the identity 
permutation is extremely small and therefore no more 
screening of permutations is necessary. A cryptanalysis of 
the system requires original and scrambled samples. 

The same objective results are seen by evaluating 
rank correlation. One of the most frequently used rank 
correlation samples for comparing two permutation "A", 
identity permutation, and "B", the objective permutation of 
"L" objects is the Spearman's rank correlation [3], α ,  
which is defined as :  The disadvantage of this attack is that a very large matrix 

has to be inverted.  α =1-
LL
dS
−3

2 )(6  where S(d )  is sum of squares of  rank 

wise difference between the permutations.  The range of 
this samples, is from "-1" to "1", with magnitudes close to 
"0" showing small correlation and magnitude near to "1" 
representing large correlation. 

2
The attack could be avoided by changing the permutation 
more frequently and employing multi-frame permutation 
method. This attack also required the cryptanalyst to 
obtain some amount of original samples. In most cases this 
could be impractical because of the extra number of keys. 
This method could be utilize for information security in 
many fields such as database, network, signal and so on.  

In the designed permutation algorithm, the 
histogram of rank correlation was calculated and plotted 
by running a 'C' language program. It shows that the 
distribution of permutations generated using this algorithm 
is approximately a normal distribution spread over the 
interval -0.4<a<0.55 which means that the possibility of a 
permutation to be close to the identity permutation or a 
shifted version of it is extremely small. 
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