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Abstract— End-to-end outage probability evaluation of multi-
hop wireless communication systems with non-regenerative relays
over lognormal shadowing channels is presented. Closed-form ex-
pression for the end-to-end signal to noise ratio is derived. It is
shown that this expression is in a form that makes it suitable to be
approximated by a lognormal variate. Consequently, closed-form
expressions for outage probability of non-regenerative systems can
be readily obtained and then compared to that of regenerative sys-
tems. Numerical examples show that regeneration is more crucial
at low average SNR and for multihop systems with a large number
of hops.

I. INTRODUCTION

Multihop transmission is a promising technique to achieve
broader coverage and to mitigate wireless channels impair-
ments. The main idea is that communication is achieved by
relaying the information from the source to the destination via
many intermediate terminals in between. The dual-hop trans-
mission special case was encountered originally in bent-pipe
satellites where the primary function of the spacecraft is to relay
the uplink carrier into a downlink [1]. It is also common in vari-
ous fixed microwave links by enabling greater coverage without
the need of large power at the transmitter. More recently, this
concept has gained new actuality in collaborative/cooperative
wireless communication systems [2], [3], [4], [5], [6]. In this
case, the key idea is that a mobile terminal relays a signal be-
tween the base station and a nearby mobile terminal when the
direct link between the base station and the original mobile ter-
minal is in deep fade. More generally, multihop transmission
is common in multihop-augmented networks in which packets
propagate through many hops before reaching their destination
(see [7] and references therein). The performance of multihop
transmissions for different fading channels can be found in [8]
and [9].

In this paper, we focus on these multihop communication
systems and study their end-to-end performance over indepen-
dent, not necessarily identically distributed, lognormal shad-
owed channels. In addition to its proven empirical fit specially
for low mobility terminals shadowed by large terrain and mov-
ing human bodies, surprisingly enough, the lognormal distribu-
tion has many other appealing characteristics from an analytical
point of view in the context of this paper. These include: (i) The
reciprocal of a lognormal variate is another lognormal variate,
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(ii) The product of two lognormal variates is a lognormal vari-
ate, and (iii) The sum of (uncorrelated or correlated) lognormal
variates can be well approximated by another lognormal [10,
Section 3.1, p. 129], using the Fenton-Wilkinson [10, Section
3.1.1, p. 130] or the Schwartz-Yeh methods [10, Section 3.1.2,
p. 132] for the uncorrelated case or the recent extension of these
methods by Pratesi et al. in [11] for the correlated case. The
performance criterion used in this paper is outage probability
which is the probability that the link quality falls below a pre-
determined threshold. Consequently, outage analysis captures
the quality of performance that is guaranteed for a certain level
of reliability.

The remainder of this paper is organized as follows. Next
section introduces the system and channel models under con-
sideration. Section III gives an analytical approach to evaluate
the outage probability of non-regenerative systems as well as
regenerative systems, and finally, section IV presents some nu-
merical examples.

II. SYSTEM AND CHANNEL MODELS

Consider the wireless communication system shown in
Fig. 1. Here, signals propagate through N channels/hops be-
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Fig. 1. Multihop communication system model.

fore arriving to its destination. Intermediate terminals relay the
signal from one hop to the next. For non-regenerative systems,
these intermediate terminals amplify and forward the received
signal from the previous node without any sort of decoding.
This is referred to sometimes as analog relaying [7], in contrast
to digital relaying that is employed in regenerative systems and
which consists in fully decoding the received signal and then
forwarding it to the next hop. In order to satisfy the average
power constraint of the nth relay (n = 1, · · · , N − 1), its gain
Gn is set to [3]

G2
n =

1

α2
n + N0,n

, (1)

where αn is the fading amplitude of the nth hop and N0,n is the
power of the additive white Gaussian noise at the input of the



nth relay. The choice of the relay gain in (1) aims to invert the
preceding channel effect while limiting the relay power if the
fading amplitude of the inverted channel, αn, is low. Under this
relay gain set-up, we show in Appendix A that the end-to-end
signal-to-noise ratio (SNR) is given by

γeq =

[

N
∏

n=1

(

1 +
1

γn

)

− 1

]

−1

, (2)

where γn = α2
n/N0,n is the SNR of the nth hop. The N -hop

end-to-end SNR expression in (2) is a generalization for the one
given in [3, Eq. (21)] for the dual-hop end-to-end SNR. Under
the lognormal shadowing assumption, γn, n = 1, · · · , N , fol-
low the lognormal distribution given by

pγn
(γn) =

ζ√
2πσnγn

exp

[

− (10 log10 γn − µn)2

2σ2
n

]

, (3)

where ζ = 10/ ln 10 = 4.3429, µn (in dB) is the mean
of 10 log10 γn and σn (in dB) is the standard deviation of
10 log10 γn. Consequently, it can be shown that the equivalent
SNR in (2) can be well approximated by a lognormal distribu-
tion. First, the term 1/γn is lognormally distributed following
property (i). Next, 1 + 1/γn is well approximated by a log-
normal distribution as per (iii). This is accomplished by deal-
ing with the 1 as a lognormal distribution with zero mean and
variance. The product of the resulting N lognormal variates is
another lognormal variate as per (ii). Now, we are left with a
lognormal variate with a −1 in front. We make the assumption
that the difference of two lognormal variates is another lognor-
mal variate, and we derive in Appendix B the modified Wilkin-
son equations for this case (note that we dealt again with 1 as
a lognormal variate with zero mean and variance). Finally, the
reciprocal of the resulting lognormal variate, which is also a
lognormal variate, is the equivalent SNR.

III. OUTAGE PROBABILITY

A. Non-Regenerative Systems

In noise limited non-regenerative systems, outage probability
is defined as the probability that the instantaneous end-to-end
equivalent SNR, γeq, falls below a predetermined protection ra-
tio, γth, namely

Pout = P [γeq ≤ γth] =

∫ γth

0

pΓeq
(γ) dγ = PΓ(γth). (4)

In (4), the predetermined protection ratio γth is a threshold SNR
above which the quality of service is satisfactory and which
essentially depends on the type of modulation employed and the
type of application supported. Consequently, outage probability
is given by

Pout = Q

(

µeq − γth

σeq

)

, (5)

where µeq and σeq are the mean and standard deviation of γeq,
respectively. Another, yet simpler, way to evaluate outage prob-
ability proceeds as follows

Pout = P [γeq < γth]

= P





[

N
∏

n=1

(

1 +
1

γn

)

− 1

]

−1

< γth





= P

[[

N
∏

n=1

(

1 +
1

γn

)

− 1

]

>
1

γth

]

= P

[[

N
∏

n=1

(

1 +
1

γn

)

]

>
1

γth

+ 1

]

= P [γ̃ >
1

γth

+ 1], (6)

where γ̃ =
∏N

n=1

(

1 + 1
γn

)

. Consequently, outage probability
is given alternatively by

Pout = 1 − Q

(

µγ̃ − 1
γth

− 1

σγ̃

)

, (7)

where µγ̃ and σγ̃ are the mean and standard deviation of γ̃ re-
spectively. Note that evaluating outage probability as per (7)
bypasses the need for the new approximation of the difference
of two lognormal variates. However, these results are kept
here for possible other applications. It was reported in the lit-
erature [12] that for outage probability calculations, the best
method for approximating the sum of lognormal variates is the
Fenton-Wilkinson method. Consequently, this method is used
for the numerical examples presented in this paper.

B. Regenerative Systems

In regenerative systems, on the other hand, outage decisions
are taken on a per hop basis, and the overall system outage is
dominated by the weakest hop/link. Consequently, the outage
probability is given by

Pout = P [Min(γ1, · · · , γN ) < γth]. (8)

In this case, outage probability can be shown to be given by

Pout = 1 −
N
∏

n=1

Q

(

γth − µn

σn

)

, (9)

where µn and σn are the mean and standard deviation of the
nth hop, respectively.

IV. NUMERICAL EXAMPLES

Fig. 2 shows the outage probability performance of a two
hops system as a function of µ − γth, where it is assumed that
the two links are identically distributed. Two systems are com-
pared here, namely regenerative and non-regenerative systems.
As shown in the figure, regenerative systems outperform non-
regenerative systems for low ranges of average SNR. The two
systems perform the same for large average SNR. It is clear also
that the Fenton-Wilkinson method closely matches the Monte
Carlo simulation for most ranges of SNR. However, at high
values of µ− γth, it starts deviating from the Monte Carlo sim-
ulation. This behavior is not noticed if the links have higher
σ’s as shown in Fig. 3, where a better match between the ap-
proximation and the Monte Carlo simulation is noticed. Fig. 4



studies the system outage probability as a function of the total
number of identically distributed hops. Note that a diminish-
ing increase in outage probability results from increasing the
number of hops. Finally, Fig. 5 compares the performance of
non-regenerative systems with that of regenerative systems as
a function of the number of hops. It is clear that there is an
increasing gap in the performance between the two systems as
the number of hops increases which indicates that regeneration
is more crucial if the number of hops is large.

APPENDIX A
DERIVATION OF EQ. (2)

Consider the multihop communication system shown in
Fig. 1. In order to get the SNR at the end of the N th hop,
we need to calculate the signal power and the noise power com-
ponents at the destination hop, and then divide them to get the
required SNR. These powers are given by

Signal Power = (α2
1α

2
2 · · ·α2

N )(G2
1G

2
2 · · ·G2

N−1) = SN .

Noise Power = N0,1(G
2
1G

2
2 · · ·G2

N−1)(α
2
2α

2
3 · · ·α2

N )

+ N0,2(G
2
2G

2
3 · · ·G2

N−1)(α
2
3α

2
4 · · ·α2

N )

+ · · · + N0,N = NN . (10)

Consequently,

γeqN
=

SN

NN

=

∏N

n=1 α2
n

∏N−1

n=1 G2
n

∑N

n=1 N0,n

∏N

t=n+1 α2
t

∏N−1

t=n G2
t

. (11)

Dividing both the numerator and the denominator by
∏N

n=1 N0,n

∏N−1

n=1 G2
n, the numerator is now given by

Numerator =

N
∏

n=1

γn, (12)

where γn = α2
n/N0,n is the per hop SNR. The denominator is

given by

Denominator =

∑N

n=1 N0,n

∏N

t=n+1 α2
t

∏N−1

t=n G2
t

∏N

n=1 N0,n

∏N−1

n=1 G2
n

=

N
∑

n=1

N0,n

∏N

t=n+1 α2
t

∏n−1

t=1 G2
t

∏N

t=1 N0,t

=

N
∑

n=1

N0,n

∏N

t=n+1 γt
∏n−1

t=1 G2
t

∏n

t=1 N0,t

=

N
∑

n=1

∏N

t=n+1 γt
∏n−1

t=1 G2
t

∏n−1

t=1 N0,t

. (13)

Using G2
t = 1

α2
t
+N0,t

, the denominator becomes

Denominator =

N
∑

n=1

∏N

t=n+1 γt
∏n−1

t=1

N0,t

α2
t
+N0,t

=

N
∑

n=1

N
∏

t=n+1

γt

n−1
∏

t=1

(γt + 1). (14)

The equivalent SNR is then given by

γeqN
=

∏N

n=1 γn
∑N

n=1

∏N

t=n+1 γt

∏n−1

t=1 (γt + 1)

=

[

N
∑

n=1

∏n−1

t=1 (γt + 1)
∏n

t=1 γt

]

−1

=

[

N
∑

n=1

1

γn

n−1
∏

t=1

(

1 +
1

γt

)

]

−1

, (15)

which upon expansion can be rewritten by inspection in the
slightly simpler form as

γeqN
=

[

N
∏

n=1

(

1 +
1

γn

)

− 1

]

−1

, (16)

which is the required results.

APPENDIX B
APPROXIMATING THE DIFFERENCE OF TWO LOGNORMAL

VARIATES USING FENTON-WILKINSON METHOD

In this appendix, we will follow the steps of the summary of
Fenton-Wilkinson method presented in [13]. Let I1 and I2 be
two independent lognormal variates, i.e.

Xi = 10 log10 Ii = mXi
+ χi, (17)

where mXi
is the area mean power in dBm, and χi is a zero-

mean normally distributed random variable in dB with standard
deviation σXi

, also in dB. Let Yi = ln Ii = ζXi, where ζ =
ln 10/10, then we assume that

I = I1 − I2 = eY1 − eY2 ≈ eZ = 10X , (18)

where Z (in logarithmic units) and X (in dB) are normally dis-
tributed, and Z = ζX . According to Wilkinson’s method, the
mean and standard deviation of Z are found by matching the
first and second moments of I with that of I1 − I2. Hence,

E{eZ} = E{eY1 − eY2} (19)

E{e2Z} = E{
(

eY1 − eY2
)2}. (20)

Using the formula

E{enu} = exp

(

nmu +
1

2
n2σ2

u

)

, (21)

where u is a normal RV with mean mu and variance σ2
u, the

moments in (19) and (20) can be written as

exp

(

mZ +
σ2

Z

2

)

= exp

(

mY1
+

σ2
Y1

2

)

−exp

(

mY2
+

σ2
Y2

2

)

= u1, (22)

and

exp(2mZ + 2σ2
Z) = exp(2mY1

+ 2σ2
Y1

) + exp(2mY2
+ 2σ2

Y2
)

− 2 exp(mY1
+ mY2

) exp

(

σ2
Y1

+ σ2
Y2

2

)

= u2. (23)



Solving for mZ and σZ , and using Z = ζX we get

mX = (1/ζ)(2 ln u1 −
1

2
ln u2),

σX = (1/ζ)
√

ln u2 − 2 ln u1. (24)
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Fig. 2. Effect of changing µ−γth on outage probability of a two hops system
(σ = 4dB).
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Fig. 3. Effect of changing µ−γth on outage probability of a two hops system
(σ = 6dB).
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Fig. 4. Effect of increasing the number of hops on the performance of non-
regenerative systems.
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Fig. 5. Effect of increasing the number of hops on the end-to-end outage
probability (µ − γth = 15dB per hop).
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