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Abstract—New expressions are introduced for the probability of
error as a function of the carrier to co-channel interference (CCI)
ratio for Binary Phase Shift Keying (BPSK) modulation scheme.
The interferer’s signal strength is assumed to follow Nakagami dis-
tribution. The interferer’s phase distribution is considered for both
uniform and non uniform cases. The addressed non uniform phase
distribution encompasses the effect of noise in addition to interfer-
ence. Results show that for the Rayleigh interference case a phase
margin of at least 1 dB has to be considered to compensate for the
phase uncertainty. Average probability of error is then numeri-
cally obtained assuming that the desired signal strength is also Nak-
agami distributed. Results show that a saturation effect from the
average probability of error perspective is expected when the Nak-
agami parameter of the desired signal exceeds the value of 2.

I. I NTRODUCTION

In a cellular network system, scarcity of spectrum is con-
ceived by are-use frequencyconcept [1]. This in turn implies
having two or more cells operating at the same frequency. Resid-
uals of the signal power from a cell(s) may interfere with the
intended cell causing what is calledco-channel interference. In
this paper, one dominant interferer is assumed while using 60
degree sectorized antennas. Normally, this model is used to de-
scribe high traffic density areas. Many researches have been
concerned with studying the outage probability for different fad-
ing models [2] [3] [4]. The outage probability has also been con-
sidered for interference cancellation systems [5]. On the other
hand, the average probability of error is a crucial criterion for the
system performance yet it is more complicated to evaluate. The
effect of the CCI on the average probability of error has been
addressed in [6]. In this paper, we present another look to the
analysis of the probability of error in presence of interference
for binary phase shift keying (BPSK) modulation scheme start-
ing from a geometric representation of the problem. We also
consider both the noise and phase distribution effects. We are
first interested in deriving the probability of error for BPSK as
a function of both carrier to co-channel interference (CCI) and
average interference signal-to-noise ratio (SNR). The average
probability of error is then obtained by averaging this condi-
tional probability over the CCI ratio distribution for Nakagami
carrier and Nakagami interferer.

The rest of this paper is organized as follows. The probability
of error is calculated in section II. The average probability of
error is studied in section III. Finally, numerical examples and
concluding remarks are given in section IV.
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Fig. 1. Signal and interferer representation in BPSK modulation scheme.

II. PROBABILITY OF ERROR FORBPSK

Figure 1 shows the effect of an interferer with strengthr and
phaseθ on the original signal with amplitudeA in the case of
BPSK modulation scheme. From the geometry of figure 1, it
can be shown that the total probability of error can be written as

Pe = P (S1)P (e|S1) + P (S2)P (e|S2)

=
1
2

∫ ∞

A

∫ π+φ

π−φ

fr(r)fθ(θ)dθdr

+
1
2

∫ ∞

A

∫ φ

−φ

fr(r)fθ(θ)dθdr, (1)

wherefx(.) represents the probability density function (PDF) of
x and

φ = cos−1

(
A

r

)
. (2)

In the next subsections this probability of error will be inves-
tigated with different amplitude and phase distributions of the
interference signal.

A. Rayleigh Interferer with Uniform Phase Distribution

If the interferer strength follows a Rayleigh distribution, then
the its PDF can be expressed as

fr(r) =
2r

Ωi
exp

(
− r2

Ωi

)
, (3)



whereΩi =< r2 > is the interfere average power. The phase in
turn is known to be uniformly distributed such that

fθ(θ) =
1
2π

, 0 ≤ θ ≤ 2π. (4)

Substituting from (3) and (4) into (1) yields

Pe(z) =
1
2
erfc(

√
z), (5)

whereerfc(.) is the complementary error function andz is the
CCI ratio, namely

z =
A2

Ωi
. (6)

The expression given in (5) is similar to that in the case of addi-
tive white Gaussian noise channel (AWGN) with CCI replaced
for SNR. This is expected since the signal here is perturbed by
interference rather than noise.

B. Rayleigh Interferer with Non-uniform Phase Distribution

The cumulative distribution function (CDF) of the phaseθ
between a noiseless reference and a vector perturbed by Gaus-
sian noise is given by [7]

F (θ, γi) =
1
2π

∫ π
2 +θ

−π
2

exp[γi sin2(θ) sec2(η)]dη,

−π ≤ θ ≤ 0, (7)

whereγi is the instantaneous SNR of the interferer. Averag-
ing (7) over the PDF ofγi for the Rayleigh case of interference
yields [8]

F (θ) =
1
2

{
1 +

θ

π
−

√
a− 1
a + 1

×
[

1
2

+
1
π

tan−1

(√
a− 1
a + 1

tan(π/2 + θ)

)]}
, (8)

wherea = 1 + 2γi andγi is the average SNR of the interferer.
In order to evaluate the probability of error in (1), it

seems that we first need to evaluate the following probabilities:
pθ(π − φ ≤ θ ≤ π + φ) and pθ(−φ ≤ θ ≤ φ). Actually
both of these events are equal as a result of the symmetry of the
problem. And any of them can be described as

pθ(−φ ≤ θ ≤ φ) = F (−(π − φ)) + [F (0)− F (−φ)]
= 0.5 + F (−(π − φ))− F (−φ), (9)

whereF (.) is the CDF of the phaseθ. Thereupon, the probabil-
ity of error in (1) can be written as

Pe =
∫ ∞

A

fr(r) [0.5 + F (−(π − φ))− F (−φ)] dr. (10)

With the aid of (8), the probability of error in (10) can be evalu-
ated as a function of the CCI ratio ,z, yielding

Pe(z) =
1
2
erfc(

√
z) +

√
γi

π

∫ ∞

z

e−x sin(φ)√
1 + γi sin2(φ)

× tan−1



√

γi sin(φ) tan(π/2− φ)√
1 + γi sin2(φ)


 dx, (11)

where

φ = cos−1

(√
z

x

)
. (12)

C. Nakagami Interference with Uniform Phase Distribution

If the interferer amplitude follows Nakagami distribution,
then the PDF of r will be

fr(r) =
2

Γ(mi)

(
mi

Ωi

)mi

r2mi−1 exp
(
−mir

2

Ωi

)
, (13)

wheremi is the Nakagami parameter of the interferer andΓ(.)
is the Gamma function [9]. The problem of defining the phase
distribution associated with Nakagami distributed amplitude is
still open. For the assumption of uniform phase distribution, the
probability of error as a function of the CCI ratio has been found
by substituting for the amplitude and phase distributions into (1)
and using the series expansion ofcos−1(.) [9] yielding

Pe(z) =
1

πΓ(mi)

[π

2
Γ(mi,miz)

−
∞∑

k=0

(2k)!(miz)k+0.5Γ(mi − k − 0.5,miz)
22k(k!)2(2k + 1)

]
,(14)

whereΓ(., .) is the incomplete Gamma function [9].

D. Nakagami Interference with Non-uniform Phase Distribu-
tion

In this subsection we tackle the problem of non uniformly
phase distribution taking into account the effect of noise. Fol-
lowing the same argument as in [8] and as presented for the
Rayleigh case in section II-B,F (θ) for Nakagami case can be
obtained as

F (θ) =
1
4π

∫ π+2θ

−π

(
1 + cos x

1 + b + cos x

)mi

dx, (15)

where

b = 2
γi

mi
sin2(θ). (16)

By suitable and careful substitution (to keep the principle cosine
interval), the CDF ofθ can be finally written as

F (θ) =
1
2π

∫ 1

− cos θ

(
1 + x2

1 + b/2 + x2

)mi dx√
1− x2

. (17)
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Fig. 2. The CDF of Nakagami phase for differentm values

Figure 2 illustrates the CDF of the phase for different values of
Nakagami parameterm.

The case formi = 1 reduces to the Rayleigh distribution
which has been addressed in section II-B. The cases formi=0.5
and 2 will be addressed in the next subsections since they rep-
resent limiting bounds on the system performance in many sce-
narios of interest [10].

1) Casemi = 0.5: In this case,F (θ) in (17) can be approx-
imated using series expansion. Hence, the probability of error
in (10) can be evaluated as

Pe(z) =
1

2
√

2Γ(0.5)

∫ ∞

z

e−0.5x

√
x

{
1− 2

π

√
2
a

×
[
cosφ +

a− 1
3a

cos3φ +
1
5
(

3
a2
− 1

a
+

1
2
) cos5 φ

+
1
7
(
−5
2a3

+
3

2a2
− 1

2a
+

1
2
) cos7 φ

+
1
9
(

35
8a4

− −5
2a3

+
3

4a2
− 1

2a
+

3
8
) cos9 φ

]}
dx, (18)

whereφ is given in (12) and

a = 2 + 4γi sin2 φ. (19)

2) Casemi = 2: In this case,F (θ) in (17) can be evaluated
in closed form. Then the probability of error can be finally given
as

Pe(z) =
∫ ∞

z

2xe−2x

[
1 +

2
π

a2 + a− 2
(a + 1)

√
a2 − 1

× tan−1

(
tan(π/2− φ)

a + 1

)

−(π−2φ)(a2+ a−(a + 1) cos 2φ)−(a−1)sin 2φ

π(a + 1)(a− cos 2φ)

]
dx, (20)

wherea in this case is given by

a = 2 + γi sin2 φ. (21)

III. AVERAGE PROBABILITY OF ERROR

Assuming that both the signal and interferer strengths have
Nakagami characteristics, the PDF of the CCI ratio follows an
F-distribution given by [11]

fz(z) = Kms
s Kmi

i

Γ(ms + mi)
Γ(ms)Γ(mi)

zms−1

(Ksz + Ki)ms+mi
, (22)

where sufficess andi refer to the signal and interferer, respec-
tively and for each of them,K = m

Ω
whereΩ denotes the aver-

age power. With the aid of numerical methods,fz(z) in (22) is
used to averagePe(z) expressions given in section II.

IV. N UMERICAL EXAMPLES AND CONCLUSIONS

Figure 3 illustrates the effect of the instantaneous CCI on the
calculated probability of error (Pe) for Rayleigh interferer sce-
nario. It can be inferred that there is a degradation of about a half
order of magnitude from thePe perspective for the case of non
uniform phase distribution and noise effect compared to that for
uniform phase distribution and absence of noise. In other words,
a phase margin of at least 1 dB is required to compensate for the
phase uncertainty compared to the uniform distribution assump-
tion. For the same CCI value, it is also shown that a change in
the average SNR of the interferer has a very subtle effect on the
system performance; namely the noise effect is very subtle.

Figure 4 shows the effect of the interferer Nakagami parame-
ter on thePe performance with respect to the CCI ratio forγi=10
dB. It is shown that at very low CCI values, the higher the value
of mi the worse the performance is and vice versa for high CCI
values. This can be interpreted as follows: low CCI values im-
plies high interferer power while highmi values implies small
interference power variance. Hence, low CCI values and high
mi values imply high interfering power values most of the time.
There is also a clear gain of about two orders of magnitude from
the Pe perspective asmi increases from 1 to 2 for CCI values
ranging from 8 to 10 dB.

The performance of the average probability of errorP e is
studied in figures 5 and 6. In figure 5 the effect of the av-
erage signal power is studied for the worst fading conditions
(mi = ms = 0.5) andγi=10 dB. In such a scenario, it is shown
that an averagePe of about10−2 is expected for average CCI
of about 30 dB. Figure 6 illustrates the effect of the signal Nak-
agami parameter (ms) on theP e for mi = 0.5 andΩi = 10 dB.
It is shown that an improvement up to one order of magnitude
from theP e perspective is expected asΩs increases from 20 to
30 dB. Moreover, it can be inferred that a saturation effect from
theP e perspective is expected forms values grater than 2.
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Fig. 3. Probability of error for Rayleigh interferer
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Fig. 4. Probability of error for Nakagami interferer
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Fig. 5. Average Probability of error versus the desired signal power (ms =
mi = 0.5 andγi = 10 dB)
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Fig. 6. Average Probability of error versus the Nakagami parameter of the
desired signal (mi = 0.5 andΩi = 10 dB).
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