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Abstract - Recently, a subclass of fractional guard
channel policy, which is called uniform fractional guard
channel (UFG) policy, is introduced and shown that it
performs better than guard channel (GC) policy under
the low handoff/new traffic ratio. In order to find the
optimal value for the UFG policy, a search algorithm is
given, which assumes that input traffic is a stationary
process with known parameters. Since the input traffic
is not a stationary process and its parameters are un-
known a priori, the adaptive version of UFG (AUFG) is
given which uses a learning automaton. In this paper, we
study the steady state behavior of the AUFG algorithm.
It is shown that the AUFG algorithm converges to an
equilibrium point, which is also optimal for UFG policy.

I. INTRODUCTION

Introduction of micro cellular networks leads to ef-
ficient use of channels but increases expected rate of
handovers per call. As a consequence, some network
performance parameters such as blocking probability of
new calls (B,) and dropping probability of handoff calls
(By) are affected. In order to have these performance
parameters at reasonable level, call admission policies
are used. The call admission policy plays a very impor-
tant role in the cellular networks because it directly con-
trols B,, and By,. Since the dropping probability of hand-
off calls is more important than the blocking probabil-
ity of new calls, call admission policies usually give the
higher priority to handoff calls. This priority is imple-
mented through allocation of more resources (channels)
to handoff calls. Fractional guard channel policy (FG),
which is a general call admission policy, accepts new calls
with a certain probability that depends on the current
channel occupancy and accepts handoff calls as long as
channels are available [1]. Suppose that the given cell
has C full duplex channels. The FG policy uses a vec-
tor IT = {mp,...,mc—1} to accept the new calls, where
0 <m <1,0 <i < C. This policy accepts new calls
with probability 7, when k& (0 < k < C) channels are
busy. Depending on the vector IT, we may have different

call admission policies and some of which are reviewed
below.

Guard channel policy (GC), which is a restricted ver-
sion of FG, reserves a subset of channels allocated to a
cell, called guard channels, for handoff calls (say C — T
channels) [2]. Whenever the channel occupancy exceeds
a certain threshold T, the guard channel policy rejects
new calls until the channel occupancy goes below the
threshold. The guard channel policy accepts handoff
calls as long as channels are available. Note that the GC
policy can be obtained from FG policy by setting 7 = 1,
0<k<T,and 7, =0, T <k < C. It has been shown
that there is an optimal threshold 7™ at which the block-
ing probability of new calls is minimized subject to the
hard constraint on the dropping probability of handoff
calls and an algorithm for finding such optimal threshold
is given in [3]. The GC policy reserves an integral number
of guard channels for handoff calls. If performance pa-
rameter By, is considered, the guard channel policy gives
very good performance, but performance parameter B,
is degraded to great extent. In order to have more control
on blocking probability of new calls and dropping prob-
ability of handoff calls, limited fractional guard channel
policy (LFG) is introduced [1]. The LFG can be obtained
from FG policy by setting 7, = 1, 0 < k< T,nr =7
and 7, = 0, T < k < C. It has been shown that there
is an optimal threshold T* and an optimal value of 7*
for which blocking probability of new calls is minimized
subject to the hard constraint on dropping probability
of handoff calls and an algorithm for finding these opti-
mal parameters is given in [1]. In [4], a new version of
FG policy called uniform fractional guard channel pol-
icy (UFQ) is introduced. The UFG policy accepts new
calls with probability of = independent of channel occu-
pancy. The UFG can be obtained from FG by setting
m, = m, 0 < k < C. It is shown that there is an op-
timal value for the parameter of UFG which minimizes
blocking probability of new calls with the constraint on
the upper bound on dropping probability of handoff calls
and an algorithm for finding such optimal parameter is
also given. Then conditions under which the UFG per-



forms better than the GC is derived. It is concluded that,
the UFG policy performs better than GC policy under
the low handoff traffic conditions.

UFG and other call admission policies such as re-
ported in [1, 2] are static and assume that all param-
eters of traffic are known in advance. These policies are
useful when input traffic is a stationary process with
known parameters. Since the parameters of input traffic
are unknown and possibly time varying, adaptive ver-
sion of these policies must be used. In [5], an adaptive
algorithm is introduced, which uses a learning automata
and accepts new calls as long as the dropping probabil-
ity of handoff calls is below of a pre-specified threshold.
The simulation results show that this algorithm cannot
maintain the upper bound on the dropping probability
of handoff calls. In order to maintain the upper bound
on the dropping probability of new calls, in [6], adaptive
uniform fractional guard channel (AUFG) algorithm is
introduced. This algorithm uses a learning automaton
to accept/reject new calls and a pre-specified level of
dropping probability of handoff calls is used to penal-
ize /reward the action selected by the learning automa-
ton. This adaptive algorithm accepts new calls as long as
the dropping probability of handoff calls is below the pre-
specified threshold. The simulation results show that,
the performance of the proposed algorithm is very close
to the performance of the UFG policy, which needs to
know all traffic parameters in high handoff traffic condi-
tions and maintains the level of QoS in the system.

In this paper, we study the convergence of the AUFG
algorithm in the steady state. It is shown that the AUFG
algorithm converges to an equilibrium point, which is
also optimal for the UFG policy.

The rest of this paper is organized as follows: The
learning automata are given in section II. Section III re-
views the UFG policy. The adaptive algorithm for find-
ing the optimal value of parameter 7 is given in section
IV and section V studies the behavior of the proposed
algorithm. Section VI concludes the paper.

II. LEARNING AUTOMATA

The automata approach to learning involves determi-
nation of an optimal action from a set of allowable ac-
tions. An automaton can be regarded as an abstract ob-
ject that has finite number of actions. It selects an action
from its finite set of actions and applies to a random envi-
ronment. The random environment evaluates the applied
action and gives a grade to the selected action of automa-
ton. The response from the environment (i.e. grade of ac-
tion) is used by automaton to select its next action. By
continuing this process, the automaton learns to select
the action with the best grade. The learning algorithm
used by automaton to determine the selection of next
action from the response of environment. An automaton

acting in an unknown random environment and improves
its performance in some specified manner, is referred to
as learning automaton (LA). Learning automata can be
classified into two main families: fized structure learning
automata and varieble structure learning automata [7].
Variable structure learning automata are represented by
triple < 8, a,T >, where 3 is a set of inputs, « is a set of
actions, and T is learning algorithm. The learning algo-
rithm is a recurrence relation and is used to modify ac-
tion probabilities (p) of the automaton. It is evident that
the crucial factor affecting the performance of the vari-
able structure learning automaton, is learning algorithm
for updating the action probabilities. Various learning al-
gorithms have been reported in the literature. Let a; be
the action chosen at time k as a sample realization from
probability distribution p(k). In what follows, two learn-
ing algorithms for updating the action probability vector
are given. In linear reward-epenalty algorithm (Lg_.p)
scheme the recurrence equation for updating p is defined
as

pi(k) +ax [l —pj(k)]if i=j
pj(k+1)= (1)
pj(k) —a x p;(k) if i#j

when (k) =0 and

p;(k) x (1-10) if i=j
pj(k+1): (2)
g o)A =b)if i A

when (k) = 1. The parameters 0 < b € a < 1 rep-
resent step lengths and r is the number of actions for
learning automaton. The a and b determine the amount
of increase and decreases of the action probabilities, re-
spectively. If the a equals to b the recurrence equations
(1) and (2) is called linear reward penalty(Lr_p) algo-
rithm.

Learning automaton have been used successfully in
many applications such as telephone and data network
routing [8], solving NP-Complete problems [9], capacity
assignment [10] and neural network engineering [11, 12,
13] to mention a few.

III. UNIFORM FRACTIONAL GUARD
CHANNEL ALGORITHM

In this section, we review the UFG policy. We assume
that the given cell has a limited number of full duplex
channels, C, in its channel pool. We define the state of a
particular cell at time ¢ to be the number of busy chan-
nels in that cell and is represented by ¢(¢). The UFG pol-
icy uses admission probability 7, which is independent
of channel occupancy, to accept new calls and accepts
handoff calls as long as channels are available. This pol-
icy can be obtained from FG policy by setting m; = 7
for k=0,1,...,C — 1. UFG policy reserves non-integral



number of guard channels for handoff calls by rejecting
new calls with some probability. The description of UFG
policy is given algorithmically in figure 1

if (HANDOFF CALL) then
if ¢c(t) < C ) then
accept call
else
reject call
end if
end if
if (NEW CALL) then
if (¢(t) < C and rand (0,1) < 7) then
accept call
else
reject call
end if
end if

Fig. 1. Unform fractional guard channel policy

In what follows, we study the blocking performance of
the UFG policy. The blocking performance of the UFG
policy is computed based on the following assumptions.

1. The arrival processes of new and handoff calls are
poisson with rates A\, and A, respectively. Let A =
An + Ap and a = Ap/A.

2. The channel holding time for both types of calls are
exponentially distributed with mean p=!. Let p =
A p.

3. The time interval between two calls from a mobile
host is much greater than the mean call holding time.

4. Only mobile to fixed calls are considered.

5. The network is homogenous.

The above first three assumptions have been found to be
reasonable as long as the number of mobile hosts in a cell
is much greater than the number of channels allocated
to that cell. The fourth assumption makes our analysis
easier and the fifth one lets us to examine the perfor-
mance of a single network cell in isolation. {c(¢)|t > 0}
is a continuous-time Markov chain (birth-death process)
with states 0,1,...,C. The state transition diagram of a
cell with C full duplex channels and UFG call admission
policy is shown in figure 2.
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Fig. 2. Markov chain model of cell

At state 0 < n < C, new calls are accepted with prob-
ability 0 < 7 < 1 and handoff calls are accepted with

probability 1. Both types of calls are blocked in state
C. Thus, the state dependent arrival rate in the birth-
death process is equal to [a + (1 — a)7]\. Because of
the structure of the Markov chain, we can easily write
down the steady-state balance equations. By solving the
steady state balance equations, we can find the drop-
ping probability of handoff calls, B, (C, r), by following
expression.

C

Bh (07 7T) = (pgf)'

P. (3)

Similarly, the blocking probability of new calls,
B, (C, ) is given by the following expression.

Bn(C,1) =1 -7 [1 — B(C,)]. (4)

IV. ADAPTIVE UNIFORM FRACTIONAL
GUARD CHANNEL ALGORITHM

In this section, we introduce a new adaptive version of
UFG policy (figure 3). This algorithm is used to deter-
mine the admission probability, =, when the parameters
a and p (or equivalently Ap, A, and p) are unknown or
probably time varying. The proposed algorithm adjusts
parameter 7 as network operates. This algorithm can
be described as follows: The proposed algorithm uses
one reward-penalty type learning automaton with two
actions in each cell. The action set of this automaton
corresponds to {ACCEPT,REJECT}. The automaton
associated to each cell determines the probability of ac-
ceptance of new calls (7). Since initially the values of
a and p are unknown, the probability of selecting these
actions are set to 0.5. When a handoff call arrives, it is
accepted as long as there is a free channel. If there is no
free channel, the handoff call is dropped. When a new
call arrives to a particular cell, the learning automaton
associated to that cell chooses one of its actions. Let 7 be
the probability of selecting the action ACCEPT. Thus,
the learning automaton accepts new calls with probabil-
ity 7 as long as there is a free channel and rejects new
calls with probability 1 — 7. If action ACCEPT is se-
lected by automaton and the cell has at least one free
channel, the incoming call is accepted and the selected
action is rewarded. If there is no free channel to be al-
located to the arrived new call, the call is blocked and
action ACCEPT is penalized. When the automaton se-
lects action REJECT, the adaptive UFG computes an
estimation of the dropping probability of handoff calls
(Bp) and uses it to decide whether or not to accept new
calls. If the current estimate of dropping probability of
handoff calls is less than the given threshold pj and there
is a free channel, then the new call is accepted and the
action REJECT is penalized; otherwise, the new call is
rejected and the action REJECT is rewarded.



if (NEW CALL) then
if (LA.action () = ACCEPT) then
if (¢(t) < C )then
accept call
reward action ACCEPT
else
reject call
penalize action ACCEPT
end if
else //LA selects action REJECT
reject call
if (Bh < pn ) then
penalize action REJECT
else
reward action REJECT
end if
end if

Fig. 3. Adaptive uniform Fractional guard channel algorithm

V. STEADY STATE BEHAVIOR OF AUFG

In this section, we study the convergence of the adap-
tive UFG algorithm. We show that, when the adaptive
UFG algorithm uses the Lgr_p reinforcement, scheme, a
unique value for 7 is found by the learning automaton,
which is also optimal for the UFG algorithm. In order to
study the behavior of the adaptive UFG algorithm, we
first model environment for the learning automaton in .

Lemma 1. Let p = (p1,p2) be the action probability
vector of learning automata and p1 = w be the probabil-
ity of accepting new calls. Then, the steady state behavior
of the adaptive UFG algorithm can be shown by a triple
< a,B,C >, where o« = {ACCEPT,REJECT} shows
the set of actions of automaton, 8 = {0,1} represents the
set of inputs for automaton and C(p) = {c1(p), c2(p)} is
the set of penalty probabilities, where c1(p) and ca(p) are
giwen by the following expressions.

c
ci(p) = (pg? P

where py and o} are mean and variance of By, respec-
tively.

Proof. The proof of this lemma is given in [6].

The following lemma is concerned with the properties
of the environment.

Lemma 2. The environment corresponding to the
adaptive UFG algorithm has the following characteris-
tics when p < C. Let to write p for p(n) and c;(p) for
ci(n).

1. ¢;(p) (for i = 1,2) is continuous function in p.
2. ¢i(p) (for i =1,2) are continuously differentiable in

all their arguments.

3. ¢i(p) and 82"—;’)) (for i = 1,2) are Lipschitz function

of all their arguments.
4. The derivative of c;(p) (for i =1,2) have the follow-
ing features.

Oc;(p)

op 0, (6)
dci(p) . Oca(p)

Op2 < Op ’ @
dca(p) . Oci(p)

Op1 < op1 ®

Proof. The proof of this lemma is given in [6].

The process {p(n)}n>0 defined by the adaptive UFG
algorithm is a homogenous Markov process. The follow-
ing theorem is concerned with its convergence behavior.

Theorem 1. The Markov process {p(n)}n>o is ergodic
and converges in distribution as n — oo to a unique
stationary probability p independent of the initial distri-
bution of p.

Proof. The proof of this theorem is given in [14].

In what follows, the steady state behavior of the
adaptive UFG algorithm is analyzed. Define the average
penalty rate of action a; as f; (p(n)) = ¢; (p(n)) pi(n),
p* = (p,p3) and pt + p5 = 1. In the following lemma, it
is shown that there is a unique p* for which the average
penalty rates for both actions become equal.

Lemma 3. For the adaptive UFG algorithm, there ex-
ists a unique p* such that

f)=RO)-H0), 9)
=0.

Proof. The proof of this lemma is given in [6].

Since {p(n)}n>0 is ergodic and converges in distribu-
tion to a unique stationary probability p, thus in steady
state, we obtain E [Ap;] = 0 or E [w(p)] = 0. The zero of
E [w(p)] is p* and, in general, E [w(p)] = 0 need not yield
p*. However, if the learning parameter a is chosen to be
sufficiently small, then the difference between these two
values may be made small, as indicated by the following
theorem.

Theorem 2. Let p(0) be the initial action probability
vector of the adaptive UFG algorithm with stationary
measure p, z(n) = % and z(n) = z(n), then
z;(n) converges to a normal distribution with zero mean
and known variance as a — 0 and na — oo.



Proof. The proof of this theorem is given in [6].

Theorem 3. The equilibrium probability of learning
automaton in the adaptive UFG algorithm, p* =
(m*,1—m*) , minimizes the blocking probability of new
calls subject to the hard constraint on the dropping prob-
ability of handoff calls (Br(C,m) < pp).

Proof. In the equilibrium state, the average penalty
rates for both actions are equal or f;(p*) = f2(p*), which
results ¢;* = ¢2(1 — 7*). Thus we have

«_ O
_(S—FPC'

™ (10)

where § = Prob

blocked new calls, N,,, is equal to

—

B, < ph]. Thus average number of

Ny =M1 —7*(1 = Po)],
_ Pc
_’\”(1+5)Pc+5‘ (11)

Computing derivative of N,, with respect to & results

ON,
0

Pc(1-Pc)
(Po+46)?°

=\,

<0. (12)

Thus N, is a strictly decreasing function of §. Since the
adaptive UFG algorithm gives the higher priority to the
handoff calls, it attempts to minimize the dropping prob-
ability of handoff calls. Using this fact and equation (12),
it is evident that N,, is minimized which results in min-
imization of the blocking probability of new calls and
hence the theorem.

For simulation results, the reader may refer to [6].

VI. CONCLUSIONS

In this paper, we studied the steady state behavior
of the adaptive uniform fractional guard channel algo-
rithm. It is shown that the adaptive uniform fractional
guard channel algorithm converges to an equilibrium
point, which is also optimal for uniform fractional guard
channel policy.

References

[1] R. Ramjee, D. Towsley, and R. Nagarajan, “On
Optimal Call Admission Control in Cellular Net-
works,” Wireless Networks, vol. 3, pp. 29-41, 1997.

[2] D. Hong and S. Rappaport, “Traffic Modelling and
Performance Analysis for Cellular Mobile Radio
Telephone Systems with Priotrized and Nonpriotor-
ized Handoffs Procedure,” IEEE Transactions on
Vehicular Technology, vol. 35, pp. 77-92, Aug. 1986.

[3] G. Haring, R. Marie, R. Puigjaner, and K. Trivedi,
“Loss Formulas and Their Application to Optimiza-
tion for Cellular Networks,” IEEE Transactions on
Vehicular Technology, vol. 50, pp. 664-673, May
2001.

[4] H. Beigy and M. R. Meybodi, “Uniform Fractional
Guard Channel,” in Proceedings of Sizth World
Multiconference on Systemmics, Cybernetics and
Informatics, Orlando, USA, July 2002.

[5] H. Beigy and M. R. Meybodi, Call Admission
Control in Cellular Mobile Networks: A Learning
Automata Approach, vol. 2510 of Springer-Verlag
Lecture Notes in Computer Science, pp. 450-457.
Springer-Verlag, Oct. 2002.

[6] H. Beigy and M. R. Meybodi, “An Adaptive
Uniform Fractional Guard Channel Algorithm: A
Learning Automata Approach,” Tech. Rep. TR-
CE-2002-006, Computer Engineering Department,
Amirkabir University of Technology, Tehran, Iran,
2002.

[7] K.S. Narendra and K. S. Thathachar, Learning Au-
tomata: An Introduction. New York: Printice-Hall,
1989.

[8] P.R. Srikantakumar and K. S. Narendra, “A Learn-
ing Model for Routing in Telephone Networks,”
SIAM Journal of Control and Optimization, vol. 20,
pp- 34-57, Jan. 1252.

[9] B. J. Oommen and E. V. de St. Croix, “Graph Par-
titioning Using Learning Automata,” IEEE Trans-
actions on Commputers, vol. 45, pp. 195-208, Feb.
1996.

[10] B. J. Oommen and T. D. Roberts, “Continuous
Learning Automata Solutions to the Capacity As-
signment Problem,” IEEE Transactions on Comm-
puters, vol. 49, pp. 608—620, June 2000.

[11] M. R. Meybodi and H. Beigy, “A Note on Learn-
ing Automata Based Schemes for Adaptation of BP
Parameters ,” Journal of Neuro Computing, vol. 48,
pp- 957-974, Nov. 2002.

[12] M. R. Meybodi and H. Beigy, “New Class of Learn-
ing Automata Based Schemes for Adaptation of
Backpropagation Algorithm Parameters,” Interna-
tional Journal of Neural Systems, vol. 12, pp. 45—68,
Feb. 2002.

[13] H. Beigy and M. R. Meybodi, “Backpropagation
Algorithm Adaptation Parameters using Learning
Automata,” International Journal of Neural Sys-
tems, vol. 11, no. 3, pp. 219-228, 2001.

[14] P. Srikantakumar, Learning Models and Adaptive
Routing in Telephone and Data Communication
Networks. PhD thesis, Departement of Electrical
Engineering, University of Yale, USA, Aug. 4980.



	Home: 
	Top: 


