
This paper is sponsored by Natural Science Fund (No.601018), Zhejiang Province, P.R.China

Performance analysis for a new CDMA long code fast computing method

Jiaming He, Xingbin Zeng, Bensong Xu
Institute of Communication Technologies

Ningbo University, 315211, P.R.China
jmhe@mail.nbptt.zj.cn

Abstract: In this article, we present a new CDMA long code

fast computing method. Simulation and analysis shows that,
compared with MSRG configuration, the new method requires
no more hardware RAM, and it can turn the vast long code
generating operation to no more than 42×42 times long code
generating operation and 42 times 42×42 matrix mode 2
multiplication operations. So, the new method greatly
accelerates the CDMA long code generating speed, and
improves the system performance.

Key Words: long code state, fast computing

I. Introduction
Long code is very important in a CDMA communication

system. For the forward link, long code is used for
scrambling; for the reverse link, it is used for spreading, and
uniquely identifies a mobile station. In CDMA system, long
code is a PN sequence with period 242-1, and it is easy to
obtain the current chip number. The difficulty lies in that, if
we compute the current long code by the long code generator,
the number of operations will increase greatly with the chip
number.

II. Principles
The long code characteristic polynomial in IS-95 standard

is as follows [1]:
f(x)=1+x7+x9+x11+x15+x16+x17+x20+x21+x23+x24+x25+x26+x32+x35
+x36+x37+x39+x40+x41+x42
A. Long Code Generation Steps

The following four steps are needed to generate long code:
1) Compute the time period between current time and the
starting time of GPS;
2) Compute the corresponding chip number of current time;
3) Through the chip number, deduce the current long code
state;
4) Driven by the system time clock, the long code generator
generates long code.

In this article, we focus in step 3: with known chip offset
number n, we present a new fast long code computing
method. All the addition and multiplication operations are
mode 2 operations.
B. Current Long Code Computing Methods

Denote S(n)=[s41(n) s40(n) … s0(n)]T as the long code
generator state at chip offset n, A as the 42×42 transform
matrix, Y(n)=[y(n+41) y(n+40) … y(n)]T as a 42×1 vector
formed by 42 concecutive long code generator output, C as
the mask of 1×42 vector.

According to the long code generate polynomial, the state
equation is:

)1()(−= nn ASS
The output of long code generator is:

)1()(+= nny CS
B.1. Classical Methods

For MSRG Configuration[2]:



















=

00001

0010
0001

40

41

L

MMOMMM

L

L

a
a

A

For SSRG Configuration [2]:



















=

1240411

00100
00010

aaaa L

MMOMMM

L

L

A

B.2. Fast Computing Method [3]
From the state equation, we get

)()(

)(
)1(

)41(

)(

41

nn

ny
ny

ny

n FSS
C
CA

CA
Y =





















=



















+

+

=
MM ,

where F=[CA41 … CA C]T (CAi means mode 2
multiplication).

Choose an appropriate C to make matrix F invertible, and
denote the inverse matrix as G, then GFS(n)=GY(n), where
GF=I(mode 2). So S(n)=GY(n), which means, by consecutive
42 long code generator output Y, we can get the long code
generator state S(n).

Since)0()2mod()1()(SAASS nnn =−= , if we turn n

into binary, i

i
inn 2

41

0
×∑=

=
, where ni=0 or 1, then

∏=
=

41

0

2)(
i

inin AA .

Denote)0()(0
0 SAs nn = ,)0()()(1

2
−= i

n
i

i
i

n SAs , i=0, L,
41, then)()(41 nn sS = .

Suppose we take C0A2i as the long code mask and Si-1(n) as
the long code generator state, where C0 is the initial mask.
Then the consecutive 42 output of the long code generator
will be:

)()(

)()(

41

0

0

1
2

41

0

0

1

41

nn

nn

ii

i
i

ii

sFs
AC

AC
C

sA
AC

AC
C

s
CA

CA
C

Y

0

0

0

=



















=

×



















=×



















= −−

M

MM

where





















=

41

40

1

1000
0100

0001
10000

a
a

a

L
L

MMMOMM
L
L

A ,]1000[0 L=C , then

ii n YGs 0=)(.

So, if we store G0 and C0A2i, i=0L41, knowing n, we can
compute S(n) by deduction, and the output of long code
generator y(n) can be given by y(n)=CS(n).

III. Simulation Models
A. Method one: Deduction method

Due to the 42×42 characteristic matrix A, the long code
initial state S(0), and the long code chip offset n, we have:

S(1)=AS(0)
S(2)=AS(1)=A2S(0)
…
S(n)=AnS(0)

To get S(n), we need n times 42×42 matrix mode 2
multiplication with a 42×1 vector, the number of operation is
as follows:

Mode 2 multiplication: M1=42×42×n=1764n；
Mode 2 addition: A1=42×41×n=1722n.

B. Method two: xk mode f(x) [2]
According to MSRG configuration, the output sequence

satisfies
)(
)(

)(
)(*

xf
x

xf
x Sg

= , where S*(x) is the conjugate

polynomial for S(x). To get the current long code state S(x),
we should do as follows:

g(x)=xk mod f(x)
S(x)=g*(x)

k is the current chip offset, that means, k=n. So, the
operation mainly depends on xk mod f(x). If ignoring the
optimizing of operator 0, the number of operation is as
follows:

Mode 2 multiplication: M2=43×n.
C. Method three: Fast computing

The fast computing algorithm has been described in section
2.2.2. The computing steps are as follows:

1) Turn chip offset n into binary: i

i
inn 2

41

0
×∑=

=
, where ni=0

or 1;
2) i=0;

3) If ni=1 then jump to step 6;
4) Yi=F0Si(n);
5) Si+1(n)=G0Yi;
6) i=i+1;
7) If i<42 then back to step 3;
8) S(n)=S41(n).

To get S(n), there will be ∑×
=

41

0
42

i
in times long code

generator operation and ∑
=

41

0i
in times vector mode 2

multiplication of 42×42 matrix with 42×1 vector. The
numbers of operation are:

Mode 2 multiplication:

∑=∑××++××=
==

41

0

41

0
3 77616]4242)424242(42[M

i
i

i
i nn

Mode 2 addition:

∑=∑××++××=
==

41

0

41

0
3 75768]4142)414142(42[A

i
i

i
i nn

IV. Simulation Results and Analysis
As shown in Fig.1, Fig.2 and Fig.3, the numbers of

operation for method one and method two increases linearly
with chip offset n, the slope for method two is less than that
for method one, while the number of operation for method
three wavers in a small range, with its local average increases
slightly. Specially, when n=2i(i=0, 1, …, 41), the number of
operation for method three will be the minimum, 77616 for
addition and 75768 for multiplication, respectively. As shown
in Fig.4, when n≥28, the number of operation for method
three will be less than that for method one; when n≥3×214, the
number of operation for method three will be less than that
for method two. For all three methods, the number of
operation will reach the maximum when n=242-1. Using
TMS320C5420, whose speed reaches 200MIPS, the time
needed to perform the operation at different n will be as
shown in table 4-1.

Fig.1 Numbers of operation for Addition (1≤n≤220)

Fig.2 Number of operation for Multiplication (1≤n≤220)

Fig.3 Numbers of operation for Addition and Multiplication
(1≤n≤242)

Fig.4 Numbers of operation for Addition and Multiplication
(102≤n≤105)

As chip offset number n lies between 1 and 242-1, for
method three, the number of mode 2 addition lies between
75768 and 3182256, mode 2 multiplication lies between
77616 and 3259872. Using TMS320C5420, all the operation
can be done between 0.767ms and 32.21ms. As a comparison,
the time lies between 0.017ms and 21294h for method one
and 0 to 263h for method two. Using some other skills, the
new method could be optimized further.

TABLE I Numbers of operation and time needed to perform the
operations

Chip
Offset n

Computing
Method

Number of
Addition

Number of
Multiplication Time

Method 1 439110 449820 4.445ms

Method 2 NA 10965 0.055ms28-1

Method 3 606144 620928 6.136ms

Method 1 440832 451584 4.462ms

Method 2 NA 11008 0.055ms28

Method 3 75768 77616 0.767ms
Method 1 84638022 86702364 856.702ms
Method 2 NA 2113493 10.567ms3×214-1

Method 3 1136520 1164240 110503ms
Method 1 84639744 86704128 856.719ms
Method 2 NA 2113536 10.567ms3×214

Method 3 75768 77616 0.767ms
Method 1 7.5734×1015 7.7582×1015 ≈21294h
Method 2 NA 1.8912×1014 ≈263h242-1

Method 3 3182256 3259872 32.21ms

V. Summary and Conclusion
Using the fast computing method, the CDMA long code

state can be determined within 4ms by TMS320C5x DSP
chip, and it needs only 1764B to store the 1×42 binary vector
C0A2i (i=0~41). All this shows that the fast computing method
is reliable to engineering applications. This method has been
used in the “High Speed CDMA BTS Demo System” made
by Institute of Communication Technology, Ningbo
University.

Reference

[1] http://www.3gpp2.org, “3GPP2.S0002-A-1 Version 1.0”,
Sep.12, 2000.
[2] J.S.Lee, L.E.Miller, CDMA Systems Engineering
Handbook, Translated by Xibin Xu, etc., Beijing: People’s
Post & Telecommunications Publish House, 2000.11.
[3] Xuequan Xiong, Xiaojun Wang, Jinxiang Li, Xiaoming
Chen, Xingbin Zeng, “A fast CDMA long code computing
method,” Chinese patent number 01132029.X.

Title: Performance Analysis for a New CDMA Long Code Fast Computing Method
Version: #2
Area: WCDMA, CDMA2000, EDGE
Date of Submission: 2002-12-20
Authors: Dr. Jiaming He, Dr. Xingbin Zeng, Bensong Xu
Mail: jmhe@mail.nbptt.zj.cn
Daytime telephone: 0086-574-87908556
Fax: 0086-574-87908161
Contact: Xingbin Zeng, znxb@sina.com

	Home:
	Top:

