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Abstract: In this article, we present a new CDMA long code 

fast computing method. Simulation and analysis shows that, 
compared with MSRG configuration, the new method requires 
no more hardware RAM, and it can turn the vast long code 
generating operation to no more than 42×42 times long code 
generating operation and 42 times 42×42 matrix mode 2 
multiplication operations. So, the new method greatly 
accelerates the CDMA long code generating speed, and 
improves the system performance. 
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I. Introduction 
Long code is very important in a CDMA communication 

system. For the forward link, long code is used for 
scrambling; for the reverse link, it is used for spreading, and 
uniquely identifies a mobile station. In CDMA system, long 
code is a PN sequence with period 242-1, and it is easy to 
obtain the current chip number. The difficulty lies in that, if 
we compute the current long code by the long code generator, 
the number of operations will increase greatly with the chip 
number. 

II. Principles 
The long code characteristic polynomial in IS-95 standard 

is as follows [1]:  
f(x)=1+x7+x9+x11+x15+x16+x17+x20+x21+x23+x24+x25+x26+x32+x35 
+x36+x37+x39+x40+x41+x42 
A. Long Code Generation Steps 

The following four steps are needed to generate long code: 
1) Compute the time period between current time and the 
starting time of GPS; 
2) Compute the corresponding chip number of current time; 
3) Through the chip number, deduce the current long code 
state; 
4) Driven by the system time clock, the long code generator 
generates long code. 

In this article, we focus in step 3: with known chip offset 
number n, we present a new fast long code computing 
method. All the addition and multiplication operations are 
mode 2 operations. 
B. Current Long Code Computing Methods 

Denote S(n)=[s41(n) s40(n) … s0(n)]T as the long code 
generator state at chip offset n, A as the 42×42 transform 
matrix, Y(n)=[y(n+41) y(n+40) … y(n)]T as a 42×1 vector 
formed by 42 concecutive long code generator output, C as 
the mask of 1×42 vector.  

According to the long code generate polynomial, the state 
equation is: 

)1()( −= nn ASS  
The output of long code generator is: 

)1()( += nny CS  
B.1. Classical Methods 

For MSRG Configuration[2]: 
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For SSRG Configuration [2]: 
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B.2. Fast Computing Method [3] 
From the state equation, we get 
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where F=[CA41 … CA C]T (CAi means mode 2 
multiplication).  

Choose an appropriate C to make matrix F invertible, and 
denote the inverse matrix as G, then GFS(n)=GY(n), where 
GF=I(mode 2). So S(n)=GY(n), which means, by consecutive 
42 long code generator output Y, we can get the long code 
generator state S(n). 

Since )0()2mod()1()( SAASS nnn =−= , if we turn n 

into binary, i
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Suppose we take C0A2i as the long code mask and Si-1(n) as 
the long code generator state, where C0 is the initial mask. 
Then the consecutive 42 output of the long code generator 
will be: 
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where 
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So, if we store G0 and C0A2i, i=0L41, knowing n, we can 
compute S(n) by deduction, and the output of long code 
generator y(n) can be given by y(n)=CS(n). 

III. Simulation Models 
A. Method one: Deduction method 

Due to the 42×42 characteristic matrix A, the long code 
initial state S(0), and the long code chip offset n, we have: 

S(1)=AS(0) 
S(2)=AS(1)=A2S(0) 
… 
S(n)=AnS(0) 

To get S(n), we need n times 42×42 matrix mode 2 
multiplication with a 42×1 vector, the number of operation is 
as follows: 

Mode 2 multiplication: M1=42×42×n=1764n； 
Mode 2 addition: A1=42×41×n=1722n. 

B. Method two: xk mode f(x)  [2] 
According to MSRG configuration, the output sequence 

satisfies 
)(
)(

)(
)( *

xf
x

xf
x Sg

= , where S*(x) is the conjugate 

polynomial for S(x). To get the current long code state S(x), 
we should do as follows: 

g(x)=xk mod f(x) 
S(x)=g*(x) 

k is the current chip offset, that means, k=n. So, the 
operation mainly depends on xk mod f(x). If ignoring the 
optimizing of operator 0, the number of operation is as 
follows: 

Mode 2 multiplication: M2=43×n. 
C. Method three: Fast computing 

The fast computing algorithm has been described in section 
2.2.2. The computing steps are as follows: 

1) Turn chip offset n into binary: i

i
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or 1; 
2) i=0; 

3) If ni=1 then jump to step 6; 
4) Yi=F0Si(n); 
5) Si+1(n)=G0Yi; 
6) i=i+1; 
7) If i<42 then back to step 3; 
8) S(n)=S41(n). 

To get S(n), there will be ∑×
=
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0
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generator operation and ∑
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multiplication of 42×42 matrix with 42×1 vector. The 
numbers of operation are: 

Mode 2 multiplication: 
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IV. Simulation Results and Analysis 
As shown in Fig.1, Fig.2 and Fig.3, the numbers of 

operation for method one and method two increases linearly 
with chip offset n, the slope for method two is less than that 
for method one, while the number of operation for method 
three wavers in a small range, with its local average increases 
slightly. Specially, when n=2i(i=0, 1, …, 41), the number of 
operation for method three will be the minimum, 77616 for 
addition and 75768 for multiplication, respectively. As shown 
in Fig.4, when n≥28, the number of operation for method 
three will be less than that for method one; when n≥3×214, the 
number of operation for method three will be less than that 
for method two. For all three methods, the number of 
operation will reach the maximum when n=242-1. Using 
TMS320C5420, whose speed reaches 200MIPS, the time 
needed to perform the operation at different n will be as 
shown in table 4-1. 

 
Fig.1 Numbers of operation for Addition (1≤n≤220) 



 

 

 
Fig.2 Number of operation for Multiplication (1≤n≤220) 

 
Fig.3 Numbers of operation for Addition and Multiplication 
(1≤n≤242) 

 
Fig.4 Numbers of operation for Addition and Multiplication 
(102≤n≤105) 

As chip offset number n lies between 1 and 242-1, for 
method three, the number of mode 2 addition lies between 
75768 and 3182256, mode 2 multiplication lies between 
77616 and 3259872. Using TMS320C5420, all the operation 
can be done between 0.767ms and 32.21ms. As a comparison, 
the time lies between 0.017ms and 21294h for method one 
and 0 to 263h for method two. Using some other skills, the 
new method could be optimized further. 

TABLE I Numbers of operation and time needed to perform the 
operations 

Chip 
Offset n

Computing 
Method 

Number of 
Addition 

Number of 
Multiplication Time 

Method 1 439110 449820 4.445ms

Method 2 NA 10965 0.055ms28-1 

Method 3 606144 620928 6.136ms

Method 1 440832 451584 4.462ms

Method 2 NA 11008 0.055ms28 

Method 3 75768 77616 0.767ms
Method 1 84638022 86702364 856.702ms
Method 2 NA 2113493 10.567ms3×214-1

Method 3 1136520 1164240 110503ms
Method 1 84639744 86704128 856.719ms
Method 2 NA 2113536 10.567ms3×214

Method 3 75768 77616 0.767ms
Method 1 7.5734×1015 7.7582×1015 ≈21294h
Method 2 NA 1.8912×1014 ≈263h242-1 

Method 3 3182256 3259872 32.21ms

V. Summary and Conclusion 
Using the fast computing method, the CDMA long code 

state can be determined within 4ms by TMS320C5x DSP 
chip, and it needs only 1764B to store the 1×42 binary vector 
C0A2i (i=0~41). All this shows that the fast computing method 
is reliable to engineering applications. This method has been 
used in the “High Speed CDMA BTS Demo System” made 
by Institute of Communication Technology, Ningbo 
University. 
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