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Abstract - In this paper, the idea of multi-split adaptive 
filtering is applied on DFE. The feed-forward and feedback 
sections in the DFE are divided into parallel sub-filters by 
imposing separately the symmetry and antisymmetry 
conditions on the impulse responses of filters by using 
appropriate and distinct sets of linear constraints. The 
purpose of this is to obtain a new structure that gives better 
performance than the conventional structure. The 
performance of multi-split DFE is tested with different 
algorithms (LMS, RLS, DCT-LMS) and compared to that of 
multi-split linear transversal Equalizer.  

convergence and complexity of the equalizer are two 
conflicting parameters.  

In order to improve the convergence rate with a small 
increase in complexity, the split adaptive filter is a good 
choice [4-6]. Split processing technique guarantees stability 
and give quicker convergence at the expense of a moderate 
increase in computation. 

In adaptive equalization, the convergence behavior is 
governed by the eigenvalue spread; a lower spread increases 
the convergence rate. It has been shown that whitening the 
equalizer input using some transformations such as 
Karhumen-Loeve transform and discrete cosine transform 
can significantly reduce the eigenvalue spread [4]. 

 
Keywords – Equalization, Multi-split, Decision-feedback, 
RLS, LMS, DCT-LMS Algorithms. 

The split processing has gained an increasing attention 
in recent years. Delsarte and Genin [2] worked on a split 
version of the Levinson algorithm for real Toeplitz matrices. 
The work in [2] extended in [3] to classical algorithms in 
linear prediction theory . The performance of a split-path 
LMS adaptive filter for autoregressive modeling was 
analyzed in [4] in which the authors showed that the new 
model can provide a much faster rate of convergence with a 
small increase in computation complexity. In [6-7], the 
authors suggested a new structure for the split transversal 
filter [6] and they used the continuously split procedure to 
introduce the multi-split adaptive filter [7]. 

I. INTRODUCTION 

Equalization plays an important role in a 
communication system. In some applications, the channel 
characteristics are not known in advance. Moreover, they 
may change from time to time, specially in a wireless 
communication system [1]. It is, therefore, important to 
continuously track the channel characteristics. To do so, 
adaptive equalization techniques are used, where an 
adaptive algorithm is used to adjust the filter coefficients. At 
the receiver an equalizer, as shown in Figure 1, is used in 
order to reduce the effect of Inter-Symbol Interference (ISI) 
to a minimum and hence maximize the probability of correct 
decisions.  

In this work, the idea of multi-split (MS) adaptive 
filtering is applied to the decision-feedback equalizer (DFE). 
This is done by continuously splitting both the forward filter 
and the feedback filter leading to a new structure and is 
called Multi-split DFE (MS-DFE). Each split imposes 
separately symmetry and anti-symmetry conditions on the 
impulse responses of filters connected in parallel by using 
appropriate and distinct sets of linear constraints [6]. Equalizer
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Adaptive algorithms such as the LMS, LMS-DCT and 
RLS algorithms are used to update the tap coefficients of the 
equalizer. In the case of multi-splitting, only MS-LMS and 
MS-RLS algorithms are used. 

Fig. 1. Adaptive equalization The next section begins with a brief description of the 
principle of split and multi-split FIR filters. This principle is 
applied to both Linear Transversal Equalizer (LTE) and 
DFE to produce MS-LTE and MS-DFE. Simulation results 

The convergence of the equalizer taps to the optimum 
value is an important issue. Faster convergence is needed to 
track rapid channel changes. It is found that faster  



 The principle of a linearly constrained transversal filter 
is to minimize the estimated error e(n) subject to a set of 
linear equations defined by: 

in section 3 illustrate the performance of MS-LTE and MS-
DFE. Finally, the paper ends with conclusions. 

II. SPLIT AND MULTI-SPLIT FIR FILTER 
11 ××× = KN

T
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A sequence in an FIR filter can be expressed as the sum 
of a conjugate-symmetric sequence and a conjugate-anti-
symmetric sequence. The conjugate-symmetric (conjugate-
anti-symmetric) sequence is given by half the sum 
(difference) of the original sequence and its conjugate and 
backward version [6].  

where C is the constraint matrix and f is the element 
response vector. Applying this principle, the symmetry and 
antisymmetry conditions of wa and ws can be easily 
introduced through a linearly constrained approach [6-7] 
where two cases are considered for Cs, Ca, fa and fs. 

 To start, let us represent the tap-weight vector of FIR 
transversal filter in the following form • Case 1: N odd (K=(N-1)/2): 
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Let wa and ws denote the vectors of the conjugate-symmetric 
and conjugate-anti-symmetric, respectively, of w, then  

as www +=              (2) fs = 0K×1, fa = 0(K+1)×1 
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• Case 2: N even (K=N/2): 
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fs = fa = 0K×1 
* represents the complex conjugate operation and J is the 
reflection matrix or exchange matrix which has unit 
elements along the cross diagonal and zeros elsewhere, that 
is, 

 

In both cases the following are imposed in the constrained 
optimization process: 

    (4) 
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 Using the generalized sidelobe canceller structure 
(GSC) [6] and the above constraint matrices we get the split-
filtering structure shown in Figure 3. In the case of N even, 
the first N/2 coefficients of vectors ws and wa compose w⊥s 
and w⊥a, respectively. Also, note that multiplying w⊥s by Ca 
gives ws and w⊥a by Cs gives wa [6-7]. According to [6], this 
simple structure comes from two facts. First, since 
fs=fa=0K×1(even case), the filters of the GSC structure which 
satisfy the symmetric and anti-symmetric constraints are 
equal to zero. The second fact is that the antisymmetry 
constraint matrix Ca is one of the possible signal blocking 
matrices of the symmetric part. 

Pre-multiplying any vector with J will flip the vector from 
top to bottom. Figure 2 illustrates the splitting technique. 
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 Now by considering each branch in Figure 3 separately, 
both w⊥s and w⊥a can also be divided into their symmetric 
and anti-symmetric parts. Continuous split process will lead 
to multi-split filter [7]. Figure 4 shows the multi-split 
adaptive filter. This scheme can be viewed as a linear 
transformation of x(n) denoted by 

x(n)T(n)x T=⊥        (9) 
Fig. 2. Adaptive split transversal filtering 
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Fig. 3. GSC implementation of the split filter 
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Fig. 4. Multi-split adaptive filter 

  

In the case of N=2M, which is a special case, T consists 
of +1 and –1 giving a well-known matrix form called the 

Hadamard matrix H. As a result, a compact form of the 
multi split scheme is shown in Figure 5.  
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Fig. 5. Hadamard transform of the input x(n) 

 

The use of Hadamard is possible if and only if the input 
vector x(n) is a power of two (N=2M). If this is not the case, 
T should be used instead of H.  

 In this paper the principle of multi-split filtering is 
applied on both LTE and DFE. The MS-LMS and MS-RLS 
algorithms are used to update the tap coefficients.  

 

III. SIMULATION RESULTS 

Both MS-LTE and MS-DFE are simulated. The 
adaptive equalizer scheme used in the simulation is shown 
in Figure 6. BPSK is used to form the input sequence, which 
is +/-1. A total of 12 taps in both LTE and DFE are used. In 
the DFE, 8 taps are used for the forward filter and 4 taps for 
the feedback filter in order to use Hadamard transform since 
the taps are power of 2.  

The channel impulse response is described by the raised 
cosine: 
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where s controls the eigenvalue spread χ(R) of the 
correlation matrix of the input vector to the equalizer. Two 
eigenvalue spread are used in simulations, χ(R) = 6.0782 for 
s=2.9 and χ(R) = 46.8216 for s = 3.5. However, only those 
results corresponding to χ(R) = 46.8216 are shown. The 
noise z(n) is additive white Gaussain noise with  zero mean 
and variance equal to 0.001.  
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Fig. 6. Adaptive equalizer 

 Figures 7 and 8 show the results for MSE obtained 
over 300 independent trials. The figures show the learning 
curves of LTE-LMS (RLS/DCT-LMS), MS-LTE-LMS 
(RLS), DFE-LMS (RLS/DCT-LMS) and MS-DFE-LMS 
(RLS) for eigenvalue spreads χ(R)= 46.8216. It can be 
noted that the performance of DFE is better than the LTE in 
term of convergence rate regardless the algorithm type. In 
both types of equalizers (DFE & LTE) the MS-LMS gives 
better result than the standard LMS algorithm.   

An interesting observation is that in case of LTE, the 
MS-LMS is somewhat sensitive to variations in eigenvalue 
spread more than the DCT-LMS and this was also noted in 
[7]. This explains the good performance of DCT-LMS over 
MS-LMS. However, this is not the case with the DFE. Both 
MS-LMS and DCT-LMS give the same performance and 
same rate of convergence when the eigenvalue spread is 
low. Figure 9 shows the learning curves of MS-DFE-LMS, 
DFE-DCT-LMS and DFE-LMS for the same step size, 
which is 1/2N and χ(R) = 6.0782. This means, that at least 
for this channel, we get the same performance with less 
computation by using DFE-MS-LMS since the 
computational complexity in DCT-LMS is more than that in 
MS-LMS. However, as the eigenvalue spread increases, the 
situation is different in which the performance of DCT-
DFE-LMS is better as it can be noted in Figure 10. In this 
figure, the step size of all curves is the same (1/2N) and 
χ(R) = 46.8216. In Figure 11, the DFE-DCT-LMS learning 
curve was brought to the same level of MS-DFE-LMS by 
using a step size of 1/3N. It can be seen that the performance 
for both are close. 

In the case of RLS algorithm, we did not gain much by 
doing multi-spilt. In both type of equalizer, RLS and MS-
RLS gave the same rate of convergence and performance. 
Figure 12 shows the BER performance of the different 
structure and algorithms and for χ(R) = 46.8216.  

In the previous simulation results, both forward and 
feedback filters were fully “splitted” in the case of MS-
DFE-LMS and MS-DFE-RLS. However, the performance of 
MS-DFE-LMS in which the feedback filter wasn’t “splitted” 
was tested and the performance was almost identical in both 
convergence and BER, which means that complexity is 
reduced.  

IV. CONCLUSIONS 

In this paper, the idea of multi-split adaptive filter was 
applied on both LTE and DFE. In each equalizer, the FIR 

filters (forward and feedback in the case of DFE) were 
divided into parallel sub-filters by imposing separately the 
symmetry and antisymmetry conditions on the impulse 
responses of filters by using appropriate and distinct sets of 
linear constraints. The purpose of this is to obtain a new 
structure that gives better performance than the conventional 
structure. Multi-splitting resulted in MS-LTE and MS-DFE. 
The algorithms used in these new structure and MS-LMS 
and MS-RLS algorithms were used to update the tap 
coefficients of both MS-LTE and MS-DFE. In both types of 
equalizers (DFE & LTE) the MS-LMS gave better result 
than the standard LMS algorithm. On the other hand, MS-
RLS did not give any improvement over standard RLS. 
Finally, for the raised cosine channel the same performance 
of DFE-DCT-LMS was obtained using MS-DFE-LMS with 
lower computation complexity. This is valid only for low 
eigenvalue spread. However, this is not the case with LTE. 
Also, the performance of MS-DFE-LMS in which the 
feedback filter wasn’t “splitted” was almost the same as if 
the feedback filter was “splitted”. 
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Fig. 7. Learning curves for different algorithms and χ(R) = 46.8216 

for the same steady state error. 
Fig. 10. Learning curves of MS-DFE-LMS, DFE-DCT-LMS and 

DFE-LMS for the same step size (1/2N) and χ(R) = 46.8216. 
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 Fig. 8. Learning curves for different algorithms and χ(R) = 46.8216 
for the same steady state error. Fig. 11. Learning curves of MS-DFE-LMS and DFE-LMS for step 

size equal (1/2N) and DFE-DCT-LMS for step size equal (1/3N) 
and χ(R) = 46.8216. 
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Fig.12. BER Performance for different algorithms and χ(R)= 
46.8216. 

Fig. 9. Learning curves of MS-DFE-LMS, DFE-DCT-LMS and 
DFE-LMS for the same step size (1/2N) and χ(R) =6.0782.  
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