
A Configurable Platform for Simulating Multiprocessor
Based System-on-Chip

Muhammad Usman Ilyas§

Department of Computer Science, Lahore University of Management Sciences, Lahore 54792, Pakistan
Email: muilyas@lums.edu.pk

Syed Ali Khayam§

Department of Electrical & Computer Engineering, Michigan State University, East Lansing, MI 48824, USA

Muhammad Omer Suleman§
Computing Laboratory, Oxford University, Oxford OX1 3DQ, United Kingdom

Shahid Masud

Department of Computer Science, Lahore University of Management Sciences, Lahore 54792, Pakistan

§ These authors were previously at AVAZ Networks, Software Technology Park, Constitution Avenue, Islamabad, Pakistan

Abstract – This paper presents a method to create a model for
simulating the top-level system design of System-on-Chip
using a sequential language. The model constitutes a cycle
accurate simulation of the system under test at the required
level of abstraction. The need for such a configurable platform
arises during the initial system level design phase. The
approach described in the paper has been successfully applied
in the system level verification of a commercial media
processor where the primary application is in VoIP media
gateways. The implementation is primarily focused on
monitoring and verification of inter-processor communication
(IPC) among processing engines in the media processor.

I. Introduction

For years now verification teams of large projects have
been struggling to keep up with the increasing gate count of
complex ASICs. Project managers need to allocate more
and more time to verification and testing phase in the design
cycle. The complexity of System-on-Chip (SOC) is now
well above ten million gates [1]. The requirement of
extensive simulation and testing for this kind of gate
complexity has led to a scheme whereby complex hardware
modules of the system are replaced with simplified Bus
Functional Models (BFM) during verification [2].

The verification and testing of SOC designs takes up a

significant fraction of product development cycle. The
designs have to be simulated and tested at different levels at
different stages of development. First the design is tested
functionally during the initial system level design stage and
later a more detailed testing is done at register transfer level
using the RTL code. Simulations at both levels of detail are
traditionally implemented in Hardware Description
Languages (HDL) [3].

II. Traditional Simulation Techniques

The verification of complex SOC designs is done using a

combination of RTL and high-level behavior description in
an HDL such as Verilog or VHDL. Traditionally both the
high-level system design as well as the low-level register
transfer level testing is done using models implemented in
HDL [4]. However, testing using HDL models has
following two major disadvantages:
a. An HDL simulation executes at a much slower rate
compared to an equivalent piece of code in a sequential
language that is functionally identical, and
b. Additional cost of the HDL software tools and the
computer platforms required to execute them is significant.

The work presented in this paper addresses both these
issue through the replacement of high-level system
components by their respective BFM. These functional
models not only speed-up the design cycle by orders of
magnitude but result in significant reduction in the overall
design cost. The rest of the paper is organized as follows:
Section III outlines the development of the BFM approach
for SOC functional testing. Section IV discusses the
application of this approach in a VoIP media multiprocessor
SOC development. Section V presents the results followed
by conclusions.

III. Outline of the Model

An alternative to using detailed RTL code implemented
in HDL is the use of models implemented in sequential
languages [5, 6]. This section describes how the BFM
model was successfully implemented in a sequential
language (Visual C++). Listed below is a list of features of
the model.

A. Parallelism

Since the model has been implemented in a sequential
language, explicit provisions had to be made in the code to
ensure the simulation of a parallel execution. The details are
given later in the paper.

B. Cycle Accuracy

All events and changes in values of variables in the
model are synchronized with the simulator’s global clock.
The execution of the model is also timed with the global
clock.

C. Component Mapping

As explained above, the mapping of components is very
straightforward for most designs. Figure 1 depicts a simple
mapping scheme. The white boxes represent modules and
gray boxes represent the classes to which they are mapped.
The details of correspondence between specific HDL-types
to classes in C++ are given below:

Inputs

Inputs

Output

Fig. 1: Simple module to class mapping

i. Module to Class Mapping

Each instance of a module is directly mapped to an
object, such as in figure 1. Since the model is applied at the
system-level, it can be assumed that the inputs and outputs
of the modules are registered. The inputs and outputs of
each module instantiated in the model change
synchronously with the system clock. In designs where this
is not the case; an example is shown in figure 2, the
boundaries of the classes are aligned with the boundary of
clustered groups of modules all of whose input and output
ports are registered. Figure 3 shows the boundaries of the
classes in the corrected model. This limitation is due to the
reason that data between classes can only be exchanged
between clock cycles.

Inputs

Inputs

Output

Fig. 2: Incorrect module to class mapping

Inputs

Inputs

Output

Fig. 3: Corrected module to class mapping

ii. Registers and Memories

Registers are simply modeled as pairs of variables. One
variable contains the actual value of the register that is
visible to all modules for reading. The other variable is a
shadow variable and represents the value at the register’s
input port at the clock edge. In case of a pipeline register,
the register variable is replaced by its corresponding
shadow variable every clock cycle. In case of a register with
a write-enable signal, there is an additional condition that
the write-enable signal be asserted.

Similarly, memories are modeled as pairs of memory
arrays and corresponding shadow arrays. The update
mechanism of the memory array is similar to that of the
register variable.

iii. Combinational Logic

The modeling of modules containing combinational
logic is similar to that of registers with one difference. The
input to the register variable is preceded by a logical
expression the result of which is then fed to the input of the
register. The code sequence in figure 4 depicts a module
consisting of a combinational logic circuit with a registered
output.

Inputs

Outputs

Fig. 4: Schematic of a mapable combinational
logic module.

iv. Finite State Machines

Finite State Machines (FSM) have been modeled by a
switch statement in C++ and a register variable in which to
store the current state of the FSM. Depending on the type of
FSM, the model may contain a second register variable to
store the “next state”.

IV. Application in the Development of VoIP Media

Processor VZM-1000

The modeling approach described in this paper was
successfully applied to the verification and testing of the
AVAZ Networks VZM-1000 Media Gateway processor.
This SOC consists of a number of RISC Processing
Elements (PE). Each element is capable of receiving
messages from other PEs and executing tasks accordingly.
The communication and synchronization of tasks on PEs is
performed by a complex IPC network. The IPC network is
dedicated to the dispatching, decoding and routing of
messages between the processing elements. The purpose of
the simulator was to verify the proprietary network
protocols used in it. The model was implemented using
C++. Figure 5 depicts a screenshot of the Graphical User
Interface (GUI) showing the state of each PE in the system.

Fig. 5: This figure shows the GUI of the system-level
simulator for the Media Processor

 Figure 6 shows a screenshot of another window of the
verification application. This window shows the schedule
of the tasks dispatched over the IPC network.

Fig. 6: This figure shows the system state of the
simulator during execution

V. Results

For the purpose of comparison, the IPC network was also
implemented in Verilog HDL. The VZM-1000 has now
been implemented as an ASIC in 0.13µ technology. The
IPC network on the processor is performing precisely as
simulated. Some observations from the performance of
BFM approach are presented below:

A. Code Complexity

The level of complexity of the source code of RTL (in

HDL) as well as BFM models (in C++) was approximately
the same. This was achieved by implementing functionality
at the same levels of abstraction.

B. Lower Execution Time

The C++ model achieves a considerable improvement in
speed and flexibility over the Verilog HDL model. The C++
model of the system executes approximately two orders of
magnitude faster than the Verilog HDL model. Both models
were described in the system at the same level of
abstraction and were tested using an identical set of input
vectors [7, 8].

C. Shorter Time-to-Market

The reduction in time taken for the initial design
iterations resulted in improving the time-to-market of the
design from 18 months to about 10 months.

VI. Conclusions

The implementation results show that sequential
languages such as C and C++ readily lend themselves to
replace HDLs as the dominant design verification tool
during the initial system-level design phase. The detailed
register-transfer level verification should be performed on
the frozen RTL that is used for synthesis.

However, using the sequential language model approach

at different stages of the design phase has its drawbacks.
The foremost among them is the fact that RTL description
of the design is the input to the synthesis tool. Therefore the
low-level HDL model of the design has to be implemented
in a complete design in all cases. The sequential language
coding may result in extra effort on the part of designers.

Acknowledgements

The work presented in this paper was done with the help
of Dr. Shoab Ahmed Khan of AVAZ Networks. We are also
grateful to our colleagues at AVAZ Networks for their
cooperation.

References

[1] Keith Westgate and Don McInnis, “Cycle-based
simulation”, http://www.quickturn.com/tech/cbs.htm on
December 19th, 2002.
[2] Patrick A. McCabe, “VHDL-based system simulation
and performance measurement”, VHDL International
Users’ Forum Meeting, May, 1994, Oakland, CA USA.
[3] Namseung Kim, Hoon Choi, Seungjong Lee,
Seungwang Lee, In-Cheol Park and Chong-Min Kyung ,
“Virtual chip: Making functional models work on real target
systems”, 35th ACM DAC98 , June, 1998, San Francisco,
CA USA.
[4] Luc Semeria, Andrew Seawright, Renu Mehra, Daniel
Ng, Arjuna Ekanayake and Barry Pangrle, “RTL C-based
methodology for designing and verifying a multi-threaded
processor”, DAC 2002, June 10-14, 2002, New Orleans,
Louisiana, USA.
[5] Moon Gyung Kim, Byung In Moon, Sang Jun An, Dong
Ryul Ryu, and Yong Surk Lee, “Implementation of a
cycle-based simulator for the design of a processor core”,
IEEE Asia-Pacific ASIC conference (AP-ASIC), 1999.
[6] Namseung Kim, Hoon Choi, Seungjong Lee,
Seungwang Lee, In-Cheol Park and Chong-Min Kyung,
“Virtual Chip: Making Functional Models Work On Real
Target Systems”, 35th ACM DAC98, June, 1998, San
Francisco, CA USA.
[7] H. Al-Asaad, D. Van Campenhout, J. P. Hayes, T.
Mudge and R. B. Brown, “High-level design verification of
microprocessors via error modeling”, Proceecdings IEEE
International Workshop on High Level Design Validation
and Test, Nov. 1997, pp. 194-201.
[8] Yufeng Luo, Tjahjadi Wongsonegoro and Adnan Aziz,
“Hybrid Techniques for Fast Functional Simulation”, 35th
ACM DAC98, June, 1998, San Francisco, CA USA.

	Home:
	Top:

