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Abstract— Quasi-regularity is a code uniformity property that
was defined for trellis codes to simplify performance evaluation.
In the case of Space-time trellis codes over rapid fading channels,
it was assumed, but not proven, that most codes in the literature
are quasi-regular. In this paper, the definition of quasi-regularity
of trellis codes is extended to ST trellis codes for rapid fading
channels. This enables simplified performance evaluation using
N-states only. Moreover, simulation and upper-bound examples
of quasi-regular and non-quasi-regular codes are presented.

I. INTRODUCTION

Space-time (ST) trellis codes (first introduced in their
present form by Tarokh et al in [1]) rely on the idea of
combining multiple transmit antennas with trellis-coded mod-
ulation. This resulted in a coding technique that provides both
high transmission rate and strong error control capabilities for
fading channels. Performance evaluation of ST trellis codes
over rapid fading channels depends on their distance properties
[1]. Simplifying performance evaluation requires that the code
has some uniformity properties, such as quasi-regularity [2].

In this paper, the performance evaluation of ST trellis codes
over rapid fading channels is presented. After presenting the
quasi-regularity for trellis codes, we extend the definition to
ST trellis codes. Finally, we demonstrate the performance of
quasi-regular and non-quasi-regular codes.

II. SYSTEM MODEL

A typical ST trellis encoder is shown in Fig 1, where a
convolutional encoder takes k input bits and encodes them to
n x n coded bits. Then these bits are divided into n sets, each
consisting of n bits. Every n bits set is then mapped onto a
point from a 2™-ary signal set. Finally, the resulting n symbols
are modulated and transmitted at the same time instance and
at the same frequency. The decoder consists of m receive
antennas passing the received signals to m demodulators then
to a maximal-ratio combiner and a Viterbi decoder.

In the following we present, briefly, the performance of ST
trellis codes over a rapid fading channel. The received signal
7] at the j'" antenna at time ¢ is a noisy superposition of all
transmitted symbols over all transmit antennas and is given
by:
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where 7! is an AWGN modelled as independent samples of
a zero-mean complex Gaussian random process with variance

Ny/2 per dimension. The coefficient ¢; ;(¢) is the path gain
from the i*" transmit antenna to the j*" receive antenna and
¢t is the transmitted symbol from the ‘" transmit antenna at
time t.
At the receiver side, the Viterbi decoder computes a branch
metric defined by the following:
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Consider a rapid fading channel with independent fade
coefficients (i.e. fade coefficients change independently, with
time, from one fade coefficient to another). Define C; as a
codeword that has been transmitted over [ time intervals and
was erroneously decoded as C; where:
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Here, [ is the length of the sequence in time and n is the
number of transmit antennas, resulting in a total of n x [
symbols in the codeword C;.

The pairwise error probability of deciding C; in favor of
C, fora rapid fading channel, assuming maximum likelihood
decoding, is upper bounded by [1]:
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where © denote the set of time instances such that |c;—¢&;| # 0,
and

n
o — &> = |ci — “4)
=1

It can be seen from equation (3) that in order to minimize
the pairwise symbol error probability of space-time trellis
codes over rapid fading channels, two main criteria must be
maximized [1]:

o The Distance Criterion: The symbol differences between
codewords c; and ¢; should be maximized. When two
codes have the same distance properties, the next criterion
distinguishs them.

e The Product Criterion: The minimum of the following
product should also be maximized:
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Fig. 1.

III. DISTANCE SPECTRUM

One can investigate that there are many codes having the
same minimum symbol-differences and minimum product-
distance properties. Yet, these codes have different perfor-
mance capabilities. For such codes, performance depends on
higher product distances (not just the minimum) and the multi-
plicities of those paths (i.e. the number of paths with the same
distance). Expanding the distance table to all distances and
calculating their multiplicities yields the distance spectrum.

This can be seen in the bit error probability for a general
trellis code, which is given by [3]:
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where T'(D,I) is the transfer function of the error state
diagram which enumerates all possible error sequences and
is a function of the distance D and input bits /. The transfer
function can be calculated from the distance spectrum.
Zummo and Al-Semari in [4] introduced a tightening con-

stant to (5):
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where L is the cardinality of the minimum set of time instances

in which the codewords ¢; = c;c ... c} are different from the
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, tev
4N0+ES|Ct*ét|2 V}

@min = Min {

In order to calculate the distance spectrum of a general trel-
lis code, one must calculate the product distance between all
possible paths between any two states. Biglieri [5] described
a general method that uses an expanded set of N? states.
Needless to say that this method is very difficult for codes with
relatively large number of states. Many researchers explored
symmetries of certain trellis codes to reduce the number of
states needed to calculate the distance spectrum without loss
of generality (see for example [2], [6], [7] and [8]). In all these

General block diagram of a space-time trellis encoder

papers, it has been proven that the code symmetries enable to
calculate the product distance between all possible paths and
the all-zero path only [9].

IV. QUASI-REGULARITY OF ST TRELLIS CODES

One such symmetry is quasi-regularity introduced by
Rouanne and Costello [2]. In this approach, the Euclidian
distances between output symbols are found as polynomials of
error vector labels. If a code is quasi-regular, then its distance
spectrum can be calculated assuming the all-zero path being
transmitted.

Let 0 and & be two states in the code trellis (the notations
here follow those of Benedetto et al [9]), and e = eg, ..., ek
be a vector representing a binary (k- 1)-tuple, called the error
vector. The distance polynomial P, s ¢(D) is defined as:

Pa,&,e(D) _ Zp(a|0)Dd2[S(a)’ s(ade)] (7
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where p(a|o) is the probability that the binary label vec-
tor a labels a transition originating from the state o, and
d?[s(a),s(a @ e)] is the squared Euclidean distance between
signals s(a) (originating from o) and signals s(a @ e) (origi-
nating from &), which are labelled by two binary (k-+1)-tuples
which differ by e. The summation in (7) is extended over all
vectors a labelling transitions originating from o.
A trellis scheme is said to be quasi-regular if [2]:

1) its encoder is linear,
2) for all e and for all pairs of states (o;,d;) and (o;,5;)

Pai,cfhe(D):Paj,frpe(D) (8)

To verify condition (2), each pair of states must be consid-
ered and the polynomials for each admissible error vector e
must be constructed.

In the case of space-time trellis codes, it should be noted that
unlike trellis codes, ST trellis codes have more than one output
symbol. Therefore, the labels for the error vectors and for the
output symbols are used n-times (where n is the number of
output antennas). To demonstrate this consider the code of
Fig 2. For the output symbols (2 3), the labels are (10 11),
where the (10) corresponds to the output symbol of the first
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antenna (2) and (11) corresponds to the output symbol of the
second antenna (3).

Example 1: To demonstrate quasi-regularity of ST trellis
codes, we check quasi regularity of the code intruduced by
Tarokh et al [1] shown in Fig 2.

This code can be realized as a linear encoder followed by a
mapper as can be seen from Fig 3. The next step is to verify
the second condition of quasi-regularity definition.

Consider the two states oy and o; and the error vec-
tor e = {0000}. Because the binary labels of state og
(0000,0001,0010,0011) are different from those originating
from state o (0100,0101,0110,0111), the polynomial Py 1 0000
is not defined and we can proceed to the next error vector
e = {0100}. In this case the polynomial is defined because
the set of labels of the signals leaving o is obtained by adding
the error vector e = {0100} to the set of labels leaving state
0o. Therefore the polynomial Py 1 9100 is given by:

Porotoo(D) = p(0000]0) DY’ [5(0000).5(0100)] 4
+p(0011]0) DY 15(0011).5(0111)]
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00 0000 0001 0010 0011
01 0100 0101 0110 O111
02 1000 1001 1010 1011
° 03 1100 1101 1110 1111

Trellis diagram of Tarokh Code [1] and the binary labelling vectors

TABLE I
EUCLIDEAN DISTANCES FOR ERROR VECTORS

error vector
symbol label | 00 01 10 11
0 00 0 &2 &2 482
1 01 0 5% 6% 6%
2 10 0 53 65 63
3 11 0 60 61 60

where Euclidean distances dg and d; are as given in Fig 4.

Then we continue the search for other pairs of states with
the error vector e = {0100} between its labels. We find that
P273}0100 is defined, and:

P27370100(D) _ p(OOOO‘O)Ddﬁ[3(0000),5(0100)]Jr“.

+p(0011|0)Dd2 [s(0011),s(0111)]
— D%
It can be seen that there are no other pairs of states wherze
the error vector e = {0100} is defined, making P00 = D%.
Doing the previous procedure for all possible error vectors

that are defined and all pairs of states, the following distance
polynomials are obtained:

Poooo = 1, Poioo = D%,
Piooo = D1, Prigo = D%,
Pooor = D%, Poion = D%,
Piooy = D%H31 . Py, = D%,
Pooro = D%, Por1o = D% 1,
Pyo10 = D%, Pr11o = D% 1,
Poo11 = D%, Poin1 = D%,

_ o2+s2 _ 1262
Pig11 = D% %1 Piyqq = D?*%

One can check that for all e and for all pairs of states (o, d;)
and (04,05): Py, 5,e(D) = Py, 5, e(D). The two conditions
hold for this code, proving its quasi-regularity.

V. EXAMPLES OF ST TRELLIS CODES AND THEIR
PERFORMANCE

In this section we provide examples of quasi-regular and
non-quasi-regular ST trellis codes and their performance using
both bounds presented previously (bound 1 from equation (5)
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and bound 2 from equation (6)) and using simulation over a
rapid fading channel.

Example 2: Consider the code in Fig 2. It was demon-
strated in example 1 that this code is quasi-regular. Therefore,
bounds 1 & 2 can be applied assuming the all-zero codeword
being transmitted without loss of generality. The quantity
% 7—, can be calculated from the expanded distance
spectrum, and the distance D is evaluated for fading channels
as [10]:
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The results are shown in Fig 5. It is clear from simulation
results that the code is upper bounded by both bounds for the
cases of one and two receive antennas.

Example 3: Consider the code in Fig 6. Investigating the
first condition of quasi-regularity, we find that this code cannot
be realized using a linear encoder, because it requires AND
gates. Furthermore, this code does not abide with the second
condition of quasi-regularity. For example P 3 0100 is defined
for some but not all signals between the two states o5 and o3.

The simulation and upper bounds calculations are shown in
fig 7, which shows that this code is not upper bounded by the
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Fig. 7. Code of Ex. 3 — simulation and upper bound for m=1

tighter bound of equation 6 and hence showing its non-quasi-
regularity.

VI. SUMMARY AND CONCLUSIONS

In this paper, we extended the definition of quasi-regularity
to space-time trellis codes. Examples of quasi-regular and
non-quasi-regular space-time trellis codes were demonstrated.
Moreover, the performance of these codes based on the dis-
tance properties were evaluated and compared with simulation
results.
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