FSM Encoding for Low Power, Reduced Area and Increased Testability using Iterative Algorithms

Faisal Nawaz Khan

 COE, KFUPM
Agenda

- Theory of State Encoding
- State Encoding for Increased Testability
- State Encoding for Reduced Area
- State Encoding for Low Power

FSM Encoding

- To encode p states using k bits, the number of possible assignments are

$$
\frac{\left(2^{k}-1\right)!}{\left(2^{k}-p\right)!k!}
$$

- Encoding governs the mutual dependence of the state variables. Thus effecting the number of literals for next-state functions, their interconnection and inter-dependence.

$$
Y_{1}=f_{1}\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{m}\right)
$$

$$
Y_{1}=f_{1}\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{m}\right)
$$

$$
\begin{aligned}
& Y_{1}=f 1\left(y_{1}, y_{2}, x_{1}, \ldots, x_{m}\right) \\
& Y_{2}=f 2\left(y_{1}, y_{2}, x_{1}, \ldots, x_{m}\right) \\
& Y_{3}=f 3\left(y_{3}, y_{4}, x_{1}, \ldots, x_{m}\right) \\
& Y_{4}=f\left(\begin{array}{l}
\left.y_{3}, y_{4}, x_{1}, \ldots, x_{m}\right)
\end{array}\right.
\end{aligned}
$$

Introductory Example

PS	NS		Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
A	A	D	0	1
B	A	C	0	0
C	C	B	0	0
D	C	A	0	1

Encoding - 1

$$
\begin{aligned}
& Y 1=x^{\prime} y 1+x y 1^{\prime}=f(x, y 1) \\
& Y 2=x^{\prime} y 1+x y 2=f(x, y 1, y 2) \\
& z=x y 2^{\prime}=f(x, y 2)
\end{aligned}
$$

y 1 y 2	Y 1 Y 2		Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
$\mathrm{~A}->00$	00	10	0	1
$\mathrm{~B}->01$	00	11	0	0
C -> 11	11	01	0	0
D -> 10	11	00	0	1

Encoding-2

- Thus, the choice of assignment affects the complexity of the circuit and determines the dependency of the nextstate variables and the overall structure of the machine.

y1y2	Y 1 Y 2		Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
$\mathrm{~A}->00$	00	11	0	1
$\mathrm{~B}->01$	00	10	0	0
C $->10$	10	01	0	0
D -> 11	10	00	0	1

- Thus we need to find out tools in order to derive assignments that result in reduced dependencies among the state variables.
- Such assignments generally yield simpler logic equations and circuits.

Partitions

- State assignment problem can also be viewed as partitioning problem
- A partition consists of blocks of states.
- E.g. in Encoding-1, we have
- $\mathrm{Y} 1=1$ for C and $D ; 0$ for A and B;
- $\mathrm{Y} 2=1$ for B and $C ; 0$ for A and D;
- We say
- Y1 induces a partition $\mathrm{T} 1=\{A, B ; C, D\}$
- Y2 induces a partition $\mathrm{T} 2=\{A, D ; B, C\}$
- In this case,
$\mathrm{T} 1 . \mathrm{T} 2=\pi(0)$
Where $\pi(0)=\{A ; B ; C ; D$ is called 0 -partition.
- The 0 -partition describes that we have successfully assigned a unique code to each state
- Thus, our aim in state encoding is to find set of partitions such that their product results in 0-partition.
- Here ' T ' is a general partition that is induced by a state variable.

Closed Partitions

- Closed partitions are represented with π.
- A partition π is said to be closed if for every two states, S_{i} and S_{j} which are in the same block of π and any input I_{k}, the states $\mathrm{I}_{\mathrm{k}} \mathrm{S}_{\mathrm{i}}$ and $\mathrm{I}_{\mathrm{k}} \mathrm{S}_{\mathrm{j}}$ are in a common block of π.
- For the sample machine shown, the following partitions are closed
$\pi 1=\{\mathrm{AB} ; \mathrm{CD}\}$
$\pi 2=\{\mathrm{AC} ; \mathrm{BD}\}$
- The successor relationship can be

PS	NS		Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
A	A	D	0	1
B	A	C	0	0
C	C	B	0	0
D	C	A	0	1

- Clearly, it can be seen that the knowledge of the present block of the machine and the input is sufficient to determine uniquely the next block.

Closed Partitions

- In other words, we can say that the state variables assigned to blocks of a partition are independent of the remaining state variables.
- For e.g., partition $\pi(3)$ requires 2 state variables, say y1 and y2; the encoding of variables is independent of other variables.

$$
\begin{aligned}
& \pi(0)=\{\mathrm{A} ; \mathrm{B} ; \mathrm{C} ; \mathrm{D} ; \mathrm{E} ; \mathrm{F} ; \mathrm{G} ; \mathrm{H}\} \\
& \pi(1)=\{\mathrm{ABCD} ; \mathrm{EFGH}\} \\
& \pi(2)=\{\mathrm{ADEH} ; \mathrm{BCFG}\} \\
& \pi(3)=\{\mathrm{AD} ; \mathrm{BCFG} ; \mathrm{EH}\} \\
& \pi(4)=\{\mathrm{ADEH} ; \mathrm{BC} ; \mathrm{FG}\} \\
& \pi(5)=\{\mathrm{AD} ; \mathrm{BC} ; \mathrm{EH} ; \mathrm{FG}\} \\
& \pi(6)=\{\mathrm{ABCDEFGH}\}=\pi(\mathrm{I})
\end{aligned}
$$

PS	NS	
	$X=0$	$X=1$
A	H	B
B	F	A
C	G	D
D	E	C
E	A	C
F	C	D
G	B	A
H	D	B

Machine: M2

- M2 has eight states $=>3$ variables are required
- $\pi(5)$ requires 2 state variables.
- We can partition the machine such into two blocks such that predecessor components has two varaibles, say yl and $y 2$, that are assigned to partition $\pi(5)$, while the successor component has a signle varialbe y 3 , which can distinguish the states in the blocks of $\pi(5)$
- To do so, we need to find a partition such that
- $\pi(5) . \mathrm{T}=\pi(0)$

$$
\begin{aligned}
& \pi(0)=\{\mathrm{A} ; \mathrm{B} ; \mathrm{C} ; \mathrm{D} ; \mathrm{E} ; \mathrm{F} ; \mathrm{G} ; \mathrm{H}\} \\
& \pi(1)=\{\mathrm{ABCD} ; \mathrm{EFGH}\} \\
& \pi(2)=\{\mathrm{ADEH} ; \mathrm{BCFG}\} \\
& \pi(3)=\{\mathrm{AD} ; \mathrm{BCFG} ; \mathrm{EH}\} \\
& \pi(4)=\{\mathrm{ADEH} ; \mathrm{BC} ; \mathrm{FG}\} \\
& \pi(5)=\{\mathrm{AD} ; \mathrm{BC} ; \mathrm{EH} ; \mathrm{FG}\} \\
& \pi(6)=\{\mathrm{ABCDEFGH}\}=\pi(\mathrm{I})
\end{aligned}
$$

- A sample partition could be $\{\mathrm{ABEF}$; CDGH $\}$
- Information Flow
- However, maximal reduction in dependency (which is a good measure of area as well) of the state variables would be achieved if we could find three two-blocks closed partitions whose product is 0 -partition.
- Then each state closed partition would be represented with a state variable - which would be independent of other state variables.
- We only have two 2-block partitions $\pi(1)$ and $\pi(2)$.
- So we need to find out partition to fill out the missing information, such that
- $\pi(1) . \pi(2) . \mathrm{T}=\pi(0)$

$$
\begin{aligned}
& \pi(0)=\{\mathrm{A} ; \mathrm{B} ; \mathrm{C} ; \mathrm{D} ; \mathrm{E} ; \mathrm{F} ; \mathrm{G} ; \mathrm{H}\} \\
& \pi(1)=\{\mathrm{ABCD} ; \mathrm{EFGH}\} \\
& \pi(2)=\{\mathrm{ADEH} ; \mathrm{BCFG}\} \\
& \pi(3)=\{\mathrm{AD} ; \mathrm{BCFG} ; \mathrm{EH}\} \\
& \pi(4)=\{\mathrm{ADEH} ; \mathrm{BC} ; \mathrm{FG}\} \\
& \pi(5)=\{\mathrm{AD} ; \mathrm{BC} ; \mathrm{EH} ; \mathrm{FG}\} \\
& \pi(6)=\{\mathrm{ABCDEFGH}\}=\pi(\mathrm{I})
\end{aligned}
$$

- Let $T=\{A B G H ; C D E F\}$
- Then
- y 1 is assigned to $\pi(0)$
- y 2 is assigned to $\pi(1)$
- y3 is assigned to T
- Now, y1 and y2, that are assigned to closed partitions are clearly self-dependent, while y 3 , which is assigned to T , will be a function of external inputs and al three state variables.
- This is proved with the logical equations that are derived from the encoding.

$$
\begin{gathered}
Y 1=x^{\prime} y 1^{\prime} \\
Y 2=x^{\prime} y 2+x y 2^{\prime} \\
Y 3=x y 3+x^{\prime} y 1^{\prime} y 2 y 3^{\prime}+y 1^{\prime} y 2^{\prime} y 3+x^{\prime} y 1 y 2^{\prime} y 3^{\prime}
\end{gathered}
$$

Parallel/Serial decompositions

- If the product of n closed partitions results in 0partition then the machine can be realized with n parallel components (independent subsets)

$$
\pi(1) . \pi(2) \ldots \pi(n)=\pi(0)
$$

- If the above is not true, we need to incorporate a partition which is not closed. Such a partition result in a machine that is dependant on independent subsets.

$$
\pi(1) . \pi(2) \ldots . T=\pi(0)
$$

Two Implementation for a machine

$$
\begin{gathered}
\pi(1)=\{\mathrm{ABC} ; \mathrm{DEF}\} \\
\pi(2)=\{\mathrm{AE} ; \mathrm{BF} ; \mathrm{CD}\} \\
\pi(1) \cdot \pi(2)=\pi(0)
\end{gathered}
$$

$T(Y 2)=(A E ; B C D F\}$
$\mathrm{T}(\mathrm{Y} 3)=(\mathrm{ACDE} ; \mathrm{BF}\}$

PS	NS				
	00	01	11	10	
A	A	C	D	F	0
B	C	B	F	E	0
C	A	B	F	D	0
D	E	F	B	C	0
E	E	D	C	B	0
F	D	F	B	A	1

- $\mathrm{T}(\mathrm{Y} 2) \cdot \mathrm{T}(\mathrm{Y} 3)=\pi(2)$
- $\pi(1) \cdot \mathrm{T}(\mathrm{Y} 2) \cdot \mathrm{T}(\mathrm{Y} 3)=\pi(0)$

Implementation-1

- Consider a parallel decomposition of a machine

$$
\begin{gathered}
\pi(1) \pi(2)=\pi(0) \\
Y_{1}=f\left(x_{1}, y_{1}\right) \\
Y_{2}=f\left(x_{1}, x_{2}, y_{2}, y_{3}\right) \\
Y_{3}=f\left(x_{1}, x_{2}, y_{2}, y_{3}\right)
\end{gathered}
$$

- 30 Diodes (gates)

Implementation-2

- The same machine can be implemented as

$$
\begin{gathered}
\pi(1) \mathrm{T}\left(Y_{2}\right) \mathrm{T}\left(\mathrm{Y}_{3}\right)=\pi(0) \\
Y_{1}=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \\
\mathrm{Y}_{2}=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{3}\right) \\
\mathrm{Y}_{3}=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}\right)
\end{gathered}
$$

- 20 Diodes (gates)
- Partitions $T(Y 2)$ and $T(Y 3)$ are cross dependant.
- In implementation-1, we have two closed partitions. However, in implementation-2, we have only 1.
- We see
- That next block for Partition T(Y2) lie in partition T(T3) and vice versa
- $\mathrm{T}(\mathrm{Y} 2) . \mathrm{T}(\mathrm{Y} 3)$ results in a closed partition - and they should be since together they are independent of the rest and form a self-dependant subset for the machine.
- Thus, we need to have a more general tool for evaluating such cross dependencies

Partition Pairs

- Partition Pair is a set of two partitions such that they are cross dependant.
- (T, T^{\prime}) are said to be partition pairs if for any two states in any block in T , the next state for both lie in some block of T'.
- Thus T' consists of all the successor blocks implied by T.
- A closed partition can now be thought of as a special case for a partition pair such that $\mathrm{T}^{\prime}=\mathrm{T}$.

Partial Ordering on Partition Pairs

- ($\left.\mathrm{T} 1, \mathrm{~T} 1^{\prime}\right)$ and $\left(\mathrm{T} 2, \mathrm{~T} 2^{\prime}\right)$ are partition pairs then $\left(\mathrm{T} 1+\mathrm{T} 2, \mathrm{~T} 1^{\prime}+\mathrm{T} 2^{\prime}\right)$ and (T1.T2, T1'. T2') are also partition pairs.
- Intuitively, if two states, Si and Sj are in the same block of T1.T2, then they must also be in the same blocks of T1 and T2. Thus (T1.T2, T1'.T2') is a partition pair.
- Similar observation can also be derived for considering (T1+T2, $\mathrm{T} 1^{\prime}+\mathrm{T} 2^{\prime}$) as a partition pair.
- We say that ($\mathrm{T} 1+\mathrm{T} 2, \mathrm{~T} 1^{\prime}+\mathrm{T} 2^{\prime}$) is the least upper bound (lub) for partition pairs (T1, T1') and (T2, T2').
- Similarly, (T1.T2, T1’. T2') is the greatest lower bound (glb) for partition pairs (T1, T1') and (T2, T2').

$M\left(T^{\prime}\right)$ and $m(T)$

- $M\left(T^{\prime}\right)=\Sigma T_{i}$, where the sum is over all T_{i} such that ($\left.T i, T^{\prime}\right)$ is a partition pair.
- $\quad \mathrm{M}\left(\mathrm{T}^{\prime}\right)$ is the largest partition the successors of whose blocks are contained in the blocks of T'.
- $M\left(T^{\prime}\right)$ can be said as lub of all $T i$ such that $\left(T i, T^{\prime}\right)$ is a partition pair.
- $m(T)=\pi$. Ti', where the product is over all Ti' such that (T, Ti') is a partition pair
- $m(T)$ is the smallest partition containing all the successors of the blocks of T .
- $m(T)$ can be said as glb of all Ti' such that (T, Ti') is a partition pair.

PS	NS				z
	00	01	11	10	
A	C	A	D	B	0
B	E	C	B	D	0
C	C	D	C	E	0
D	E	A	D	B	0
E	E	D	C	E	1

- Let $T_{a b}$ be the partition that includes a
$m\left(T_{A B}\right)=\{A C E, B D\}=T_{1}^{\prime}$
$m\left(T_{A C}\right)=m\left(T_{D E}\right)=\{A C D, B E\}=T_{2}$ $m\left(T_{A D}\right)=m\left(T_{C E}\right)=\{A ; B ; C E ; D\}=T_{3}$ $m\left(T_{A E}\right)=m\left(T_{C D}\right)=\pi(I)$
$m\left(T_{B C}\right)=m\left(T_{B E}\right)=\{A ; B C D E\}=T_{4}$ $m\left(T_{\text {BD }}\right)=\{A C ; B D ; E\}=T_{5}^{\prime}$ block (ab) and leaves all other states in separate blocks. Then m (Tab) is the smallest partition containing the blocks implied by the identification of (ab). (Tab, m (Tab)) is a partition pair.
- In other words m (Tab) represents smallest partition (maximum amount of information) such that the next states of partition Tab are contained in it.
- $m\left(T_{A B}\right)=\{A C E, B D\}=T_{1}$
- $m\left(T_{A C}\right)=m\left(T_{D E}\right)=\{A C D, B E\}=T^{\prime}{ }_{2}$
- $m\left(T_{A D}\right)=m\left(T_{C E}\right)=\{A ; B ; C E ; D\}=T_{3}^{\prime}$
- $m\left(T_{A E}\right)=m\left(T_{C D}\right)=\pi(I)$
- $m\left(T_{B C}\right)=m\left(T_{B E}\right)=\{A ; B C D E\}=T_{4}^{\prime}$
- $m\left(T_{B D}\right)=\{A C ; B D ; E\}=T_{5}^{\prime}$
$-M\left(T_{1}^{\prime}\right)=T_{A B}+T_{A D}+T_{C D}+T_{B D}=\{A B D ; C E\}=T_{1}$
- In other words, $M\left(T_{1}{ }^{\prime}\right)$ is the largest partition from which the block of T_{1} containing the next state of the machine can be determined.
- $M\left(T^{\prime}\right)$ represents least amount of information such that ($M\left(T^{\prime}\right)$, T') can be partition pair.

Information Flow Inequality

- If the next state variable, Yi, can be computed from the external inputs and a subset P_{i} of the variables then

$$
\pi T(y j) \leq M[T(y i)]
$$

Where the product is taken over all T (yj), such that yj is contained in the subset Pi.

- Verbally

Smallest partition (Max. no. of blocks) that contains the next state
induced by variable(s) $\mathrm{Yj} \leq$ Largest partition (least no. of blocks) containing the next state of partition induced by Yi

