FSM Encoding for Low Power, Reduced Area and Increased Testability using Iterative Algorithms

Faisal Nawaz Khan COE, KFUPM

Agenda

- Theory of State Encoding
- State Encoding for Increased Testability
- State Encoding for Reduced Area
- State Encoding for Low Power

FSM Encoding

To encode p states using k bits, the number of possible assignments are

$$\frac{(2^k - 1)!}{(2^k - p)!k!}$$

 Encoding governs the mutual dependence of the state variables. Thus effecting the number of literals for next-state functions, their interconnection and inter-dependence.

$$Y_1 = f_1(y_1, ..., y_n, x_1, ..., x_m)$$

$$Y_{1} = f1 (y_{1}, y_{2}, x_{1}, ..., x_{m})$$

$$Y_{2} = f2 (y_{1}, y_{2}, x_{1}, ..., x_{m})$$

$$Y_{3} = f3 (y_{3}, y_{4}, x_{1}, ..., x_{m})$$

$$Y_{4} = f4 (y_{3}, y_{4}, x_{1}, ..., x_{m})$$

 $Y_1 = f_1(y_1, ..., y_n, x_1, ..., x_m)$

Introductory Example

PS	NS		Z	
	X=0	X=1	X=0	X=1
A	А	D	0	1
В	А	С	0	0
С	С	В	0	0
D	С	А	0	1

Encoding - 1

$$Y1 = x' y1 + xy1' = f(x, y1)$$

$$Y2 = x' y1 + xy2 = f(x, y1, y2)$$

$$z = xy2' = f(x, y2)$$

y1y2	Y1Y2		Z	
	X=0	X=1	X=0	X=1
A -> 00	00	10	0	1
B -> 01	00	11	0	0
C -> 11	11	01	0	0
D -> 10	11	00	0	1

Encoding-2

$$Y1 = x' y1 + xy1' = f(x, y1)$$

$$Y2 = xy2' = f(x, y2)$$

$$z = xy1' y2' + xy1y2 = f(x, y1, y2)$$

y1y2	Y1Y2		Z	
	X=0	X=1	X=0	X=1
A -> 00	00	11	0	1
B -> 01	00	10	0	0
C -> 10	10	01	0	0
D -> 11	10	00	0	1

- Thus, the choice of assignment affects the complexity of the circuit and determines the dependency of the nextstate variables and the overall structure of the machine.
- Thus we need to find out tools in order to derive assignments that result in reduced dependencies among the state variables.
- Such assignments generally yield simpler logic equations and circuits.

Partitions

- State assignment problem can also be viewed as partitioning problem
- A partition consists of blocks of states.
- E.g. in Encoding-1, we have
 - $\Box \quad Y1 = 1 \text{ for } C \text{ and } D; 0 \text{ for } A \text{ and } B;$
 - Y2 = 1 for *B* and *C*; 0 for *A* and *D*;
- We say
 - Y1 induces a partition $T1 = \{A, B; C, D\}$
 - Y2 induces a partition $T2 = \{A, D; B, C\}$
- In this case,

```
T1. T2 = \pi(0)
```

Where $\pi(0) = \{A; B; C; D\}$ is called 0-partition.

- The 0-partition describes that we have successfully assigned a unique code to each state
- Thus, our aim in state encoding is to find set of partitions such that their product results in 0-partition.
- Here 'T' is a general partition that is induced by a state variable.

Closed Partitions

- Closed partitions are represented with π.
- A partition π is said to be closed if for every two states, S_i and S_j which are in the same block of π and any input I_k, the states I_kS_i and I_kS_j are in a common block of π.
- For the sample machine shown, the following partitions are closed
 π1 = {AB; CD}
 π2 = {AC; BD}
- The successor relationship can be described using a graph.
- Clearly, it can be seen that the knowledge of the present block of the machine and the input is sufficient to determine uniquely the next block.

PS	NS		Z	
	X=0	X=1	X=0	X=1
A	А	D	0	1
В	А	С	0	0
С	С	В	0	0
D	С	А	0	1

Closed Partitions

- In other words, we can say that the state variables assigned to blocks of a partition are independent of the remaining state variables.
- For e.g., partition π(3) requires 2 state variables, say y1 and y2; the encoding of variables is independent of other variables.

```
\pi (0) = \{A; B; C; D; E; F; G; H\}

\pi (1) = \{ABCD; EFGH\}

\pi (2) = \{ADEH; BCFG\}

\pi (3) = \{AD; BCFG; EH\}

\pi (4) = \{ADEH; BC; FG\}

\pi (5) = \{AD; BC; EH; FG\}

\pi (6) = \{ABCDEFGH\} = \pi (I)
```

PS	NS			
	X=0	X=1		
А	Н	В		
В	F	А		
С	G	D		
D	E	С		
E	А	С		
F	С	D		
G	В	А		
Н	D	В		

Machine: M2

- M2 has eight states => 3 variables are required
- π (5) requires 2 state variables.
- We can partition the machine such into two blocks such that predecessor components has two varaibles, say y1 and y2, that are assigned to partition π(5), while the successor component has a signle varialbe y3, which can distinguish the states in the blocks of π(5)
- To do so, we need to find a partition such that
- $\pi(5)$. T = $\pi(0)$
- A sample partition could be {ABEF; CDGH}
- Information Flow

- $\pi (0) = \{A; B; C; D; E; F; G; H\}$ $\pi (1) = \{ABCD; EFGH\}$ $\pi (2) = \{ADEH; BCFG\}$ $\pi (3) = \{AD; BCFG; EH\}$ $\pi (4) = \{ADEH; BC; FG\}$ $\pi (5) = \{AD; BC; EH; FG\}$
 - π (6) = { ABCDEFGH} = π (I)

- However, maximal reduction in dependency (which is a good measure of area as well) of the state variables would be achieved if we could find three two-blocks closed partitions whose product is 0-partition.
- Then each state closed partition would be represented with a state variable – which would be independent of other state variables.
- We only have two 2-block partitions $\pi(1)$ and $\pi(2)$.
- So we need to find out partition to fill out the missing information, such that
- $\pi(1)$. $\pi(2)$. T = $\pi(0)$

- $\pi (0) = \{A; B; C; D; E; F; G; H\}$ $\pi (1) = \{ABCD; EFGH\}$ $\pi (2) = \{ADEH; BCFG\}$ $\pi (3) = \{AD; BCFG; EH\}$ $\pi (4) = \{ADEH; BC; FG\}$ $\pi (5) = \{AD; BC; EH; FG\}$
 - π (6) = { ABCDEFGH} = π (I)

- Let T = {ABGH; CDEF}
- Then
 - y1 is assigned to $\pi(0)$
 - y2 is assigned to $\pi(1)$
 - y3 is assigned to T
- Now, y1 and y2, that are assigned to closed partitions are clearly self-dependent, while y3, which is assigned to T, will be a function of external inputs and al three state variables.
- This is proved with the logical equations that are derived from the encoding.

$$Y1 = x'y1'$$

$$Y2 = x'y2 + xy2'$$

$$Y3=xy3 + x'y1'y2y3' + y1'y2'y3 + x'y1y2'y3'$$

Parallel/Serial decompositions

 If the product of n closed partitions results in 0partition then the machine can be realized with n parallel components (independent subsets)

$$π$$
 (1). $π$ (2) ... $π$ (n) = $π$ (0)

If the above is not true, we need to incorporate a partition which is not closed. Such a partition result in a machine that is dependent on independent subsets.

$$π$$
 (1). $π$ (2).... $T = π$ (0)

Two Implementation for a machine

$$\pi$$
 (1) = {ABC; DEF}
 π (2) = {AE; BF; CD}
 π (1). π (2) = π (0)

PS	NS				Z
	00	01	11	10	
A	А	С	D	F	0
В	С	В	F	E	0
С	А	В	F	D	0
D	Е	F	В	С	0
E	Е	D	С	В	0
F	D	F	В	А	1

$$T(Y2) = (AE; BCDF)$$

T(Y3) = (ACDE; BF)

 π (1) .T(Y2).T(Y3) = π (0)

 $T(Y2).T(Y3) = \pi (2)$

Implementation - 1

 Consider a parallel decomposition of a machine

$$\pi (1) \pi (2) = \pi (0)$$

$$Y_{1} = f (x_{1}, y_{1})$$

$$Y_{2} = f (x_{1}, x_{2}, y_{2}, y_{3})$$

$$Y_{3} = f (x_{1}, x_{2}, y_{2}, y_{3})$$

30 Diodes (gates)

Implementation - 2

- The same machine can be implemented as $\pi (1) T (Y_2) T(Y_3) = \pi (0)$ $Y_1 = f (x_1, y_1)$ $Y_2 = f (x_1, x_2, y_3)$ $Y_3 = f (x_1, x_2, y_2)$
- 20 Diodes (gates)
- Partitions T (Y2) and T(Y3) are cross dependent.
- In implementation-1, we have two closed partitions. However, in implementation-2, we have only 1.
- We see
 - That next block for Partition T(Y2) lie in partition T(T3) and vice versa
 - T(Y2).T(Y3) results in a closed partition and they should be since together they are independent of the rest and form a self-dependant subset for the machine.
- Thus, we need to have a more general tool for evaluating such cross dependencies

Partition Pairs

- Partition Pair is a set of two partitions such that they are cross dependant.
- (T, T') are said to be partition pairs if for any two states in any block in T, the next state for both lie in some block of T'.
- Thus T' consists of all the successor blocks implied by T.
- A closed partition can now be thought of as a special case for a partition pair such that T' = T.

Partial Ordering on Partition Pairs

- (T1, T1') and (T2, T2') are partition pairs then (T1 + T2, T1' + T2') and (T1.T2, T1'.T2') are also partition pairs.
- Intuitively, if two states, Si and Sj are in the same block of T1.T2, then they must also be in the same blocks of T1 and T2. Thus (T1.T2, T1'.T2') is a partition pair.
- Similar observation can also be derived for considering (T1+T2, T1'+T2') as a partition pair.
- We say that (T1 + T2, T1' + T2') is the least upper bound (lub) for partition pairs (T1, T1') and (T2, T2').
- Similarly, (T1.T2, T1'.T2') is the greatest lower bound (glb) for partition pairs (T1, T1') and (T2, T2').

M(T') and m(T)

- M (T') = Σ T_i, where the sum is over all T_i such that (Ti, T') is a partition pair.
- M (T') is the largest partition the successors of whose blocks are contained in the blocks of T'.
- M (T') can be said as lub of all Ti such that (Ti, T') is a partition pair.

- m (T) = π.Ti', where the product is over all Ti' such that (T, Ti') is a partition pair
- m (T) is the smallest partition containing all the successors of the blocks of T.
- m (T) can be said as glb of all Ti' such that (T, Ti') is a partition pair.

PS	NS				Z	
	00	01	11	10		
Α	С	А	D	В	0	
В	E	С	В	D	0	
С	С	D	С	E	0	
D	E	А	D	В	0	
E	E	D	С	E	1	

- m (T_{AB}) = {ACE, BD} = T'₁
- $m(T_{AC}) = m(T_{DE}) = \{ACD, BE\} = T'_2$

• $m(T_{AE}) = m(T_{CD}) = \pi(I)$

•
$$m(T_{BC}) = m(T_{BE}) = {A; BCDE} = T'_{4}$$

m (T_{BD}) = {AC; BD; E} = T'₅

- Let T_{ab} be the partition that includes a block (ab) and leaves all other states in separate blocks. Then m (Tab) is the smallest partition containing the blocks implied by the identification of (ab). (Tab, m (Tab)) is a partition pair.
- In other words m (Tab) represents smallest partition (maximum amount of information) such that the next states of partition Tab are contained

- m (T_{AB}) = {ACE, BD} = T'₁
- m (T_{AC}) = m (T_{DE}) = {ACD, BE} = T'₂
- m (T_{AD}) = m (T_{CE}) = {A; B; CE; D} = T'₃

•
$$m(T_{AE}) = m(T_{CD}) = \pi(I)$$

- m (T_{BC}) = m (T_{BE}) = {A; BCDE} = T'₄
- m (T_{BD}) = {AC; BD; E} = T'₅

• $M(T'_1) = T_{AB} + T_{AD} + T_{CD} + T_{BD} = \{ABD; CE\} = T_1$

- In other words, M (T₁') is the largest partition from which the block of T₁' containing the next state of the machine can be determined.
- M (T') represents least amount of information such that (M(T'), T') can be partition pair.

Information Flow Inequality

If the next state variable, Yi, can be computed from the external inputs and a subset P_i of the variables then

$\pi T (yj) \le M [T (yi)]$

Where the product is taken over all T (yj), such that yj is contained in the subset Pi.

Verbally

Smallest partition (Max. no. of blocks) that contains the next state induced by variable(s) Yj ≤ Largest partition (least no. of blocks) containing the next state of partition induced by Yi