
FSM Encoding for Low Power,
Reduced Area and Increased

Testability using Iterative Algorithms

Faisal Nawaz Khan
COE, KFUPM

Agenda

Theory of State Encoding
State Encoding for Increased Testability
State Encoding for Reduced Area
State Encoding for Low Power

FSM Encoding
To encode p states using k bits, the number of
possible assignments are

Encoding governs the mutual dependence of the
state variables. Thus effecting the number of literals
for next-state functions, their interconnection and
inter-dependence.
Y1 = f1(y1,….,yn, x1, …, xm)
.
.
Y1 = f1(y1,….,yn, x1, …, xm)

!)!2(
)!12(
kpk

k

−
−

Y1 = f1 (y1, y2, x1, …, xm)
Y2 = f2 (y1, y2, x1, …, xm)
Y3 = f3 (y3, y4, x1, …, xm)
Y4 = f4 (y3, y4, x1, …, xm)

Introductory Example

PS NS Z

X=0 X=1 X=0 X=1

A A D 0 1

B A C 0 0

C C B 0 0

D C A 0 1

Encoding - 1

)2,('2
)2,1,(21'2

)1,('11'1

yxfxyz
yyxfxyyxY

yxfxyyxY

==
=+=
=+=

y1y2 Y1Y2
X=0 X=1

Z
X=0 X=1

A -> 00 00 10 0 1

B -> 01 00 11 0 0

C -> 11 11 01 0 0

D -> 10 11 00 0 1

Encoding-2

y1y2 Y1Y2
X=0 X=1

Z
X=0 X=1

A -> 00 00 11 0 1

B -> 01 00 10 0 0

C -> 10 10 01 0 0

D -> 11 10 00 0 1

)2,1,(21'2'1
)2,('22

)1,('11'1

yyxfyxyyxyz
yxfxyY

yxfxyyxY

=+=
==

=+=
• Thus, the choice of

assignment affects the
complexity of the circuit
and determines the
dependency of the next-
state variables and the
overall structure of the
machine.

• Thus we need to find out
tools in order to derive
assignments that result in
reduced dependencies
among the state variables.

• Such assignments generally
yield simpler logic
equations and circuits.

Partitions
State assignment problem can also be viewed as partitioning problem
A partition consists of blocks of states.
E.g. in Encoding-1, we have

Y1 = 1 for C and D; 0 for A and B;
Y2 = 1 for B and C; 0 for A and D;

We say
Y1 induces a partition Τ1 = {A,B; C,D}
Y2 induces a partition Τ2 = {A,D; B,C}

In this case,
Τ1. Τ2 = π(0)
Where π(0) = {A; B; C; D} is called 0-partition.

The 0-partition describes that we have successfully assigned a unique code
to each state
Thus, our aim in state encoding is to find set of partitions such that their
product results in 0-partition.
Here ‘Τ’ is a general partition that is induced by a state variable.

Closed Partitions

Closed partitions are represented
with π.
A partition π is said to be closed if
for every two states, Si and Sj which
are in the same block of π and any
input Ik, the states IkSi and IkSj are in
a common block of π.
For the sample machine shown, the
following partitions are closed
π1 = {AB; CD}
π2 = {AC; BD}
The successor relationship can be
described using a graph.
Clearly, it can be seen that the
knowledge of the present block of the
machine and the input is sufficient to
determine uniquely the next block.

PS NS Z

X=0 X=1 X=0 X=1

A A D 0 1

B A C 0 0

C C B 0 0

D C A 0 1

Closed Partitions
PS NS

X=0 X=1
A H B
B F A
C G D
D E C
E A C
F C D
G B A
H D B

In other words, we can say that the state
variables assigned to blocks of a partition
are independent of the remaining state
variables.
For e.g., partition π(3) requires 2 state
variables, say y1 and y2; the encoding of
variables is independent of other
variables.

π (0) = {A; B; C; D; E; F; G; H}
π (1) = {ABCD; EFGH}
π (2) = {ADEH; BCFG}
π (3) = { AD; BCFG; EH}
π (4) = { ADEH; BC; FG}
π (5) = { AD; BC; EH; FG}
π (6) = { ABCDEFGH} = π (I)

Machine: M2

M2 has eight states => 3 variables are
required
π (5) requires 2 state variables.
We can partition the machine such
into two blocks such that predecessor
components has two varaibles, say y1
and y2, that are assigned to partition
π(5), while the successor component
has a signle varialbe y3, which can
distinguish the states in the blocks of
π(5)
To do so, we need to find a partition
such that
π(5). T = π (0)
A sample partition could be {ABEF;
CDGH}
Information Flow

π (0) = {A; B; C; D; E; F; G; H}
π (1) = {ABCD; EFGH}
π (2) = {ADEH; BCFG}
π (3) = { AD; BCFG; EH}
π (4) = { ADEH; BC; FG}
π (5) = { AD; BC; EH; FG}
π (6) = { ABCDEFGH} = π (I)

However, maximal reduction in
dependency (which is a good
measure of area as well) of the
state variables would be achieved
if we could find three two-blocks
closed partitions whose product is
0-partition.
Then each state closed partition
would be represented with a state
variable – which would be
independent of other state
variables.
We only have two 2-block
partitions π(1) and π(2).
So we need to find out partition to
fill out the missing information,
such that
π(1). π(2) . T = π(0)

π (0) = {A; B; C; D; E; F; G; H}
π (1) = {ABCD; EFGH}
π (2) = {ADEH; BCFG}
π (3) = { AD; BCFG; EH}
π (4) = { ADEH; BC; FG}
π (5) = { AD; BC; EH; FG}
π (6) = { ABCDEFGH} = π (I)

Let T = {ABGH; CDEF}
Then

y1 is assigned to π(0)
y2 is assigned to π(1)
y3 is assigned to T

Now, y1 and y2, that are assigned to closed partitions are clearly
self-dependent, while y3, which is assigned to T, will be a
function of external inputs and al three state variables.
This is proved with the logical equations that are derived from the
encoding.

Y1 = x’y1’
Y2 = x’y2 + xy2’

Y3=xy3 + x’y1’y2y3’ + y1’y2’y3 + x’y1y2’y3’

Parallel/Serial decompositions

If the product of n closed partitions results in 0-
partition then the machine can be realized with n
parallel components (independent subsets)

π (1). π (2) … π (n) = π (0)
If the above is not true, we need to incorporate a
partition which is not closed. Such a partition result
in a machine that is dependant on independent
subsets.

π (1). π (2)…. Τ = π (0)

Two Implementation for a machine

π (1) = {ABC; DEF}
π (2) = {AE; BF; CD}

π (1). π (2) = π (0)

T(Y2) = (AE; BCDF}
T(Y3) = (ACDE; BF}

T(Y2).T(Y3) = π (2)
π (1) .T(Y2).T(Y3) = π (0)

PS NS z
00 01 11 10

A A C D F 0
B C B F E 0
C A B F D 0
D E F B C 0
E E D C B 0
F D F B A 1

Implementation - 1
Consider a parallel
decomposition of a machine

π (1) π (2) = π (0)
Y1 = f (x1, y1)

Y2 = f (x1, x2, y2, y3)
Y3 = f (x1, x2, y2, y3)

30 Diodes (gates)

Implementation - 2
The same machine can be
implemented as

π (1) T (Y2) T(Y3) = π (0)
Y1 = f (x1, y1)

Y2 = f (x1, x2, y3)
Y3 = f (x1, x2, y2)

20 Diodes (gates)

Partitions T (Y2) and T(Y3) are cross dependant.
In implementation-1, we have two closed partitions. However, in
implementation-2, we have only 1.
We see

That next block for Partition T(Y2) lie in partition T(T3) and vice versa
T(Y2).T(Y3) results in a closed partition – and they should be since together they
are independent of the rest and form a self-dependant subset for the machine.

Thus, we need to have a more general tool for evaluating such cross
dependencies

Partition Pairs

Partition Pair is a set of two partitions such that they are
cross dependant.
(T, T’) are said to be partition pairs if for any two states in
any block in T, the next state for both lie in some block of
T’.
Thus T’ consists of all the successor blocks implied by T.
A closed partition can now be thought of as a special
case for a partition pair such that T’ = T.

Partial Ordering on Partition Pairs

(T1, T1’) and (T2, T2’) are partition pairs then (T1 + T2, T1’ + T2’)
and (T1.T2, T1’.T2’) are also partition pairs.

Intuitively, if two states, Si and Sj are in the same block of T1.T2, then
they must also be in the same blocks of T1 and T2. Thus (T1.T2,
T1’.T2’) is a partition pair.

Similar observation can also be derived for considering (T1+T2,
T1’+T2’) as a partition pair.

We say that (T1 + T2, T1’ + T2’) is the least upper bound (lub) for
partition pairs (T1, T1’) and (T2, T2’).

Similarly, (T1.T2, T1’.T2’) is the greatest lower bound (glb) for
partition pairs (T1, T1’) and (T2, T2’).

M(T’) and m(T)

M (T’) = Σ Ti, where the sum is over all Ti such that (Ti, T’) is a
partition pair.
M (T’) is the largest partition the successors of whose blocks are
contained in the blocks of T’.
M (T’) can be said as lub of all Ti such that (Ti, T’) is a partition pair.

m (T) = π.Ti’, where the product is over all Ti’ such that (T, Ti’) is a
partition pair
m (T) is the smallest partition containing all the successors of the
blocks of T.
m (T) can be said as glb of all Ti’ such that (T, Ti’) is a partition pair.

NSPS

00 01 11 10
A C A D B 0
B E C B D 0
C C D C E 0
D E A D B 0
E E D C E 1

z

m (TAB) = {ACE, BD} = T’1
m (TAC) = m (TDE) = {ACD, BE} = T’2
m (TAD) = m (TCE) = {A; B; CE; D} = T’3
m (TAE) = m (TCD) = π (I)
m (TBC) = m (TBE) = {A; BCDE} = T’4
m (TBD) = {AC; BD; E} = T’5

Let Tab be the partition that includes a
block (ab) and leaves all other states
in separate blocks. Then m (Tab) is
the smallest partition containing the
blocks implied by the identification of
(ab). (Tab, m (Tab)) is a partition pair.
In other words m (Tab) represents
smallest partition (maximum amount
of information) such that the next
states of partition Tab are contained
in it.

m (TAB) = {ACE, BD} = T’1
m (TAC) = m (TDE) = {ACD, BE} = T’2
m (TAD) = m (TCE) = {A; B; CE; D} = T’3
m (TAE) = m (TCD) = π (I)
m (TBC) = m (TBE) = {A; BCDE} = T’4
m (TBD) = {AC; BD; E} = T’5

M (T’1) = TAB + TAD + TCD + TBD = {ABD; CE} = T1

In other words, M (T1’) is the largest partition from which the
block of T1’ containing the next state of the machine can be
determined.
M (T’) represents least amount of information such that (M(T’),
T’) can be partition pair.

Information Flow Inequality

If the next state variable, Yi, can be computed from
the external inputs and a subset Pi of the variables
then

π T (yj) ≤ M [T (yi)]
Where the product is taken over all T (yj), such that
yj is contained in the subset Pi.

Verbally
Smallest partition (Max. no. of blocks) that contains the next state

induced by variable(s) Yj ≤ Largest partition (least no. of blocks)
containing the next state of partition induced by Yi

	FSM Encoding for Low Power, Reduced Area and Increased Testability using Iterative Algorithms
	Agenda
	FSM Encoding
	Introductory Example
	Encoding - 1
	Encoding-2
	Partitions
	Closed Partitions
	Closed Partitions
	
	
	
	Parallel/Serial decompositions
	Two Implementation for a machine
	
	Partition Pairs
	Partial Ordering on Partition Pairs
	M(T’) and m(T)
	Information Flow Inequality

