
King Fahd University of Petroleum & Minerals

College of Computer Sciences & Engineering

Department of Computer Engineering

GLOBAL ROUTING

Sadiq M. Sait & Habib Youssef

ICM’95 – December 1995

OUTLINE

1. Introduction

2. Cost Functions and Constraints

3. Routing Regions

4. The Steiner Tree Problem

5. Global Routing by Maze Running

6. Global Routing as an Integer Program

7. Global Routing in TimberWolf

8. Other Approaches

Global Routing

• The accepted practice to routing consists of
adopting a two-step approach:

1. Global routing.

2. Detailed routing.

• The objective of the global routing is to elabo-
rate a routing plan so that each net is assigned
to particular routing regions, while attempting
to optimize a given objective function.

• Then, detailed routing takes each routing re-
gion and, for each net, particular tracks within
that region are assigned to that net.

• Global routing is also known as topological
routing and loose routing.

• Global routing approaches belong to four gen-
eral categories:

(1) sequential approach,

(2) mathematical programming approach,

(3) stochastic iterative approach, and

(4) hierarchical approach.

• Sequential approach: Nets are selected one
at a time in a specific order and routed individ-
ually. If the routing space is updated after the
routing of each net, then the approach is order
dependent, otherwise it is order independent.

• Mathematical programming approach: Global
routing is formulated as a 0-1-integer opti-
mization program, where a 0-1 integer vari-
able is assigned to each net and each possible
routing tree of that net.

• Stochastic iterative approach: Iteratively up-
date current solution by ripping up and rerout-
ing selected nets, until an acceptable assign-
ment of the nets is found.

• Hierarchical approaches:

For the bottom-up approach, grid cells are
clustered into bigger cells until the entire chip
is seen as a supercell. At each level of the
hierarchy, global routing is performed between
the individual cells considered for grouping.

For the top-down approach, the hierarchy pro-
ceeds from super cells to cells, until each cell
is an individual grid cell or a small group of
individual grid cells. The top-down approach
is usually guided by the structure of the design
floorplan.

Global routing is slightly different for different de-
sign styles.

• For the gate-array design style the routing re-
gions consist of horizontal and vertical chan-
nels.

Channels are rectangular regions with pins on
the opposite sides of the region. The avail-
able routing capacities within the channels are
fixed. A feasible global routing solution should
not exceed the channel capacities. Among
possible feasible solutions, the one that op-
timizes the given cost function is selected.

The cost function is usually a function of the
global routes of all nets, and/or function of
overall performance (interconnect delays on the
critical paths).

Since the array has a fixed size and fixed rout-
ing space, the objective of global routing in
this case is to check the feasibility of detailed
routing.

• For the standard-cell design style the routing
regions are horizontal channels with pins at
their top and bottom boundaries.

Global routing consists of assigning nets to
these channels so as to minimize channel con-
gestion and overall connection length. Inter-
channel routing is provided by feedthrough cells
inserted within the cell rows. Here, the chan-
nels do not have pre-fixed capacities. Channels
can be made wider to achieve routability.

• In building-block design style the cells are of
various shapes and sizes. This leads to irreg-
ular routing regions. These routing regions
may be decomposed into horizontal and verti-
cal channels, and sometimes switchboxes (rect-
angular regions with pins on all four sides).
The identification of these routing regions is a
crucial first step to global routing.

Here again, the routing regions do not have
pre-fixed capacities. For both the standard-
cell and building-block layout styles the objec-
tive of global routing is to minimize the re-
quired routing space and overall interconnec-
tion length while ensuring the success of the
following detailed routing step.

Therefore the cost function is a measure of
the overall routing and chip area. Constraints
could be a limit on the maximum number of
tracks per channel and/or constraints on per-
formance.

• An important problem we are faced with in all
design styles is the identification of the short-
est set of routes to connect the pins of indi-
vidual nets (Steiner tree).

• Routing Regions:

Routing regions definition consists of partition-
ing the routing area into a set of non-intersecting
rectangular regions called channels.

• Two types of channels: horizontal and vertical.

• A channel is horizontal (vertical) if and only if
it is parallel to the x- (y-) axis.

• In most cases, horizontal and vertical chan-
nels can touch at T-intersections. The chan-
nel representing the stem of the T is called the
crosspiece and the other is called the base.

• Channel definition and ordering is an essential
part of layout design. It is the knot that ties
placement, global routing, and detailed routing
together.

T-intersection

A

B C

Base channel
(Crossbar of the T)

Crosspiece channel
 (Stem of the T)

Routing Regions Definition

In a building-block layout style, three types of chan-
nel junctions may occur: an L-type, a T-type, and
a +-type.

L-type junctions occur at the corners of the layout
surface. For such junctions, the ordering does not
have an impact on the final detailed routing.

For T-type junctions, the stem channel (cross-
piece) must be routed before the base channel (the
crossbar).

The +-type junctions are more complex and re-
quire the use of switchbox routers. On the other
hand, L-type and T-type channels can be com-
pletely routed using channel routers.

This is of extreme importance since channel routers
are the best and most widely investigated routing
approaches.

Therefore it is advantageous to transform all +-
type junctions into T-type junctions so that a chan-
nel router can be used for the following detailed
routing step.

Coversion of +-type junctions
(Cai and Otten, 1989).

Layout is assumed to have a slicing structure (there
are polynomial time algorithms to convert a gen-
eral layout into a slicing structure).

Slicing structures are preferred topologies because
they can be internally represented using a simple
and flexible data structure (the slicing tree). More-
over, such structures lead to computationally effi-
cient manipulation algorithms.

After converting all cross-junctions into T-channels,
the channel ordering constraints are captured by a
directed graph called the order constraint graph.

Another positive property of slicing structures is
that, a slicing structure is guaranteed to have at
least one conflict-free channel structure, i.e., a
cycle-free order constraint graph.

Criteria for Channel Crossing Conversion:
There are two ways of converting a +-junction
into a T-junction:

(1) vertical conversion where the horizontal chan-
nel is split,

(2) horizontal conversion where the vertical chan-
nel is split.

This conversion must be carefully performed so
as to avoid creating cycles in the order constraint
graph.

Conversion of cross junctions:
(a) Cross junction;

(b) Horizontal conversion;
(c) vertical conversion.

(a) (b) (c)

Conversion of cross-intersections:
(a) A channel configuration;
(b) A cycle-free conversion;

(c) A conversion introducing cycles.

(a) (b) (c)

Order constraint graph:
(a) Channel structure;

(b) Its corresponding order constraint graph.

H

I

B

A

C

E

F

G

D

C

D

G

F

H

A

I

EB

(a) (b)

To minimize the negative side-effects that channel
conversions might have on the wireability of the
layout as a whole, two criteria are used:

(1) Critical path isolation criterion:
The objective of this criterion is to protect the
critical paths of the channel position graphs
from neighboring channels.

Each block-vertex in the horizontal (vertical)
channel position graph is assigned a positive
weight indicating the width (height) of the cor-
responding block.

Also, each channel vertex is assigned a positive
weight indicating the width of the correspond-
ing channel.

The length of the critical path in the verti-
cal (horizontal) position graph is equal to the
height (width) of the design.

The critical path criterion attempts to perform
the conversion in the direction of the critical
path. This is in order to make neighboring
channels perpendicular to the direction of the
critical path as short as possible, thus splitting
them.

Such criterion will also lead to a reduction in
the widths of the channels along the critical
paths, thus, reducing the overall layout size.

Channel Intersection/Floorplan Graph

A B

C D

A vertex
of the channel
intersection
graph

An edge
of the channel
intersection
 graph

Channel Position Graphs

A B

C D

A B

C D

(a) (b)

Illustration of the critical path criterion

Critical path Critical path
c c

a

b

1

21b

2aa

b

(2) Major flow criterion:
Channel conversion is carried out after global
routing.

Therefore, the number of wires flowing across
all channels is known before the conversion
process starts.

In order to minimize the number of wire bends
across channels, among the two channels of
the cross-junction, we split the thinner of the
two, i.e., the channel with the lesser number
of flowing nets.

Illustration of the major flow criterion.
(Assume channel b has more nets than a)

a1 2aa

b b

For each cross-junction, the previous two criteria
are used to compute a positive gain function.

This function is a bonus rewarding conversions of
cross-junctions that favor the critical path isola-
tion and major flow criteria.

Therefore, for each cross-junction adjacent to a
channel segment that is on some critical path, a
bonus is added to the conversion in the direction
of the path.

Furthermore, for each cross-junction, a bonus is
added to the direction of the channel with the
largest wire flow.

For all other cases, a zero bonus is assigned to the
crossing conversion in either direction.

The optimal channel structure is the one with the
largest sum of crossing conversion bonuses.

Conversion Algorithm

The algorithm assumes that the layout has already
been converted to a slicing structure.

A bipartite directed graph called the slicing graph
is constructed.

The slicing graph has a vertex for each candidate
slice-line and a vertex for each slice.

There is a directed edge from a slice-vertex to
each of its candidate slice-line vertices.

There is a directed edge from a slice-line vertex to
the two resulting slice vertices.

A generic slice graph

S

l1 l2 ls ln

S1 S2

Slice vertex

Slice line vertex

We need not have a vertex for each possible slice-
line. This is due to what is referred to as the
locality property.

The preferred conversion direction of a cross-junction
is the direction with the maximum bonus.

When both directions have the same bonus, then
both are equally good choices, and both should be
considered.

Suppose that for a particular slice there is a slice-
line which converts all crossings on that line in
their preferred directions (for example slice-line h3
in Figure below). Such a line is an optimal slice-
line.

D

A

C

E

G

H

FB

v1
1

v3
1

v4
1

v2
1

h2
1

h1
1

h3
1

c3
1

c2
c1
1

Moreover, if an optimal slice line is selected and
the resulting two channel definition problems are
optimally solved in the two subslices, then the
combined solutions constitute an optimal solution
to the original slice.

Therefore, to get an optimal solution to the chan-
nel definition problem (corresponding to the entire
layout), we need to enumerate only trial slice-lines
that have the potential of leading to optimal so-
lutions.

This is similar to the dynamic programming algo-
rithm strategy, where the solution to the problem
is arrived at as a result of a sequence of decisions.

The dynamic programming algorithm is based on
the optimality principle, which we state next, in
the context of the channel conversion problem.

Optimality Principle:
Let [d1, d2, ..., di, ..., dk] be a sequence of decisions
with respect to the first slice-line, second slice-
line, · · · kth slice-line. If d1 − to − dk is an optimal
sequence of k consecutive decisions, then d1−to−di
is an optimal sequence of decisions and di− to−dk
is also an optimal decision sequence with respect
to the state (the subslices) resulting from the d1−
to − di decision sequence.

Therefore, the slice graph should be constructed
in a depth first manner, starting at the root (rep-
resenting the entire layout), and making a decision
at each slice vertex as to the slice-lines that should
be tried with that particular slice.

The slice graph will have a single source vertex
(with no incoming edges) corresponding to the en-
tire layout. The graph will have exactly n sink ver-
tices (with no outgoing edges), where n is equal
to the number of layout blocks.

The construction of the slice graph will be illus-
trated later with the help of an example.

D

A

C

E

G

H

FB

v1
1

v3
1

v4
1

v2
1

h2
1

h1
1

h3
1

c3
1

c2
c1
1

h2

ABCDEFGH

h3

ABCFGDEH

v3

ABC FG

v1

BC

B

A

h1

HED

v4 v2

v2 v4

EH DE

C

4

3

1

1

0

0

000000

0

0

0

0

0

0

0 0

00

0 0

G

F

G0

Once the slice graph has been constructed, the al-
gorithm proceeds with a breadth first traversal of
the graph, from the sinks to the source. During
the course of this traversal, the maximum bonus
of each slice vertex is computed. The maximum
bonus corresponding to a slice s is defined recur-
sively as follows:

Bonus(s) = max
ls

{Bonus(ls)+Bonus(s1)+Bonus(s2)}

where s1 and s2 are the subslices resulting from
cutting slice s with slice-line ls.

Once we reach the source vertex, the channels
that lead to the maximum bonuses are identified
by tracing back the slice graph from the source to
the sinks. The steps of the algorithm are summa-
rized next.

Algorithm Channel Conversion;
Begin

1. Determine the conversion bonuses
of all channel crossings;

2. Determine the bonus of each slice-line;
3. Construct the slicing graph;
4. For each sink vertex v Do

Bonus(v) ← 0
EndFor;

5. Traverse the graph sinks-to-source,
computing along the way the
maximum bonus of each slice vertex;

6. Traverse the graph source-to-sinks,
selecting along the way the slice-lines
that incurred maximum bonuses;

7. Output the selected slice-lines;
End.

Example:

Suppose we are given the slicing floorplan of pre-
vious Figure.

The floorplan has eight blocks identified with the
letters A to H, and three cross-junctions c1, c2,
and c3.

Let ci
h and ci

v denote the horizontal and vertical
conversions of cross-junction ci, i = 1,2,3. ci is
said to be vertically (horizontally) converted if the
horizontal (vertical) channel is split into left and
right (top and bottom) sub-channels.

Assume that the three cross-junctions have the
following bonuses:

Bonus(cv
1) = 0; Bonus(ch

1) = 2;
Bonus(cv

2) = 0; Bonus(ch
2) = 1;

Bonus(cv
3) = 1; Bonus(ch

3) = 0;

We would like to identify the channel structure
corresponding to a maximum bonus conversion of
all three cross junctions.

Solution:

The slicing structure of previous Figure assumes
that the crossings are initially converted in their
preferred directions.

The slicing graph corresponding to this floorplan is
given in Figure below, where the slice vertices are
represented by boxes and the slice-lines by circles.

h2

ABCDEFGH

h3

ABCFGDEH

v3

ABC FG

v1

BC

B

A

h1

HED

v4 v2

v2 v4

EH DE

C

4

3

1

1

0

0

000000

0

0

0

0

0

0

0 0

00

0 0

G

F

G0

The number next to each vertex is the maximum
bonus corresponding to the slice vertex/line. The
sinks (vertices A to H) are assigned zero bonuses.

The graph is constructed as follows.

Starting at the source vertex ABCDEFGH, we
find that there is only one optimal slice-line h3.
Line h3 converts the cross junctions c1 and c2 in
their preferred directions.

On the other hand, the line v1,2 = v1∪v2 is not op-
timal since it does not convert the cross-junction
c1 into its preferred direction.

The subslices resulting from cutting the original
floorplan with slice-line h3 are [DEH] and [ABCFG].

For slice [DEH], there are two slice-lines of equal
merit (both have a zero bonus).

Therefore, both should be included in the slice
graph.

However, the other subslice [ABCFG] has only one
optimal slice-line v3, with a bonus equal to 1.

The other slice-line, v1, is not optimal, and there-
fore is not included in the graph.

This process is continued until the entire graph is
constructed.

Now that the slice graph has been constructed, we
first determine the bonuses of all slice-line vertices.

The bonus of a horizontal (vertical) slice-line is
equal to the sum of all horizontal (vertical) con-
version bonuses of the cross-junctions traversed by
that line.

Therefore, for our example, the slice-line bonuses
will be,

Bonus(h1) = Bonus(h2) = 0;
Bonus(h3) = Bonus(ch

1) + Bonus(ch
2) = 3;

Bonus(v1) = Bonus(v2) = Bonus(v4) = 0;
Bonus(v3) = Bonus(cv

3) = 1.

The next step is to traverse the slice graph from
the sinks to the source, and compute the max-
imum bonuses of the intermediate slice vertices.
Proceeding this way, we get,

Bonus(EH) = Bonus(v2)+Bonus(E)
+Bonus(H) = 0;

Bonus(DE) = Bonus(v4) + Bonus(D)
+Bonus(E) = 0;

Bonus(DEH) = max{ Bonus(v2) + Bonus(D)+
Bonus(EH);Bonus(v4) + Bonus(DE)
+Bonus(H)} = 0.

The maximum bonuses of the remaining slice ver-
tices are computed in a similar way and are as
follows,

Bonus(BC) = 0, Bonus(FG) = 0,
Bonus(ABC) = 0, Bonus(ABCDFG) = 1,
and Bonus(ABCDEFGH) = 4;

The last step of the algorithm is to proceed from
the source to the sinks in order to determine the
slice-lines that contributed to the maximum bonuses.

For this example, h3 is selected first.

Then proceeding down to subslice DEH, we have
two equally good choices, either line v3 or line v4.
Suppose we randomly select slice-line v4.

Then, the remaining slice lines are v2, v3, v1, h1,
and finally h2. Hence, the initial slicing structure
is the optimal one.

Channel Ordering:

Once all nets have been assigned to individual
channels, the final step is to assign the nets to
individual tracks within every channel, i.e., to per-
form detailed routing.

The channels are usually routed one at a time in
a specific order.

Channel ordering is an important intermediate step
executed prior to detailed routing and after global
routing.

This step is needed to specify to the detailed router
which channel to route first, which second, and
which last.

Obviously, it is assumed that all routing regions
are channels.

Channel ordering is an important final step of global
routing. The order in which channels should be
routed is dictated by the fact that pin locations
must be fixed before performing detailed routing
of that channel.

Of the two channels of a T-intersection, the cross-
piece channel must be routed before the base chan-
nel.

This is for the following two reasons:

(1) To route the base channel, we need the pin
information at the T-junction, i.e., the nets
going through the junction. This necessitates
that the crosspiece be routed before the base.

(2) When routing the crosspiece channel, we may
realize that we need to move blocks at the left
(top) and/or right (bottom) of that channel to
provide for extra tracks. This will change the
pin positions within the base channel. This is
another compelling reason to route the cross-
piece channel before the base.

To order the channels, an order constraint graph
(OCG) is built as follows.

Each channel is represented by a vertex. There
is an arc (i, j) in the OCG if and only if channels
i and j touch at a T-junction of which i is the
crosspiece and j is the base.

The corresponding order constraint graph is the
following.

v1

h1

v3 h2

v2 v4

h3

Notice that this constraint graph is cycle free.

Routing Regions Representation

Once the routing regions have been defined, a
routing graph is constructed. There are three gen-
eral approaches to construct this graph.

(1) Use a channel connectivity graph G = (V, E)
where each channel is represented by a vertex.

Each edge models the adjacency between the
corresponding channels.

Vertices can be assigned weights to indicate
the number of nets passing through the chan-
nel and/or the number of available tracks in
that channel.

Notice that the channel connectivity graph is
the order constraint graph when arc directions
are removed.

(a) A building-block layout;
(b) Corresponding channel connectivity graph.

H

I

B

A

C

E

F

G

D

C

D

G

F

H

A

I

EB

(a) (b)

(2) Use a bottleneck graph G = (V, E), where only
switchboxes are modeled by vertices.

There is an edge (u, v) ∈ E if and only if
the corresponding switchboxes are on opposite
sides of the same vertical or horizontal channel.
These routing channels are called bottllenecks,
hence the name of the graph.

(a) A building-block layout;
(b) Corresponding bottleneck graph.

1 2 3 4

106 8

9

12 13

15 17 18

(b)(a)

14

8

43

65 87

811

816

1 2 3 4

5

6 7

8

9

10

11 12 13 14

15 16 17 18

Switch boxes

A

B

E

F

H

G

D

C

Bottleneck channels

(3) Use a grid graph G = (V, E) where vertices
model global cells and edges adjacencies be-
tween these cells.

For two layer-routing, each vertex is assigned
two numbers indicating the number of avail-
able horizontal and vertical tracks.

(a) A two-dimensional grid; (b) Corresponding
grid graph where each global cell (3 × 2 grid

cells) is modeled by a vertex.

A global cell

A cell

Sequential Global Routing.

Sequential global routing is the most widely used
approach. It is graph based.

Once the routing channels have been identified
and the corresponding routing graph constructed,
global routing proceeds as follows.

For each net, we mark the vertices of the channel
connectivity graph in which the net has pins.

Hence, routing the net amounts to identifying a
tree (preferably the shortest) covering those marked
vertices.

If the net has pins in only two vertices, the problem
reduces to finding the shortest path between the
marked vertices.

If the graph is a grid-graph, we can use Lee algo-
rithm,

For all three graph models, we can use Dijkstra
shortest path algorithm.

Algorithm Shortest Path(s, G)
(* s: a source vertex, and G is a weighted graph *)
(* Di: shortest distance from s to node i; *)
(* dij: weight of edge (i, j); *)
(* M : set of permanently marked nodes. *)
Begin

1. (* Initialization *)
M ← s;
Ds ← ∅;
ForEach j ∈ V (G) Do Dj ← dsj;
2. (* Find the next closest node *)
Find a node i /∈ M such that Di = minj /∈M Dj;
M ← M ∪ {i};
If M contains all nodes then STOP ;
3. (* Update markings *)
ForEach j /∈ M Do Dj ← mini(Dj;Di + dij);
Goto 2;

End.

However, in general, nets have three or more pins.
Finding the shortest paths covering three or more
nodes is known as the steiner tree problem.

This problem is of crucial importance to global
routing and is the subject of the following subsec-
tion.

The Steiner Tree Problem:

Let M be the set of marked vertices. A tree con-
necting all vertices of M as well as other vertices
of G that are not in M is called a steiner tree.

A minimum steiner tree is a steiner tree with min-
imum length.

Steiner tree corresponding to the net
M = {a, b, c, d, e}

Y Z

22

2

1

11

1

1

1

Steiner
vertex

e

a

w

X

2 db

c

22

The steiner tree problem is NP-hard. Therefore,
instead of finding a minimum steiner tree, heuris-
tics are used to identify as quickly as possible a
tree of reasonable length not necessarily of mini-
mum length.

Most steiner tree heuristics use a modification of
minimum shortest path algorithm of Dijkstra or a
variation of Lee’s maze routing algorithm.

Usually the heuristic proceeds in a greedy fashion
as follows.

First, one of the marked vertices is selected.

Then the shortest path to any one of the remain-
ing marked vertices is identified.

Then, one of the remaining marked vertices is
picked and a shortest path from that node to any
of the nodes of the partial tree is identified.

This process continues until all marked vertices
have been processed.

Algorithm Steiner Tree;
Begin

M ← set of marked nodes;
(* nodes where the net has pins *)
s ← select a node from M ;
M ← M − {s};
Apply Dijkstra algorithm to find πs,e,
the shortest path from s to some node e of M ;
M ← M − {e};
V ← {s, e}; (* nodes of Steiner tree *)

While M �= φ Do
Begin

e ← next(M); (* get next node from M *)
Apply Dijkstra algorithm to find πe,x,
the shortest path from e to some node x ∈ V ;
V (πe,x) ← nodes covered by πe,x;
V ← V ∪ V (πe,x);
(* remove marked nodes covered by πe,x).
M ← M − M ∩ V (πe,x);

EndWhile
End.

Example:

Apply this Steiner tree heuristic on the following
graph.

Steiner tree corresponding to the net
M = {a, b, c, d, e}

Y Z

22

2

1

11

1

1

1

Steiner
vertex

e

a

w

X

2 db

c

22

Solution:

The vertices of the graph are,
V = {a, b, c, d, e, W, X, Y, Z}.

Initially V = φ and the set of marked vertices
M = {a, b, c, d, e}.

Suppose vertex a is selected first. The shortest
path to any of the remaining marked vertices is
πa,b = [a, X, b].

Therefore, the sets V and M become, V = {a, X, b},
and M = {c, d, e}.

Assume that vertex c is selected next. The short-
est path from c to any of the vertices of V is
πc,X = [c, X].

Therefore, the sets V and M become, V = {a, X, b, c},
and M = {d, e}.

Assume that vertex d is selected next. The short-
est path from d to any of the vertices of V is
πd,c = [d, c].

Therefore, the sets V and M become,
V = {a, X, b, c, d}, and M = {e}.

Finally vertex e is selected last. The shortest path
from e to any of the vertices of V is πe,c = [e, c].
Therefore, the sets V and M become,
V = {a, X, b, c, d, e} and M = φ.

Hence, the steiner tree identified by the algorithm
has the following edges,
(a, X), (X, b), (X, c), (c, d), and (c, e).

The weight of the tree is equal to 7.

Such a tree can be improved using rip-up and
rerouting.

Global Routing by Maze running

First identify the routing regions.

(b)(a) (c)

Two dimensional routing model. Shaded spaces
indicate cells. The unshaded spaces are routing
areas. (a) Horizontal routing areas. (b) Vertical
routing areas. (c) Routing regions model.

Once the routing channels (regions) have been
identified, the task now is to assign nets to them.

To accomplish this, the channels are modeled by
a weighted undirected graph called channel con-
nectivity graph.

Nodes of the graph correspond to channels and
edges between nodes indicate that the correspond-
ing channels are adjacent.

For two layer routing, each node is assigned two
weights giving the horizontal capacity (width) and
the vertical capacity (length) of the corresponding
channel.

The sequential approach is the simplest and most
widely used approach to global routing.

This approach consists of picking one net at a time
and finding an optimal (or sub-optimal) steiner
tree which covers all the pins of the net.

Two general approaches are possible in this case:

(1) Order dependent approach.
For order independent global routing, each net
is routed independently of all other nets.

Then congested passages are identified and
the affected nets are rerouted, while penalizing
paths going through such passages.

This approach avoids net ordering and con-
siderably reduces the complexity of the search
space since the only obstacles are the cells.

However, this might require a large number
of iterations before a feasible global routing
solution is found.

(2) Order independent approach.
For order dependent global routing, first the
nets are ordered according to some criteria.

Then the nets are routed in the resulting or-
der, while updating the available routing space
after each net.

The search is slightly more complex, since the
number of obstacles has increased (cells and al-
ready routed nets).

Furthermore, net ordering is crucial to the final
outcome of the global routing step. Both ap-
proaches are somewhat similar, in that, they try
to identify a steiner tree for one net at a time.

In the remainder of this section, we shall be de-
scribing the order dependent approach only.

Each side of a block is unambiguously attached
to a unique channel. Hence, each pin is uniquely
associated with a channel.

Therefore, the nodes of the channel connectivity
graph in which a net has pins are unambiguously
determined.

Then globally routing a net amounts to determin-
ing a tree that covers all those nodes in which the
net has pins.

To illustrate the search process, we shall focus on
the easy case when the net has pins in only two
nodes.

The search procedure is similar to the one used in
Lee algorithm.

For simplicity, we assume that the length of all
edges in the channel-graph is one unit.

As in Lee algorithm, starting from a node labeled
k, all adjacent nodes are labeled k + 1.

The labeling procedure continues until the target
node is reached.

The shortest path in the channel graph is found
by a sequence of nodes with decreasing labels.

Once the path is found, the net is assigned to
the channels and for all nodes (channels) in the
path the capacity weights w and l are decreased
according to the width and length of the net to
be routed.

A

B'

B

3,5 3,4 3,1 3,4

7,5

4,5 4,4 4,1 4,4

2,1

5,1

2,4

1 2 3 4

5

6

7

8

9 10 11 12

4,0

1,0

4,1

1,3

3,1

6

7

8

2,4 2,3 3,1 3,4

7,4

3,4 3,4 3,1 3,3

A

B ''

B

A

B

(a)

(c)

(e) (f)

(d)

(b)

2 3 4

5

9 10 11 12

87

6

3

9 10 11 12

1 2 3 4

6

7

8

l

w

A'B

A

'

'

A

1

5

4,0

1,21,0

Observe that both the vertical as well as the hor-
izontal weights of a node are updated when the
path bends at the node.

The width and length of the channel are reduced
by an amount equal to the space used by the wiring
segment.

If the net has a third pin located in another vertex
of the graph, then the expansion will continue at
that third pin and will terminate when any of the
three nodes 6, 7, or 8 is reached.

Another application of the above technique is to
determine the required separation between cells in
order to ensure routability of the chip.

Therefore, the global router is used only to deter-
mine the required separation between cells.

The detailed routing will not necessarily follows
exactly the channels assigned to nets by the global
router.

The modification to the above method to deter-
mine separation between cells would be to start
with a zero separation, and this will represent the
initial weights of the nodes.

Next, every time a path is found, the weights of
the corresponding weights are increased.

At the end of this procedure, the relative place-
ment of the cells is maintained, but the minimum
separation between the cells will be as given by the
horizontal and vertical weights of the nodes of the
channel-graph.

Notice here that the estimations are somewhat
pessimistic since they assume that nets do not
share routing tracks.

In order to avoid congestion of nets between chan-
nels, an upper limit for each node of the channel
graph can be set. The global router then will look
for alternate paths in the channel-graph.

Example:
A placement containing two cells is shown in Fig-
ure below, together with its channel graph. The
cells contain two nets A−A′ and B−B′. Determine
if the circuit is routable.

1 2 3

4 5 6 7

8 9 10

(b)

A B

A B' '

(a)

1 2 3

4

9 10

6
7

5

8

1,2 1,21,2

3,2 3,2 3,2

1,6

3,2 3,2 3,6

The weights in the nodes indicate the width (w)
and length (l) of the channel.

Mathematical Programming Approach

• Global routing can be formulated as a 0-1 in-
teger program as follows.

• The layout is modeled as a grid graph, where
each node represents a grid cell (super cell).

• The boundary between any two adjacent grid
cells l and k is supposed to have a capacity of
cl,k tracks.

• This corresponds to a positive weight cl,k on
the arc linking nodes l and k in the grid graph.

• For each net i, we need to identify the different
ways of routing the net.

• Suppose that for each net i, there are ni possi-
ble trees ti1, ti2,..., tini

, to route the net. Then,

for each tree tij, we associate a variable xi,j

with the following meaning:

xi,j =

{
1 if net i is routed according to tij
0 otherwise

(1)

• For each net i, we associate one equation to
enforce that only one tree will be selected for
that net,

ni∑
j=1

xi,j = 1 (2)

• Therefore, for a grid graph with M edges and
T trees, we can represent the routing trees of
all nets as a 0-1 matrix AM×T = [ai,p] where,

T =
N∑

i=1

ni (3)

where N is the number of nets, and,

ai,p =

⎧⎪⎨
⎪⎩

1 if edge i belongs to tree tlk
and p as defined in equation (5).

0 otherwise
(4)

p =
l−1∑

m=1

nm + k (5)

• A second set of equations is required to ensure
that the capacity of each arc (boundary) i,
1 ≤ i ≤ M , is not exceeded , i.e.,

N∑
k=1

nk∑
l=1

ai,p × xl,k ≤ ci (6)

Finally, if each tree t
j
i is assigned a cost gi,j,

then a possible objective function to minimize
is,

F =
N∑

i=1

ni∑
j=1

gi,j × xi,j (7)

• Therefore, a possible 0-1 integer programming
formulation of global routing is,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
i=1

∑ni
j=1 gi,jxi,j ← minimize

subject to :∑ni
j=1 xi,j = 1 1 ≤ i ≤ N∑N
k=1

∑nk
l=1 ai,pxl,k ≤ ci 1 ≤ i ≤ M,

and p as in (5)
xk,j = 0,1 1 ≤ k ≤ N

and 1 ≤ j ≤ nk
(8)

• If gi,j = g for all i and j and if we change the
objective to the maximization of F , then this is
equivalent to seeking a solution that achieves
the maximum number of connections.

• If gi,j = δij, where δij = uij − dij then this is
equivalent to seeking a solution that achieves
correct timing behavior.

(a)

1,2 1,3

2,3 1,2

(b)

1
2

3

1
2 3

1

2

(c) (d)

(e) (f)

c1

c2

c3

c4= 2

= 2

= 2

= 2

1
2

3

1
2 3

1

2

c2

c3

c1 c4

c2

c3

c1

c4

c2

c3

c1
c4c4

c3

c1 c4

c2

c3

c1

c2

• The gate-array layout of previous figure has
four cells and three nets.

• Assume that the capacity of each boundary is
equal to two tracks.

• First, a grid graph is built.

• Each node of the graph is marked with the la-
bel of those nets which have pins in that node.

• There are three trees for net 1, three trees for
net 2, and two trees for net 3.

• Assume that the cross capacity of each bound-
ary is equal to two tracks. There are four
boundaries corresponding to four edges in the
grid graph. The matrix A will be as follows,

t11 t12 t13 t21 t22 t23 t31 t32
1 0 1 1 1 0 1 1 0
2 1 0 1 0 1 1 1 0
3 0 1 1 1 1 0 0 1
4 1 1 0 0 1 1 0 1

• Assume that the cost of tree t
j
i is equal to the

length of that tree. In that case,
g1,1 = 2, g1,2 = 3, g1,3 = 3,
g2,1 = 2, g2,2 = 3, g2,3 = 3, and
g3,1 = 2, g3,2 = 2.

• Therefore, the resulting 0-1 integer program is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F = 2x1,1 + 3x1,2 + 3x1,3 + 2x2,1 + 3x2,2
+ 3x2,3 + 2x3,1 + 2x3,2 ← minimize

Subject to :
x1,1 + x1,2 + x1,3 = 1
x2,1 + x2,2 + x2,3 = 1
x3,1 + x3,2 = 1
x1,2 + x1,3 + x2,1 + x2,3 + x3,1 ≤ 2
x1,1 + x1,3 + x2,2 + x2,3 + x3,1 ≤ 2
x1,2 + x1,3 + x2,1 + x2,2 + x3,2 ≤ 2
x1,1 + x1,2 + x2,2 + x2,3 + x3,2 ≤ 2
xi,j = 0,1 1 ≤ i ≤ 3, 1 ≤ j ≤ 3

• The integer programming formulation is ele-
gant and finds a globally optimum assignment
of the nets to routing regions.

• However, this approach suffers from the fol-
lowing problems:

(a) We need to identify several Steiner trees for
each net.

(b) The trees should be selected so as to guar-
antee the feasibility of the problem.

(c) There are too many ai,j’s, leading to too
many constraints.

(d) There may be too many arcs, i.e., too many
ci’s, leading to too many constraints.

(e) All constraints are integer constraints.

• Hierarchical approaches come to the rescue,
and can be used to solve some of the above
problems. This problem decomposition will of
course be at the price of not achieving global
optimality!

Simulated Annealing

Simulated annealing is used in the the TimberWolf
package to improve an initially constructed global
routing solution.

In TimberWolf, the layout style assumed is Stan-
dard Cells style, and global routing is solved in two
stages.

The objective of the first stage is to assign the
nets to the horizontal routing channels so as to
minimize the overall channel densities.

At the end of the first stage, all nets that are
switchable (assignable to an adjacent channel) are
identified.

The goal of the second stage is to attempt to
reduce the overall channel densities by changing
the channel assignment of the switchable nets.

After global routing, TimberWolf proceeds with
a refinement of the placement by randomly in-
terchanging neighboring cells. After each inter-
change, both stages of the global router are in-
voked to reroute the nets affected by the inter-
change.

It is only during the second stage of global routing
(as well as the placement refinement phase) that
simulated annealing is used.

Terminology:

A group of pins of a given cell that are internally
connected are called a pin cluster. The pins of the
same cluster are all equivalent.

The x-coordinate of a pin cluster P is equal to
the average of the x-coordinates of its constituent
pins, i.e.,

x(P) =
1

|P | ×
∑
i∈P

x(i) (9)

1 3

5

4

6 7 8

2

1 3 420
x

Illustration of the pin cluster concept;
P = {1,5,6,7} and x(P) = 1+1+2+3

4 = 7
4.

A portion of a net connecting two pin clusters, say
P1 and P2, is called a net segment.

If P1 and P2 belong to two different cells placed
on the same row and both have pins on the top
and bottom sides of the cells, then the net seg-
ment connecting both clusters is called a switch-
able segment.

The cost function used is equal to the sum of the
total channel densities, i.e.,

D =
∑
∀c

d(c) (10)

where d(c) is the density of channel c, which is
equal to the number of nets assigned to the chan-
nel.

The First Stage

The global routing algorithm of the first stage has
four distinct steps which are executed for each net.

(1) Initialization: All pin clusters of the net are
identified, together with their x-coordinates.
Then the pin clusters are sorted on their x-
coordinates, from smallest to largest.

(2) Construction of a cluster graph: In this
step, a cluster graph is constructed, where
nodes model the pin clusters and edges pos-
sible connections (net segments) between the
corresponding pin clusters.

(3) Construction of a minimum spanning tree:
In this step, Kruskal algorithm is used to con-
struct a minimum spanning tree of the cluster
graph.

(4) Identification of all net segments: In this fi-
nal step of the first stage, individual pins within
the pin clusters are selected to form the ac-
tual net segments. Also, if the net segment is
switchable, then two pairs of pins are selected,
one pair for the upper row, and one for the
lower row.

Example:
Assume we are given the following partial standard-
cell design.

Suppose that each pin cluster has exactly two pins
available on opposite sides of the cell. Assume
further that one of the nets is connecting exactly
five pin clusters labeled a, b, c, d, and e.

We would like to illustrate how the cluster graph
is constructed for this net.

Pin clusters
Switchable net segment

Net segments

Routing channels

Cell rows

a b

e

d

c

a b c

d

e

(a)

(b)

1

2

8

2

Construction of the cluster graph:
(a) A partial standard-cell design.

(b) Cluster graph constructed during stage 1 of
TimberWolf.

solution: The sorted pin clusters are [a, e, d, b, c].

The sorted sequence will be processed one element
at a time until the cluster graph is constructed
(one edge at a time).

At the first execution of the outer repeat loop,
P1 = a, a is removed from the sequence clusters,
and the variable TorB = 0.

TorB is equal to 0, +1, −1, to indicate that the
next pin is at the same row, the top row, or the
bottom row respectively.

The closest pin to the right of a that is located
at the top, bottom, or same row is pin cluster d.
Therefore, P2 = d, row(d) = 2, and TorB is set
equal to 1 (P2 is on top of P1). Hence the edge
(a, d) is added to the cluster graph.

The next closest pin cluster to the right of a is b.
However because row(b) = 1 = row(a), the edge
(a, b) is not added.

Then, the next closest pin cluster to the right of
a is c. Since row(c) = row(a) = 1, edge (a, c) is
not considered.

At this time, we exit from the inner repeat loop,
TorB is reset to 0, and the head(clusters) returns
pin cluster e, which is removed from clusters.

The closest pin cluster to the right of e and located
in the same row or adjacent row is pin cluster d.
Therefore, P2 = d, TorB = −1, and the edge (e, d)
is added to the graph.

No other pin in the same or adjacent row is to
the right of e. Therefore, we exit from the inner
repeat loop.

Continuing in this way, edge (d, b), then edge (b, c)
will be added to the cluster graph.

At this moment, the sequence clusters becomes
empty.

The cluster graph thus constructed is given in pre-
vious Figure. The positive numbers indicated on
the edges of the graph represent the lengths of
the corresponding net segments. Notice that the
graph is already in the form of a minimum span-
ning tree.

As observed by the author of this approach, the
cluster graph will in most cases turn out to be a
minimum spanning tree.

Notice that, among the net segments selected,
only segment b − c is switchable. Therefore for
this segment, two pairs of pins are selected, one
if the segment is assigned to the channel above,
and one if it is assigned to the channel below.

The Second Stage:

In stage 2, the simulated annealing search tech-
nique is used to refine the global routing solu-
tion produced by the stage 1 sequential algorithm.
Only switchable net segments are considered for
re-routing.

The objective of this stage is to minimize the total
channel density.

The generate function used to obtain new solu-
tions is as follows. First, a switchable segment is
randomly selected from the pool of switchable net
segments.

Then, the channel assignment of the selected seg-
ment is switched from its current channel to the
opposite one.

If the switch reduces the value of the cost function,
then the switch is accepted. If the new solution
has the same cost as the previous one, then the
switchable segment is assigned to the channel with
the smaller density over the span of the net seg-
ment. The purpose of this decision is to facilitate
the following step of detailed routing.

New solutions with higher cost functions are not
accepted.

As for the cooling schedule, the temperature is
maintained equal to zero throughout the search.
Hence only downhill moves are accepted. Further-
more, since T = 0, there is no need for the inner
loop, nor a need to update the schedule parame-
ter.

The stopping criterion used is a function of the
number of switchable segments. The search is
stopped after the generation of S = 30 × N new
states, where N is the number of switchable net
segments.

Other Approaches

The KFUPM Approach

