a2 United States Patent

US009170811B2

(10) Patent No.: US 9,170,811 B2

Mudawar (45) Date of Patent: Oct. 27,2015
(54) STRUCTURED CONTROL INSTRUCTION (56) References Cited
FETCH UNIT
U.S. PATENT DOCUMENTS
(71) Applicants:KING FAHD UNIVERSITY OF 4463422 A * 7/1984 Storer GOGF 9/4426
PETROLEUM AND MINERALS, SIS SR HATEE SR e 712/241
Dhahran (SA); KING ABDULAZIZ 5960210 A 9/1999 Jin
CITY FOR SCIENCE AND 7,689,735 B2 3/2010 Wezelenburg et al.
TECHNOLOGY, Riyadh (SA) 2002/0010852 Al 1/2002 Arnold et al.
2008/0155210 Al* 6/2008 Taunton GOGF 9/30036
(72) Inventor: ?é[zl)lamed Fawzi Mudawar, Dhahran 2010/0122066 Al 52010 Fischer 717161
* cited by examiner
(73) Assignees: KING FAHD UNIVERSITY OF
PETROLEUM AND MINERALS,
Dhahran (SA); KING ABDULAZIZ Primary Examiner — Farley Abad
CITY FOR SCIENCE AND (74) Attorney, Agent, or Firm — Richard C. Litman
TECHNOLOGY, Riyadh (SA)
(*) Notice: Subject to any disclaimer, the term of this 57 ABSTRACT
patent is extended or adjusted under 35
U.S.C. 154(b) by 554 days. The structured control instruction fetch unit is a structured
instruction stream controller that processes expand (XP),
(21) Appl. No.: 13/737,894 expand register indirect (XPR), loop (LOOP), and break
) (BRK) instructions for structured control. The fetch unit pro-
(22) Filed: Jan. 9,2013 cesses stop bits that mark the end of instruction blocks. Any
. L. instruction can be marked with a stop bit to indicate that it is
(65) Prior Publication Data the last one in an instruction block. All instructions are
US 2014/0195781 Al Jul. 10, 2014 encoded with a predicate to reduce the use of control instruc-
tions and to simplify the control. A control stack guides
(51) Int.CL instruction fetching by storing return addresses, loop block
GOG6F 9/30 (2006.01) addresses, loop predicates, and loop counters. Control
Go6l’ 9/38 (2006.01) instructions and stop bits manage operation of the control
(52) US.CL stack. An instruction unit feeds execution units and includes a
CPC i GO6F 9/30 (2013.01); GOGF 9/3017 set-associative instruction cache, a control stack, an instruc-
(2013.01); GO6F 9/30149 (2013.01); GO6F tion buffer that decouples instruction fetching from execu-
9/3802 (2013.01); GO6F 9/3814 (2013.01) tion, instruction decoders, and program counter (PC) control
(58) Field of Classification Search logic.
CPC ... GO6F 9/3802; GOGF 9/3851; GOGF 9/3814;
GOG6F 9/3017; GOGF 9/30149
See application file for complete search history. 17 Claims, 5 Drawing Sheets
[XP (Expand Instruction)
20 p° |op*=XP Pseudo-Direct Offset® s
. . 9
XPR (Expand Register Indirect) 22

p® | op’=XPR °

Register-Indirect Offset'®

ﬁ LOOP Instruction

=
24

p® | op’=LOOP | 8

Pseudo-Direct Offset® s

BRK Instruction

L p® | op’=BRK

U.S. Patent Oct. 27, 2015 Sheet 1 of 5 US 9,170,811 B2

/ ’
Instruction Block fj
Instruction1 {0
Instruction2 |0
. 0
Instructionn |1
QJ
Fag. 1
[XP (Expand Instruction)
20 p° |op*=XxpP Pseudo-Direct Offset®* s
_ , \-\
XPR (Expand Register Indirect) 22
p’ | op’=XPR r Register-Indirect Offset’® s
_ —
ﬁ LOOP Instruction 24
p® | op’= LOOP P Pseudo-Direct Offset'® s
BRK Instruction
p® | op’=BRK

Faig. 2

U.S. Patent Oct. 27, 2015 Sheet 2 of 5 US 9,170,811 B2

30a 30b 30¢
f: T f: f:
L I I
PE— TR i6
xph # l——J RN A,
Famn LB P (P T
I, B B i] @1 L |
(p1) ;ip% xph#l, @D L)
2 h: I]O 19
h :I[m I] I L I4
P T
: In
U T #)

/400 40b
TN ' , Y,
L, | Function I, | Function
Looprl, L1 # Block (pl) Looprl,L1 # Block
L1, | Loop L # Loo
Is # Block L1: %5 , *-Bloci
6

Fig. 44 Fig. 4B

US 9,170,811 B2

Sheet 3 of 5

Oct. 27, 2015

U.S. Patent

26 by
SSQIPpPY \\ ”

do1

[SSaIppV | V oo
CSSRIPPY | YV I ‘
sl)~ €170
g .
[c1]3oy T fonuo) 291 M
Yous
11 joe1g SSAIppPV

geo b VG “bul

oy}~ TSPV |V #T1dX [ouno) [ssaippy_[d[T
231, 2 Qx. [ssaippy_ |V |
Yo SSQIPPY H
Zs

0s

U.S. Patent Oct. 27, 2015 Sheet 4 of 5 US 9,170,811 B2

Return Loo
Addr Addr 228
380 & 62 Loop
REG*-_P pushL T“ T"T l /55 Counter
54 CMD
. ~(Stack TopC.
Address Stack [TopA Control WrC |Counter Stack
WrA Logic -
Return
Loop
Predicate PC

Overflow ——
Underflow ——

Fig. 6

U.S. Patent Oct. 27, 2015 Sheet 5 of 5 US 9,170,811 B2

70

Exception /

Interrupt Flags

/ 5
Exception 74
72 § —
PC_Tag_Index Logic
I-Cache Tags _ Overflow Underfl
Ways 0to 3 Bl Exception PC ve +OW n er+ ow
A Return_PC
= Loop PC
& M =
B e ; XPR_PC Loop Predicate | control 56
Seq PC Pushl.
5 PushA
=}
ks PC Ctrl 2
© I-Cache { | & g Return [;1 5
fé Way 0 8 § - Decode & PC Adress § *5‘
t I-Cache Sm Control Logic 3
— -Cac
Way 1 J——-h PC1 N Instructions Value REGIt] %
I-Cache ,g PC2 N Instructions VHstruction 3
Way 2 é Issued REG Buffer
/ | Instructions iz
86 I-Cache B4
Way 3
L Execution Register|
qg Units File
g é P;;efe?ch _:|
ogic
68 T _s4 N N
= 4 78 80
@ g I-Block
E &) Address

Fag. 7

US 9,170,811 B2

1
STRUCTURED CONTROL INSTRUCTION
FETCH UNIT

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to data processing systems,
and particularly to a structured control instruction fetch unit
that feeds structured control program instructions to a pro-
cessor for execution.

2. Description of the Related Art

The problem of accessing instructions that are stored in a
data store, such as memory, and providing them to a data
processor has been addressed in a variety of ways. Dedicated
local memory is fast, can provide a high bandwidth, is power
efficient and readily available, but is costly in area. By con-
trast, on-die shared and/or arbitrated memory consumes more
power and may not always be available or satisfy peak band-
width requirements, but the cost of implementation is
reduced. Off-chip memory is the cheapest, but suffers the
largest penalty in power consumption, access latency and
available bandwidth. Any limitation in memory access per-
formance, either due to latency or bandwidth limitations, also
inflicts a penalty in processor efficiency, as the processor will
stall when the required instruction is not available. With
respect to shared memory access, latency, bandwidth, and
power consumption can be mitigated by providing an inter-
mediate data store. In some systems, a program instruction
cache is provided such that the instructions can be accessed
from within the cache. This provides fast access of the
instructions, but has the disadvantage of being a reactive
mechanism, which makes autonomous decisions on which
instruction to store based solely on the history of the instruc-
tions or instruction addresses being requested by the proces-
sor. To mitigate this disadvantage, caches are often equipped
with complex prediction logic with the goal of maximizing
the probability of keeping the requested instructions in its
local store. As a consequence, such cache devices are very
power hungry. This can be a particular disadvantage for
lengthy programs having many stored instructions.

An alternative is to buffer the instructions prior to use in a
FIFO buffer. This is cheaper than a cache, but has less flex-
ibility. This lack of flexibility means that instructions have to
be moved more often, which costs power and can also lead to
stalling in the processor when an instruction is not available at
the appropriate time.

Many of the above solutions are specific to particular archi-
tectures, so that a new architecture needs to be designed.

Thus, a structured control instruction fetch unit solving the
aforementioned problems is desired.

SUMMARY OF THE INVENTION

The structured control instruction fetch unit is a structured
instruction stream controller that processes expand (XP),
expand register indirect (XPR), loop (LOOP), and break
(BRK) instructions for structured control. The fetch unit pro-
cesses stop bits, which mark the end of instruction blocks.
Any instruction can be marked with a stop bit to indicate that
it is the last one in an instruction block. All instructions are
encoded with a predicate to reduce the use of control instruc-
tions and to simplify the control. A control stack guides
instruction fetching by storing return addresses, loop block
addresses, loop predicates, and loop counters. Control
instructions and stop bits manage operation of the control
stack. An instruction unit feeds execution units and includes a
set-associative instruction cache, a control stack, an instruc-

20

25

30

35

40

45

50

55

60

65

2

tion buffer that decouples instruction fetching from execu-
tion, instruction decoders, and program counter (PC) control
logic.

These and other features of the present invention will
become readily apparent upon further review of the following
specification and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of an instruction block in a
structured control instruction fetch unit according to the
present invention, the block having n instructions, where each
instruction has a stop bit and the stop bit of the last instruction
is set to 1 to mark the end of the instruction block.

FIG. 2 is a schematic diagram showing the structured con-
trol instruction format for a structured control instruction
fetch unit according to the present invention, the instruction
format including a qualifying predicate field p and a stop bits.

FIG. 3 is a schematic diagram showing the expansion of
instruction blocks within other blocks to enlarge their size and
improve instruction streaming a structured control instruction
fetch unit according to the present invention.

FIG. 4A is a schematic diagram showing a loop and stop
block of instructions in a structured control instruction fetch
unit according to the present invention.

FIG. 4B is a schematic diagram showing a loop and con-
tinue block of instructions in a structured control instruction
fetch unit according to the present invention.

FIG. 5A is a schematic diagram showing the A (return
address) and L (loop) entries on the control stack in a struc-
tured control instruction fetch unit according to the present
invention.

FIG. 5B is a schematic diagram showing the insertion of an
address entry on the address stack in a structured control
instruction fetch unit according to the present invention.

FIG. 5C is a schematic diagram showing the insertion of a
loop block address on to the address stack and the operation of
the loop counter being pushed on to the counter stack in a
structured control instruction fetch unit according to the
present invention.

FIG. 6 is a schematic diagram of the control stack, includ-
ing the address stack, counter stack, and stack control logic, in
a structured control instruction fetch unit according to the
present invention.

FIG. 7 is a block diagram showing an instruction unit
including a set-associative instruction cache (I-Cache), a con-
trol stack, an instruction decode, and PC control logic with an
instruction buffer in a structured control instruction fetch unit
according to the present invention.

Similar reference characters denote corresponding fea-
tures consistently throughout the attached drawings.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The structured control instruction fetch unit 70 (as shown
in FIG. 7) is a structured instruction stream controller that
processes expand (XP), expand register indirect (XPR), loop
(LOOP), and break (BRK) instructions (shown as 20 in FIG.
2) for structured control. The fetch unit 70 processes stop bits,
which mark the end ofinstruction blocks. As shown in FIG. 1,
any instruction 9 can be marked with a stop bit 7 to indicate
that it is the last one in an instruction block 5. A structured
instruction set architecture is defined that includes the fetch
unit 70 and the aforementioned instructions, which enable the
formation of instruction blocks that correspond directly to the
blocks of a high-level, block-structured programming lan-

US 9,170,811 B2

3

guage. This architecture obviates the need for jump or branch
instructions. All instruction blocks are terminated with stop
bits, which simplify implementation.

All instructions are encoded or constructed with a predi-
cate (see the p® field in FIG. 2) to reduce the use of control
instructions and to simplify the control. A control stack 76
(shown in FIG. 7) utilizes a stack control logic module 62
(shown in FIG. 6) to guide instruction fetching by storing
return addresses, loop block addresses, loop predicates, and
loop counters. Control instructions and stop bits manage
operation of the control stack. An instruction unit 82 feeds
execution units 78 and includes a set-associative instruction
cache, a control stack, an instruction buffer that decouples
instruction fetching from execution, instruction decoders,
and program counter (PC) control logic.

As shown in FIG. 1, an instruction block 5 is defined as a
sequence of instructions 9 that terminates with a stop bit 7.
The first instruction is the target of a control instruction that
initiates the execution of the instruction block 5. The last
instruction is marked with a stop bit that is turned on (setto 1)
to signal the end of the block. Each instruction has a stop bit
that indicates whether it is the last instruction in a block. The
stop bit is used to terminate the fetching of an instruction
block. Any number of control instructions may appear inside
an instruction block that will transfer control to other instruc-
tion blocks.

As shown in FIG. 2, the format of control is of fixed length.
In the present structured control instruction fetch unit 70, all
instructions have a fixed 32-bit width. Instructions have a
predicate, and include a 3-bit qualifying predicate field p* at
the beginning of each instruction. A special stop bit s is
defined as part of the instruction format, and is used to mark
the end of an instruction block.

The XP (Expand Instruction) is a control instruction used
to expand an instruction block. The target instruction block is
expanded until the stop bit of the target block is reached.
Nested block expansion is allowed.

The address of the target instruction block is encoded as a
24-bit XP Instruction pseudo-direct offset 22 in the instruc-
tion format. The 24-bit XP Instruction Pseudo-direct offset 22
is concatenated with the upper address bits of the program
counter to compute the target instruction block address.

With respect to predication, all instructions are predicated.
The XP instruction is predicated to expand a target instruction
block conditionally. The preset structured control instruction
fetch unit 70 defines eight qualifying predicate registers,
named p0 through p7. Ifa qualifying predicate register (p) has
a zero value, either the predicated instruction is dropped from
the pipeline or its computed result is not written back. If the
qualifying predicate is not specified, it defaults to (p0), which
is always true and used for unconditional instructions.

The stop bit 7 marks the end of an instruction block 5. If an
XP instruction is marked with a hash symbol (#), its stop bit
is set, indicating that it is a conditional branch with no return.
Otherwise, it is a conditional branch with a return address.
There is no return instruction. The stop bit that marks the end
of an instruction block is equivalent to a return instruction.
Having instruction blocks marked with a stop bit 7 guides the
fetch unit 70 to terminate the fetching of an instruction block.

As shown in FIG. 2, the format of the XPR (Expand Reg-
ister Indirect) instruction includes a 3-bit predicate p>, a
seven-bit opcode (op’=XPR), a five-bit register fieldr, and a
sixteen-bit Expand Register Indirect Register-Indirect Offset
field 24. The XPR instruction is used for the indirect expan-
sion of an instruction block. The address of the target block is
computed as the bitwise-OR of the value of register r and the
16-bit unsigned offset. Bitwise-OR (not addition) is used to

20

25

30

35

40

45

55

60

65

4

compute the indirect instruction block address. Either the
least significant bits of register r can be made zero, or the
16-bit offset can be encoded as zero, according to software
requirements.

With respect to enlarging instruction blocks, compilers can
expand instruction blocks to enlarge their size and improve
instruction streaming. FIG. 3, segment 30a shows three
instruction blocks labeled f, g, and h, each marked with a stop
bit. The assembly language syntax uses the hash symbol (#) to
indicate block termination. Block f expands blocks g and h.
Block g expands block h if (p1) is true, while block h expands
nothing. Block h is called a leaf block because it contains no
control instruction. Non-control instructions are labeled as:
1, L, ..., I;,. Segment 305 shows the same series of instruc-
tions as segment 30q after inline expansion of block g within
block f. The xp g instruction in segment 30a has been elimi-
nated and replaced with the instructions of block g, and the
stop bit of the last instruction in block g of segment 30q, L, is
removed in segment 305. This expansion works best for short
instruction blocks. It is avoided for recursive instruction
blocks.

In segment 30c, there are two expansions of block h within
block f. The first expansion is conditional, while the second
one is unconditional. The conditional expansion uses predi-
cation to predicate all instructions of block h with (p1). This
approach works best if all instructions of block h are uncon-
ditional. Otherwise, additional instructions should be
inserted to update the qualifying predicates. This expansion
should also be avoided for recursive instruction blocks.

As shown in FIG. 2, the format of the LOOP instruction
includes a sixteen-bit LOOP instruction Pseudo-Direct Offset
26, and expands counter-controlled and conditional loops.
The value of five-bit register r specifies a count n of loop
iterates. The LOOP instruction expands the loop block
repeatedly at most n iterations as long as the value of the
qualifying predicate (p) is non-zero. The LOOP instruction
does not modify the value of register r. Instead, it copies and
decrements the counter n on the control stack.

FIGS. 4A and 4B show example 40a and 406, respectively,
of LOOP instructions and blocks. The 16-bit offset in the
instruction format is concatenated with the upper address bits
of the program counter to compute the loop block address.
The asserted stop bit (#) provides a simple solution to detect
the end of a loop block.

Like any other instruction, the LOOP instruction has a stop
bit 7 to control the flow of instructions. Exemplary loop&stop
40a has the stop bit 7 of the LOOP instruction asserted. The
LOOP instruction expands the loop block repeatedly, and
then terminates the execution of the outer block. On the other
hand, exemplary loop&continue 405 includes a LOOP
instruction where the stop bit is not marked, as shown in FIG.
4B. The loop block is expanded repeatedly, and then instruc-
tion flow continues in the outer block at the return address.

Additionally, FIG. 2 shows the format of the BRK (break)
instruction, which is used for the conditional termination of a
function block or a loop block. The BRK instruction includes
a predicate p>, opcode op’, hard-coded five bits of 0’s fol-
lowed by a sixteen-bit reserved field 28 and the “s” bit (stop
bit). If executed within a function block, the rest of the block
is skipped and execution resumes at the return address. If
executed within a loop block, the loop terminates prema-
turely. Since the BRK instruction is predicated, its effect
depends on the value of a qualifying predicate (p). Only two
uses of the BRK instruction are defined. Additional uses are
reserved for future variations, such as breaking from multiple
nested blocks, multiple nested loops, or terminating the
execution of a thread.

US 9,170,811 B2

5

The control stack is a high-speed buffer implemented in
fetch unit 70 to control the instruction flow. FIG. 5A shows
two types of control stack entries 50. The A entry specifies a
return address, while the L entry specifies a loop entry that
stores a qualifying predicate, a loop block address, and a loop
counter. The L entry occupies twice the storage space ofan A
entry because of the loop counter. The control stack is split
into two parts to simplify the implementation. The address
stack stores commands and instruction addresses, while the
counter stack stores loop counters only.

Initially, the control stack is empty. The XP L1 instruction
pushes an A entry on exemplary address stack 52, as shown in
FIG. 5B. The A entry stores the address of the next instruction
(return address of XP L1). The A entry is pushed if the XP
instruction is not marked with a stop bit (does not appear at
the end of an instruction block). However, there is no A entry
and no return address for a control instruction appearing at the
end of an instruction block, such as XP L2#.

The LOOP instruction can push at most two entries on the
control stack. The A entry specifies the loop return address.
This entry is pushed whenever the LOOP instruction is not
marked with a stop bit. The L entry is pushed next to specify
the loop qualifying predicate, the loop block address, and the
loop counter, which is the decremented value of register r5.
As shown in FIG. 5C, the loop block address .3 is pushed on
the address stack 54, while the loop counter is pushed on the
counter stack 55. The two top pointers are adjusted accord-
ingly. The exemplary operation of the counter-controlled loop
shown in FIG. 5C specifies the loop block starting at [.3 and
terminating with a stop bit. When the last instruction of .3 is
fetched under guidance from stack control 62, the fetch unit
detects its stop bit. Since the top entry of the control stack is
a loop, the loop counter interfacing with counter stack 55 is
checked for loop termination. If greater than one, then control
is transterred to the loop block address at 1.3, and the loop
counter is decremented on the counter stack 55. Just before
expanding the last iteration, the control logic of stack control
62 detects the counter value 1 and pops the L entry and
corresponding counter off the stack. The top control now
points to the next A entry. When completing the last iteration,
the A entry is popped and control is transferred to the loop
return address.

The value of the qualifying predicate p is also examined at
the beginning of each loop iteration. If zero, the loop termi-
nates prematurely, regardless of the loop counter value. How-
ever, since predicate p0 is hardwired to 1 (always true), the
LOORP instruction of FIG. 5C is counter-controlled only.

Additional details of the control stack, including the stack
controller 62, the address stack 54, and the counter stack 55
are shown in FIG. 6. The address stack 54 stores return
addresses and loop block addresses, along with their qualify-
ing predicates. The counter stack 55 stores loop counters only.
The stack controller 62 receives four control signals for con-
trolling its internal operation and performs the requisite stack
control logic. The PushA signal pushes an Address entry on
the address stack. The PushL signal pushes a Loop entry on
the address and counter stacks. The STOP signal corresponds
to a stop bit that appears at the end of an instruction. The BRK
signal corresponds to a break instruction.

The Stack Control logic of the stack controller 62 also
examines the type of entries (CMD signal) on top of the
address stack (whether A or L), and detects loop termination
by examining the current value of the loop counter. Stack
control internally stores and outputs two signals, TopA and
TopC, which point to the top of the address stack and counter
stack, respectively. Stack control outputs WrA and WrC write
enable signals that enable the simultaneous writing of the

20

25

30

35

40

45

50

55

60

65

6

address and counter stacks. The Stack Control logic also
detects stack overflow and underflow and outputs their con-
trol signals. The address stack outputs the Loop Predicate (for
an L entry) and Return Address on top of the stack, as shown
in FIG. 6.

The PushA control signal pushes an A entry on the Address
Stack only. This can be the return address of an XP or LOOP
instruction, if' its stop bit is not asserted. Otherwise, no return
address is pushed. The TopA pointer is updated and the WrA
signal enables the writing of an A entry.

The PushL control signal pushes an L entry on the address
and counter stacks if the loop counter value is greater than 1
and the qualifying predicate value is nonzero. Otherwise,
there is no need for the L. entry. The top control updates the
TopA and TopC pointers and enables the writing of the
address and counter stacks using the WrA and WrC signals.
The loop counter is decremented and then stored on the
counter stack if its value is greater than 1.

The STOP control signal is used when the end of an
instruction block is reached. The STOP signal indicates block
termination. The program counter (PC register) is updated
according to Return_PC Address. Ifan A entry appears on top
of the address stack, it is popped. On the other hand, if an L
entry appears on top of the address stack, the loop counter is
decremented on the counter stack (WrC signal is asserted). If
the loop counter value is 1, indicating the last iteration, then
the L entry and counter are popped (TopA and TopC pointers
are updated). If the loop qualifying predicate value is zero,
then the L entry is also popped to terminate the loop prema-
turely.

The BRK control signal is associated with a break instruc-
tion. The present disclosure describes only two effects: break-
ing from an instruction block, and breaking from a loop.
Other effects and variations are reserved for future use. If the
top entry is an A entry, then its address is the Return_PC
address and the entry is popped. If the top entry is an L entry,
then this entry is popped and the next entry is examined. If the
next entry is an A entry, then its address is the Return_PC
address and the A entry is popped as well. If the next entry is
a second L entry, then its address is the Return_PC address
and its counter is decremented. If the counter of the second L
entry is 1, then the second L entry is popped as well. In all
cases, the PC register is updated according to the Return_PC
address.

The BRK signal is also useful for speculative control. A
fetch unit can expand a conditional instruction block or loop
speculatively without testing the value of its qualifying predi-
cate (p). The conditional block is marked with (p), and its
instructions are not committed until the value of qualifying
predicate is computed. If the value of (p) turns out to be true,
then the control speculation is correct. Otherwise, the BRK
control signal is used to break the fetching of instructions
from the conditional block. The program counter is updated
according to the Return_PC Address.

Regarding control stack overtlow, the control stack has a
fixed number of address and counter entries, according to
implementation. Typically, a small number of entries are
needed per hardware thread. However, recursive block expan-
sion can overflow the address stack. Overflow occurs when
the address or counter stack becomes full and there is a
demand to push additional entries by the PushA or Pushl.
control signals. It is a hardware exception that is handled by
either terminating the execution of the thread, or by spilling
some entries to a predefined memory region. Only the top
entries appear on the control stack, while the bottom entries
can be stored in memory.

US 9,170,811 B2

7

Underflow occurs when the address stack becomes empty
and there is a demand to pop an entry by the STOP or BRK
control signals. If the control stack is memory-mapped and
there are saved entries in memory, then these entries are
restored onto the control stack. Otherwise, stack underflow
indicates the termination of a thread.

The schematic diagram of instruction unit 70 is shown in
FIG. 7. The stack control logic (stack controller) 62 manages
the control stack 76. An [-Cache Block 86 including N
instructions is fetched each cycle, where N is implementation
specific. The fetched instructions are aligned on the I-cache
block boundary. The fetched instructions are decoded and
inserted into an instruction buffer, although not all of them
might be needed. The instance value of the PC register is also
associated with each block of instructions in the instruction
buffer. Although only two I-cache blocks are depicted in FI1G.
7, the number of blocks in the instruction buffer is implemen-
tation specific.

The Decode logic examines the opcodes of all fetched
instructions in parallel, detecting control instructions and
stop bits. If none of the pre-fetched instructions is a control
instruction and none of them has its stop bit set, then the
I-cache block address is incremented to fetch the next block
of N instructions. The SeqPC signal from the Decode and PC
Control Logic of instruction unit 82 specifies the address of
the next I-cache block, and the PC control logic selects the
Seq_PC input of the multiplexer 72.

Furthermore, the Decode logic identifies the first control
instruction or the first instruction marked with a stop bit,
whichever appears first among the fetched instructions. If a
control instruction appears first, then its effect will take place.
If this control instruction is expand (XP), register-indirect
expand (XPR), or LOOP, then its target block address
(XP_PC,XPR_PC, or LOOP_PC) and its Return Address are
computed. The Return Address is the address of the next
instruction appearing after XP, XPR, or LOOP, if these
instructions are not marked with a stop bit.

The PC register is updated according to the target address
(XP_PC, XPR_PC, or LOOP_PC). The control stack pushes
Return Address (PushA signal), Loop entry (PushL signal), or
both, according to the control instruction and its associated
stop bit. The value of register r (Value_REG{r]) from Register
File 80 is read and pushed on the counter stack as a LOOP
Counter. It can also serve to compute the target address of the
XPR instruction (XPR_PC), as shown in FIG. 7.

It the stop bit of a control instruction is set, then No Return
Address is pushed on the control stack. The PC register is
updated according to the target address only, without assert-
ing the PushA signal.

If a non-control instruction marked with a stop bit is first
identified among a block of instructions, then the PC register
is updated according to the control stack Return_PC address.
The STOP control signal is asserted to update the top entry of
the control stack.

Control instructions are predicated, and their effects
depend on the values of qualifying predicates. The PR register
in the PC Control Logic stores the values of all predicate
registers pl to p7, where p0 is hardwired to 1. If a control
instruction is predicated with (p), its value is computed before
updating the PC register. This is especially useful when a
sequence of XP instructions are predicated with different
qualifying predicates. Only one target instruction block is
expanded, and the rest are skipped. The present structured
control instruction fetch unit advocates non-speculative
instruction stream control, in which predicated control
instructions do not take effectuntil their qualifying predicates
are computed. Non-speculative control might delay the

20

25

30

35

40

45

50

55

60

65

8

expansion of predicated instruction blocks, but avoids the
complexity and overhead of speculative control. Compilers
can eliminate predicated XP instructions by expanding their
target instruction blocks inline, as illustrated in segment 30c,
shown in FIG. 3.

If a BRK instruction is first identified among instructions
and its qualifying predicate is true, then the BRK control
signal is sent to the control stack and the PC register is
updated according to the return address (Return_PC). The
BRK control signal is used to terminate instruction blocks
and loop blocks prematurely, and updates the top entry of the
Control Stack.

The I-Cache, shown in FIG. 7, is a conventional set-asso-
ciative cache. The number of ways can vary according to
implementation. The I-Cache Tags 85 are examined for a
given set at PC_index to produce the Way. The Way is con-
catenated with the PC_index to produce the [-Cache Index.
The I-Cache Index is used to fetch the I-Cache Block. The
lookup of the I-Cache Tags and the indexing of the I-Cache
are done sequentially during the same cycle. No way-predic-
tion is assumed.

Inthe event of I-Cache miss, the PC register address is sent
to the Pre-fetch Logic 84 to pre-fetch the instruction block. As
a block is transferred from the .2 Cache or Memory to the
I-Cache, the Pre-fetch Logic 84 also examines its instruc-
tions. If control instructions are detected, the Pre-fetch Logic
computes their target addresses and pre-fetch their target
blocks. The Pre-fetch Logic also examines stop bits to decide
whether an instruction block spans on one or multiple
I-Cache blocks.

Thread termination is detected when the last instruction in
an instruction block is fetched and there is no Return PC
address on the control stack. The Control Stack generates an
Underflow exception. This exception flag is input to the
Exception Logic 74 to output the appropriate Exception_PC.
The Exception Logic can detect many exception flags and
output different Exception_PCs.

It should be understood by one of ordinary skill in the art
that embodiments of the present method can comprise soft-
ware or firmware code executing on a computer, a microcon-
troller, a microprocessor, or a DSP processor; state machines
implemented in application specific or programmable logic;
or numerous other forms. Moreover, the structured control
instruction fetch unit can be provided as a computer program,
which includes a non-transitory machine-readable medium
having stored thereon instructions that can be used to program
a computer (or other electronic devices) to perform the pro-
cesses described herein. The machine-readable medium can
include, but is not limited to, floppy diskettes, optical disks,
CD-ROMs, and magneto-optical disks, ROMs, RAMs,
EPROMs, EEPROMSs, magnetic or optical cards, flash
memory, or other type of media or machine-readable medium
suitable for storing electronic instructions.

It is to be understood that the present invention is not
limited to the embodiments described above, but encom-
passes any and all embodiments within the scope of the fol-
lowing claims.

I claim:

1. A structured control instruction fetch unit, comprising:

a stack controller;

a control stack having an address stack and a counter stack,

the stack controller managing the control stack; and
execution units in operable communication with the con-
trol stack;

wherein the structured control instruction fetch unit is con-

figured for processing fixed format block structured
instructions, the fixed format block structured instruc-

US 9,170,811 B2

9

tions having a control instruction including a predicate
field, an opcode field, an offset field, and a stop field, the
instructions being processes via the control stack, the
stack controller feeding the fixed format block struc-
tured instructions to the execution units, the execution
units executing blocks of the instructions based on the
content of the predicate, opcode, offset, and stop fields,
the execution units terminating execution of the instruc-
tion blocks upon reading stop bits in the stop fields; and

wherein the instruction blocks are executed by the execu-
tion units in direct correspondence with blocks of high-
level code, the structured control instruction fetch unit
implementing loops and nested block expansions with-
out the necessity of low level branch and jump instruc-
tions.

2. The structured control instruction fetch unit according to
claim 1, wherein said stack controller further comprises
means for storing return addresses, loop block addresses,
loop predicates, and loop counters, thereby guiding instruc-
tion fetching of the structured control instruction fetch unit.

3. The structured control instruction fetch unit according to
claim 2, further comprising means for recursively and non-
recursively expanding said instruction blocks.

4. The structured control instruction fetch unit according to
claim 3, wherein said instruction block has a first instruction
and a last instruction, the first instruction being a target of said
control instruction and the last instruction of said instruction
block including an asserted stop bit in said stop field.

5. The structured control instruction fetch unit according to
claim 4, wherein said stack controller further comprises:

means for placing an address ofa LOOP control instruction

on said address stack;

means for placing a loop count defined by said LOOP

control instruction on said counter stack;

means for executing a block of instructions pointed to by

the LOOP address on said address stack a number of
times indicated by the loop count on said counter stack;
and

means for detecting the end of said loop block of instruc-

tions based on assertion of said stop bit.
6. The structured control instruction fetch unit according to
claim 5, wherein said stack controller further comprises:
means for terminating an outer block of instructions con-
taining said LOOP control instruction based on assertion
of a stop bit in said LOOP control instruction; and

means for continuing said outer block of instructions con-
taining said LOOP control instruction based on non-
assertion of said stop bit in said LOOP control instruc-
tion.

7. The structured control instruction fetch unit according to
claim 6, wherein said stack controller further comprises:

means for skipping instructions within a functional block

of instructions based on execution of a BRK control
instruction within the functional block of instructions;
and

means for premature termination of said loop block of

instructions based on execution of the BRK control
instruction within said loop block of instructions.

8. The structured control instruction fetch unit according to
claim 7, wherein said means for recursively and non-recur-
sively expanding said instruction blocks further comprises

—

0

20

25

30

35

40

45

50

55

60

10

means for determining a target instruction block address
based on a pseudo-direct offset field in an XP (Expand) said
control instruction.
9. The structured control instruction fetch unit according to
claim 8, wherein said means for recursively and non-recur-
sively expanding said instruction blocks further comprises
means for determining a target instruction block address
based on a register field and a register-indirect offset field in
an XPR (Expand Register Indirect) control instruction.
10. The structured control instruction fetch unit according
to claim 9, further comprising means for unconditionally
executing said control instruction based on a hard-coded
default value pointed to by said predicate field.
11. The structured control instruction fetch unit according
to claim 10, further comprising means for conditionally
executing said control instruction based on a programmer-
determined value pointed to by said predicate field.
12. The structured control instruction fetch unit according
to claim 11, further comprising means for placing said return
address associated with said control instruction on said
address stack.
13. The structured control instruction fetch unit according
to claim 11, further comprising means for placing on said
address stack a loop return address, a loop block address, and
a loop predicate associated with said LOOP control instruc-
tion.
14. The structured control instruction fetch unit according
to claim 13, further comprising means for speculatively
expanding a conditional instruction block, including:
means for marking the conditional instruction block with a
programmer-specified value in said predicate field; and

means for placing a BRK control instruction in line within
the conditional instruction block as an alternative
instruction executing when said programmer-specified
predicate is not true.

15. The structured control instruction fetch unit according
to claim 13, wherein said means for determining said target
instruction block address based on said pseudo-direct offset
field in said XP (Expand) control instruction further com-
prises means for concatenating contents of said pseudo-direct
offset field with upper address bits of a program counter
maintained by said fetch unit, thereby computing said target
instruction block address.

16. The structured control instruction fetch unit according
to claim 13, wherein said means for determining said target
instruction block address based on said register field and said
register-indirect offset field in said XPR (Expand Register
Indirect) control instruction further comprises means for per-
forming a bit-wise logical OR operation using contents of
said register-indirect offset field with contents of said register
field, thereby computing said target instruction block address.

17. The structured control instruction fetch unit according
to claim 13, wherein memory management of said block
instructions includes a set associative cache memory in oper-
able communication with a decode and program counter con-
trol logic portion of said structured control instruction fetch
unit.

