US 20150227373A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0227373 A1l

MUDAWAR 43) Pub. Date: Aug. 13, 2015
(54) STOP BITS AND PREDICATION FOR (52) US.CL
ENHANCED INSTRUCTION STREAM CPC GOG6F 9/3804 (2013.01); GO6F 9/381
CONTROL (2013.01); GOGF 9/30145 (2013.01)
(71) Applicant: King Fahd University of Petroleum 57) . . A],SSTRA,CT . .
and Minerals, Dhahran (SA) A microprocessor including an 1nstruct}0n set .archltecture
includes: a decode and fetch control; a instruction cache; a
(72) Inventor: Muhamed Fawzi MUDAWAR, Dhahran data ce}che; a cqntyol stackg and an instruction set jncluding a
(SA) ’ stop bit; a qualifying predicate; an opcode, a register and/or
an immediate operand. A data processing method includes:
fetch instructions encoded with a stop bit from an instruction
(73) Assignee: King Fahd University of Petroleum set architecture of the microprocessor; popping, a top address
and Minerals, Dhahran (SA) off a control stack and transfer control back to a caller func-
tion, to an indirect function, or to a top of a loop block when
the stop bit indicate a function return, an indirect function
(21) Appl. No.: 14/175,604 call, orpa loop branch; save control stack registers on a back-
ing store after the stop bit indicate the call or loop branch
(22) Filed: Feb. 7,2014 function when a number of used control stack registers
exceeds a HI threshold; overflow a control stack signal when
the number of the used and the saved entries exceeds the
Publication Classification backing store size; allocate more memory to increase a size of
the backing store from a data cache or terminate the execu-
(51) Int.ClL tion; restoring, the control stack registers from the data cache
GOG6F 9/38 (2006.01) when the number of the used control stack registers drops
GOG6F 9/30 (2006.01) below a LO threshold.

P

{8 dloop rh, 81
11z
Loop Branch

o i N
LOnnus

moooolpe St by

Control Stack
Free
SRR S ey
&3 § aeat Ezé

Patent Application Publication Aug. 13,2015 Sheet 1 of 14 US 2015/0227373 A1

~ Gualifying Predicale

-~ Stop bit
'

p s Opcode, Register andior immediate Operands

Fig.14

instruction 1

instruction 2 _
Stop

T bit

instruction i 1 gt

Fig.1B

Patent Application Publication Aug. 13, 2015 Sheet 2 of 14 US 2015/0227373 A1

Control Stack |

ge 4 f;ﬁ f =9 ig; Free
call 8g — ARl e tor
@1 T4 Sm——h
) repm, *\‘\ Allocated
Fig.2A
pt sl CALL? PC-Relative Signed Offset24

Fig. 28

Patent Application Publication

Aug. 13,2015 Sheet 3 of 14 US 2015/0227373 Al

_Lontrol Stack

@f deall v2,81) -

Fres

A @y Gt TOP
A 81
Allocated

pd ls op® = DCALL

PC-Relative Offsetts

Fig.3B

Patent Application Publication Aug. 13, 2015 Sheet 4 of 14

bes]

e

oot

dioap vh, 81
s Contral Btack
112
I12 ey Frea
. Lo Branch
Ig’;[s3“‘"l e s RN i
o Contins 08 N § BE heed TOR
A ARetiIn
Allnsated

Fig.4A

5% a;:n z%m*m ki3] 1, S m,
W

thew popfoeniy
H wts.mz addvasy)

- Cantrol Stachk
#f dinop rh, 831 1
o Frae
117
21 ILI vy LR M-l 1 81 jes{vos)
oo hoop Brench A AFeturn
TR3 \ SN S s JC T
T330Y ¥ Reur Aflmrated
Fig.48
Contesd Stack Cantrad Stack
,}’téc;f}ﬂirﬁu? i _
Free | Decrament countar | Free
HTEET TR 254 {S"“J:i&;&i}ﬁi TETMIIATEY
b }f}l?’ 'e,'ft i 3...{3“5‘;‘-531?”1&& ROR | X fiiiﬁyg b
A §Retnrn LR af’m &Cm‘ims}e 5 S
Slweuted i Aloosted
gt sl op¥= DLOOP | Bg PCRedative Offsett s

US 2015/0227373 Al

i& Lcap&%”é’:’

(L

Patent Application Publication Aug. 13,2015 Sheet S of 14 US 2015/0227373 A1

Bf ﬁiggp vh, 8L

&1 TA% ey Repeat @1 Control $tack

Freog

LG W1 | &1
A FRaburn

Alocated

L Continue

vo e {1 Jeemsflaturn

Fig.5A

5§ dlvop 5, #1 1 Control Stack

#1 I15+

Froa

(1) skip (D—trReturn | [LRN-131] 81
AN NG : A BEeturn

o Returs - Alloested

Fig.58

o
ey
943
]
e
et
i
3
iy

P Relative Offsells

Fig.5C

Patent Application Publication Aug. 13,2015 Sheet 6 of 14 US 2015/0227373 A1

P s op® Ra® Rb® opxBRc® | Ra¥pt®
FIG.6A
E gt - Rab immediatetl Rufipte

FiG.6B

Patent Application Publication Aug. 13,2015 Sheet 7 of 14 US 2015/0227373 A1

Control Stack Control $tack
Backing Store

Highar

Avidresses

A §2-bit Address for deferred call and return

LC Low 32-bit Countar Ag-bit Loop Blogk Address
LR Low B33-bit Counter 30-bit Loop Blovk Address
L¥ High 32-bit Counter 3-bit Loap Block Address

FIG.7B

o
e
%
prid
e
p5:3
o
o3
eed

Biive ! Raved (Used]T

FIG.7C

Patent Application Publication

Aug. 13,2015

Sheet 8 of 14

Fres

B 8%

Py 5 3“ Fraoe

A 21 L

2 21 L oLenRIgEa 21
Allocated allocated
Fig.8B Fig.8C

Fros

LRI 4211 €1

allocated

Fig.8D

US 2015/0227373 Al

Patent Application Publication Aug. 13,2015 Sheet 9 of 14 US 2015/0227373 A1

Ton Addrass

Trag
Agddr

Oeprilow Underfiow
2 F
3 Frowns

......

Contiige o Save/Restore
’ Control
{STOp Stack CS Registar Gats
DCALL e =
%....% e DAL e ache
Decods § | Dioap—
sructt LSKIp
iﬁB;;Lj;‘ien weet A Fetch
T Control Gatue of
¥ Heg{Ra)
To - Quaue

Patent Application Publication Aug. 13,2015 Sheet 10 of 14 US 2015/0227373 A1

D Mothing

%

Corwmrt TUF ardey

iR armryeng

Ho o

Bl T,
e Dy
o

oo

Fuothing

e

Pash 1O daned 10 endey
ot

Lugith (PO e Ofath e

Coamnier =

HMothing

Fig.10C Fig. 100

Patent Application Publication Aug. 13,2015 Sheet 11 of 14 US 2015/0227373 A1

ek
o

#
Tog fddresy =

air bingderfiow

Decrawient FOPLCH B antey |
Cocsatey

ekt
PR ‘»‘!i.'u.k'«",

U Bestore

Fig.10E

Rw B
femhirg

it s, Swved}
SR oees f

DT & MERRER]

fhad &

R
oL

Fig. 106G

Patent Application Publication Aug. 13,2015 Sheet 12 of 14 US 2015/0227373 A1

Target ptiptf | Deseription

Predicate p0 i abwawy s and canpot be written. Devo predicates ave

written. The Boolean vesnlt and fre complament ave dlscarded.
ot This can be pradivate pl thee 7. Onby one prediosts w18 writben The

Boolean result s wrinten o ph, but ity comploment s Secarded.

ptf Paiy

There are ondy six adicent predicate paivy that can be rrgeted: pi2, pR3,
3

p34, a5, p56, and p&7. The Hoolean sesalt is weltten to ph wnd it
comiplement i vaiiten to pil

pitf Group

Theve are Hfeen nosadiscent predicate groups that can be tarpeted 13,
w14 piS. ple pl7, pR4, pls, pRE, p27, pl35, pI35, p37, pd6. pd 7.
snd p57. The Boclean result Is wiliten to pt, 85 complement s wiitten to

v, and wll the dy-Detwenn praddicotes e serised.

FIG.11A

ri

)

Foolean vesgil o= §

oy

eg pld = o, =2

FiG.11B

slse

A5 gl == 23} {dookl)
alse 3£ (¥ < r3d} {blockd}
if {r4d = 0} iblookd}

ag pid = xi, ¥/ pi={oieeed); pdespl; ple=p3=0
fpd) 1t pZd = 2, 3 F/ 1F ipd}
ipdy ne P34 - x4, B i 1E {pdl

ipl} blaockl 77 3E lpi) ;

in%} blocks Zf if ip@) sxecoute block? ianstructions
fndy block3 A7 if {p3%) swecunte blockd instractions
{pd} hlockd FiOAE (p4) swecubte biookd instrusiions

{blonksl

e

FIG.11C

Patent Application Publication Aug. 13,2015 Sheet 13 of 14 US 2015/0227373 A1
Targes | F-hit Pattern | pbE code § Targer | 7-hit Pabtern | pAf code
ptE fabotatatately | miotadang st Fitaatadetaly WiNykeRaNa
vt TROEEEEE TS) RO IR TR
i 1R00L0N0 16888 ii p34 SHIL008 D1LOn
vi 15160000 | 01000 U pas | 0001106 | 00110
w3 GRLeULY iRt e el 24 G1iy0fg 310308
P GROSIOG igdal 33 IR BB R $31118
e hehiek 89 83081 pad fEiekel T go83104
By OO L DO6L3 ni4 1iii040 13308
wi2 1120080 131800 wEd SiiiioR 183130
p23 GLIGLOC GLOLS plé Foii1iD $31310%
pi& (Rais il G B! 131043 a7 FoU1 11 G311l
w&T7 SOHO0631 1 Tro1t il $iiii00 13433¢
i3 11R318040¢ 13018 nié R B A R s A TLH1I8%
»&7 iRk el e i 1184t piT 3011113 g1iit
ris b 5 B i B o) 11301
p2? 9333333 101311
Y 113131111 A W
Fig.124
fomass A8 {boms e O0Y 7 B0 4F {hems we U1} 0 Dremexe Af {fewem 1}
Tomis 16 {hawy wem D03 7 Lol A {(Lexe s 013 tomxy AF fhy w1}
fgmaws ¥ {teme we 00} Giel LF {hexs omes 01} towstidwy s 3 (D s 3}
ey LT (hede w»w QL) 7 bael 4Ff {tewg s 00) 7 temmob®s A {Bgowe 1
Lamsts AT fhowe owe §L3 0 ksl AT {bawmgosmss 800 Lo if {haosw 1}
bamgy 3F (bew s UL Bl 48 S == 00 Bemnm LE by ww)
by = oasbaste + wadahs by xrbaRs + Mt
5w aitaxs + fmabwal by heow xetaRe doely

Fig.12B
gt
Compite Predicates g 3
&y 2
TN < GEE
B N Devoder
piow it b Sealy 3
prow B oAf Boa sl i ;
Bp o= B oLF biords foaw 110 Compite Predicates
puow 0 4f Li=D < s 3 4
o= U AF fia % kiaaw il ' pEindind :gsﬁ whip?
o= Yritsh kb st ¢ "

Predivate {;33

Fig.12C

Patent Application Publication Aug. 13,2015 Sheet 14 of 14 US 2015/0227373 A1

Haplay Speakers
1310 1322
Frocessing e
(:imuittg\ | m;&"'}
> Lo804
Display Sound torags
Cnnteolisg Conteadisr Controtler
1308 1320 1324
BUS
1326
f‘ge“‘"ifi Memury] {CPU 1O Interfacs
Caontrier 120 1300 1342
o 1308
4; S :
T B ;
- = *
y etwarc) Keyboard] | TOUSR | p enarais
R 1313 o~ F}g fg 3 Mouse Soresn 1918
N i <8 1314 1318

US 2015/0227373 Al

STOP BITS AND PREDICATION FOR
ENHANCED INSTRUCTION STREAM

CONTROL
BACKGROUND
[0001] 1. Field of the Disclosure
[0002] The exemplary embodiments described herein

relate to an instruction set architecture, a microprocessor
containing the instruction set architecture, and a computer
processor or system using the instruction set architecture, for
example in data processing systems.

[0003] 2. Description of the Related Art

[0004] In data processing systems, control instructions
alter the fetching and sequencing of instructions. Conditional
branch (or jump) instructions are heavily used to control
loops and if-else structures. They constitute about 17% of the
dynamic instruction mix in many integer benchmarks. Pro-
cedure call and return instructions are about 3% of the
dynamic instruction mix as described in Hennessy et al.,
(“Computer Architecture: A Quantitative Approach”, 5% edi-
tion, Morgan Kaufmann publishers, 2012—incorporated
herein by reference).

[0005] Conditional branch instructions are used heavily for
instruction stream control. They appear at the end of loop
blocks and branch backwards to control the execution of
loops. They also appear inside if-else structures and branch
forward to skip instruction blocks. Conditional branch
instructions are used differently in different architecture as
described in Intel, (“Intel 64 and 1A-32 Architectures Soft-
ware Developer’s Manual, Volume 1: Basic Architecture,
Volume 2A, 2B: Instruction Set Reference, Volume 3A, 3B:
System Programming Guide”, November 2007—incorpo-
rated herein by reference), ARM, (“ARM Developer Suite”,
Version 1.2, Assembler Guide, November 2001,—incorpo-
rated herein by reference), IBM, (“Power ISA”, Version 2.05,
October 2007—incorporated herein by reference), Sun
Microsystems, (“UltraSPARC Architecture, One Architec-
ture Multiple Innovative Implementations”, Draft D0.9.3b,
20 Oct. 2009—incorporated herein by reference), MIPS
Technologies, (“MIPS64 Architecture for Programmers, Vol
1: Introduction, Vol 2: MIPS64 Instruction Set, Vol 3: Privi-
leged Resource Architecture”, Revision 3.02, Mar. 21,
2011—incorporated herein by reference) and Intel, (“Intel
Itanium Architecture: Software Developer’s Manual”, revi-
sion 2.3, May 2010—incorporated herein by reference).
Many architectures, such as Intel x86 as described in Intel,
(“Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1: Basic Architecture, Volume 2A, 2B:
Instruction Set Reference, Volume 3 A, 3B: System Program-
ming Guide”, November 2007—incorporated herein by ref-
erence), ARM, (“ARM Developer Suite”, Version 1.2,
Assembler Guide, November 2001,—incorporated herein by
reference), IBM Power, (“Power ISA”, Version 2.05, October
2007—incorporated herein by reference), and Sun SPARC
(“UltraSPARC Architecture, One Architecture Multiple
Innovative Implementations”, Draft D0.9.3b, 20 Oct. 2009—
incorporated herein by reference), use condition codes or
flags (such as Zero, Negative, Carry, and Overflow) for con-
ditional branching. Other architectures, such as MIPS
(“MIPS64 Architecture for Programmers, Vol 1: Introduc-
tion, Vol 2: MIPS64 Instruction Set, Vol 3: Privileged
Resource Architecture”, Revision 3.02, Mar. 21, 2011—in-
corporated herein by reference), use conditional compare and
branch instructions for control, in which general-purpose reg-

Aug. 13,2015

isters are compared. Few others, such as Intel Itanium, (“Intel
Itanium Architecture: Software Developer’s Manual”, revi-
sion 2.3, May 2010—incorporated herein by reference), use
predicate bits for conditional branching.

[0006] Inaddition, all architectures provide instructions for
procedure call and return. The CALL instruction in the Intel
x86 architecture pushes the return address in memory on the
stack as described in Intel, (“Intel 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1: Basic Architecture,
Volume 2A, 2B: Instruction Set Reference, Volume 3A, 3B:
System Programming Guide”, November 2007—incorpo-
rated herein by reference). On the other hand, the JAL instruc-
tion in the MIPS architecture saves the return address in the
general-purpose register R31 as described in MIPS Technolo-
gies, (“MIPS64 Architecture for Programmers, Vol 1: Intro-
duction, Vol 2: MIPS64 Instruction Set, Vol 3: Privileged
Resource Architecture”, Revision 3.02, Mar. 21, 2011—in-
corporated herein by reference). The IBM Power (“Power
ISA”, Version 2.05, October 2007—incorporated herein by
reference) and Intel Itanium (“Intel Itanium Architecture:
Software Developer’s Manual”, revision 2.3, May 2010—
incorporated herein by reference) architectures use a special-
purpose link register to save the return address.

[0007] The return instruction has also different names in
different instructions set architectures. For example, the Intel
x86 architecture calls it RET as described in Intel, (“Intel 64
and 1A-32 Architectures Software Developer’s Manual, Vol-
ume 1: Basic Architecture, Volume 2A, 2B: Instruction Set
Reference, Volume 3A, 3B: System Programming Guide”,
November 2007—incorporated herein by reference). When
executing this instruction, the processor pops the return
address from the memory stack segment into the instruction
pointer. The ARM uses the MOV instruction to copy the link
register R14 into the program counter register R15 as
described in ARM, (“ARM Developer Suite”, Version 1.2,
Assembler Guide, November 2001,—incorporated herein by
reference). The POWER architecture uses BCLR (Branch
Conditional to Link Register) as a conditional return instruc-
tion, where the return address is stored in the link register LR
as described in IBM, (“Power ISA”, Version 2.05, October
2007—incorporated herein by reference). The MIPS archi-
tecture uses JR (Jump Register) as the return instruction,
where register R31 contains the return address as described in
MIPS Technologies, (“MIPS64 Architecture for Program-
mers, Vol 1: Introduction, Vol 2: MIPS64 Instruction Set, Vol
3: Privileged Resource Architecture”, Revision 3.02, Mar. 21,
2011—incorporated herein by reference).

[0008] The conditional branch instruction, regardless of its
name, has a high frequency that cannot be ignored. This
instruction occupies space in the instruction cache, and con-
sumes cycles and energy to execute. Branches decrease per-
formance and consume hardware resources for dynamic
branch prediction. They also restrict instruction scheduling
by the compiler. This invention shows that conditional branch
instructions can be eliminated in most situations. In addition,
the return instruction can also be eliminated.

[0009] Some conditional branch instructions used in if-else
structures can be eliminated with predication. Predication is
not a new idea. It has been used in two prominent architec-
tures: the ARM (“ARM Developer Suite”, Version 1.2,
Assembler Guide, November 2001,—incorporated herein by
reference), and the Intel Itanium architecture (“Intel Itanium
Architecture: Software Developer’s Manual”, revision 2.3,
May 2010—incorporated herein by reference). Predication

US 2015/0227373 Al

allows the tagging of all instructions with a qualifying predi-
cate. If the value of the qualifying predicate is false at execu-
tion time, the predicated instruction behaves like a NOP. The
ARM architecture uses condition codes (Zero, Negative,
Carry, Overtlow) to achieve conditional execution. On the
other hand, the Itanium architecture uses qualifying predicate
registers to achieve conditional execution. Predication helps
in reducing the number of conditional branches, especially
those used in nested if-else structures. However, it cannot
eliminate backward conditional branches that appear at the
end of loop structures.

[0010] Another drawback of instruction set architectures is
that return addresses are saved on a stack segment in memory,
especially for nested procedure calls. Because return
addresses can be updated and manipulated like data, attackers
can induce arbitrary behavior in a program by diverting the
control flow, without injecting code. This technique, called
return-oriented programming, was demonstrated in Bucha-
nan et al., (“When Good Instructions Go Bad: Generalizing
Return-Oriented Programming to RISC”, in Proceedings of
the 15" ACM conference on Computer and Communications
Security,” CCS’08, pages 27-38, October 2008, Virginia,
USA—incorporated herein by reference). The authors
showed that return-oriented programming is not limited to the
x86 ISA, but is widely applicable to many RISC architectures
and operating systems (such as Linux and Solaris). Return-
oriented programming defeats and bypasses the WX pro-
tections, developed in operating systems, in which memory is
either marked as writable or executable, but never both.

SUMMARY

[0011] A microprocessor, including: a decode configured
to decode instructions of an instruction set architecture; a
fetch control unit configured to fetch instructions from a
memory; an instruction cache configured to store a plurality
of fixed byte-length instructions; a data cache configured to
store data; a control stack implemented with high speed con-
trol registers and a backing store allocated memory by a
system software, and configured as a side effect of control and
the stop bits to isolate control stack entries and addresses from
direct manipulation from a user program; and an instruction
set, including: a stop bit configured to indicate a function
return, an indirect function call, or a loop branch, and pop a
top address off the control stack and transfer the control back
to a caller function, to an indirect function, or to a top of'a loop
block; a qualifying predicate configured to allow a compare
instruction to target an arbitrary number of predicates; and an
opcode configured to specify an operation to be performed.
[0012] In one embodiment, the stop bit eliminates return
instructions and conditional branch instructions at anend of a
loop block.

[0013] In another embodiment, the qualifying predicate
allows a compare instruction to target an arbitrary number of
predicates and reduces the conditional branch instructions.
[0014] In another embodiment, the stop bit marked in a
conditional compare and return instruction discards a boolean
result and triggers a return operation when the qualifying
predicate and the boolean result are both true.

[0015] In another embodiment, the control stack replaces
return instructions with the stop bit when performing loop
iterates, function returns and indirect function calls.

[0016] In another embodiment, the instruction set includes
a register and an immediate operand.

Aug. 13,2015

[0017] Inanother embodiment, the instruction set includes
a register.
[0018] Inanother embodiment, the instruction set includes

an immediate operand.

[0019] Ina second aspect the present disclosure includes a
data processing method, including:

fetching, with processing circuitry, instructions encoded with
a stop bit from an instruction set architecture of the micro-
processor; popping, with processing circuitry, a top address
off a control stack and transfer control back to a caller func-
tion, to an indirect function, or to a top of a loop block when
the stop bit indicate a function return, an indirect function
call, or a loop branch;

saving, with processing circuitry, control stack registers on a
backing store after the stop bitindicate the function return, the
indirect function call, or the loop branch when a number of
used control stack registers exceeds a HI threshold; overflow-
ing, with processing circuitry, a control stack signal when the
number of the used and the saved entries exceeds the backing
store size; allocating, with processing circuitry, more
memory to increase a size of the backing store from a data
cache or terminating the execution; restoring, with processing
circuitry, the control stack registers from the data cache when
the number of the used control stack registers drops below a
LO threshold.

[0020] In one embodiment, the control stack implemented
with high speed control registers and a backing store allocated
memory by system software, and configured as a side effect of
control and the stop bits to isolate control stack entries and
addresses from direct manipulation from a user program.
[0021] In another embodiment, the stop bit eliminates
return instructions and conditional branch instructions at an
end of a loop block.

[0022] In another embodiment, the qualifying predicate
allows a compare instruction to target an arbitrary number of
predicates and reduces the conditional branch instructions.
[0023] In another embodiment, the stop bit marked in a
conditional compare & return instruction discards a boolean
result and triggers a return operation when the qualifying
predicate and the boolean result are both true.

[0024] In a further aspect the present disclosure includes a
non-transitory computer-readable medium storing execut-
able instructions, which when executed by a computer pro-
cessor, cause the computer processor to execute a method
including: fetching, with processing circuitry, instructions
encoded with a stop bit from an instruction set architecture of
the microprocessor;

popping, with processing circuitry, a top address off a control
stack and transfer control back to a caller function, to an
indirect function, or to a top of a loop block when the stop bit
indicate a function return, an indirect function call, or a loop
branch; saving, with processing circuitry, control stack reg-
isters on a backing store after the stop bit indicate the function
return, the indirect function call, or the loop branch when a
number of used control stack registers exceeds a HI threshold;
overflowing, with processing circuitry, a control stack signal
when the number of the used and the saved entries exceeds the
backing store size; allocating, with processing circuitry, more
memory to increase a size of the backing store from a data
cache or terminating the execution; restoring, with processing
circuitry, the control stack registers from the data cache when
the number of the used control stack registers drops below a
LO threshold.

US 2015/0227373 Al

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] FIG. 1A depicts a block diagram of an instruction
format for providing instructions in accordance with the
present embodiment.

[0026] FIG. 1B depicts a block diagram of an instruction
block terminated with a stop bit in accordance with the
present embodiment.

[0027] FIG. 2A depicts Call/Return Sequence when the
stop bit is used as a function return in accordance with the
present embodiment.

[0028] FIG. 2B depicts a block diagram of a Call/Branch
instruction format in accordance with the present embodi-
ment.

[0029] FIG. 3A depicts Deferred Call/Return Sequence
when the stop bits are used for function call and return in
accordance with the present embodiment.

[0030] FIG. 3B depicts a DCALL Instruction Format in
accordance with the present embodiment.

[0031] FIG. 4A depicts the stop bit used as a loop branch
and a continuation signal in accordance with the present
embodiment.

[0032] FIG. 4B depicts the stop bit used as a loop branch
and a function return in accordance with the present embodi-
ment.

[0033] FIG. 4C depicts an operation of Loop & Continue
(LC) and Loop & Return (LR) entries on control stack with
the present embodiment.

[0034] FIG. 4D depicts a DLOOP Instruction Format in
accordance with the present embodiment.

[0035] FIG.5A depicts a Skip& Continue that pops the top
entry off the control stack and branches to a PC-relative in
accordance with the present embodiment.

[0036] FIG. 5B depicts a Skip & Return marked with a stop
bit stop bit that pops two entries off the control stack in
accordance with the present embodiment.

[0037] FIG. 5C depicts a Skip Instruction Format in accor-
dance with the present embodiment.

[0038] FIG. 6A depicts an R-type instruction format in
accordance with the present embodiment.

[0039] FIG. 6B depicts an I-type instruction format in
accordance with the present embodiment.

[0040] FIG. 7A depicts a control stack and a control stack
backing store in accordance with the present embodiment.
[0041] FIG. 7B depicts a format of various code segment
(CS) entries in accordance with the present embodiment.
[0042] FIG. 7C depicts a block diagram of a Control Stack
Status Register (CSSR) in accordance with the present
embodiment.

[0043] FIG. 8A depicts an example of a recursive call to
function in accordance with the present embodiment.

[0044] FIG. 8B depicts recursive calls push A-entries on the
control stack having identical return addresses in accordance
with the present embodiment.

[0045] FIG. 8C depicts identical Address (A) entries
merged into one Loop & Return (LR) entry in accordance
with the present embodiment.

[0046] FIG. 8D depicts the returning from recursive calls
reduces the Loop & Return (LR) counter when the stop bit is
encountered in accordance with the present embodiment.
[0047] FIG. 9 depicts a block diagram of a control stack
interface in accordance with the present embodiment.
[0048] FIG.10A depicts a flow chart of a CALL instruction
in accordance with the present embodiment.

Aug. 13,2015

[0049] FIG. 10B depicts a flow chart of a DCALL instruc-
tion in accordance with the present embodiment.

[0050] FIG. 10C depicts a flow chart of a DLOOP instruc-
tion in accordance with the present embodiment.

[0051] FIG. 10D depicts a flow chart of a save operation of
Code Segment (CS) registers on the backing store when the
number of Used CS registers exceeds a HI threshold in accor-
dance with the present embodiment.

[0052] FIG. 10E depicts a flow chart of a processing of
STOP bits for non-control instructions in accordance with the
present embodiment.

[0053] FIG. 10F depicts a flow chart of a SKIP instruction
in accordance with the present embodiment.

[0054] FIG. 10G depicts a flow chart of restore operations
of Code Segment (CS) registers from the backing store when
the number of Used CS registers drops below a L.O threshold
in accordance with the present embodiment.

[0055] FIG. 11A depicts targeting predicates in the PR
register in accordance with the present embodiment.

[0056] FIG. 11B depicts an example of targeting a group of
predicates in accordance with the present embodiment.
[0057] FIG. 11C depicts an example of using a group of
predicates to translate a nested IF-ELSE structure in accor-
dance with the present embodiment.

[0058] FIG. 12A depicts an encoding scheme of encoding
7-bit pattern t for targeting predicates as a 5-bit target ptfin an
instruction format in accordance with the present embodi-
ment.

[0059] FIG. 12B depicts a derivation of the logic equations
for decoding the 5-bit target ptfinto a 7-bit pattern t in accor-
dance with the present embodiment.

[0060] FIG. 12C depicts logic equations for computing all
the seven predicate bits in the PR register in accordance with
the present embodiment.

[0061] FIG. 13 showsa schematic diagram of an exemplary
processing system.

DETAILED DESCRIPTION

[0062] The proposed embodiment uses a new instruction
set architecture that features stop bits and predication. It
associates a qualifying predicate and a stop bit with each
instruction in the instruction set.

[0063] The stop bit is encoded as part of each instruction in
the architecture. If the stop bit of an instruction is set, it marks
the end of an instruction block. The stop bit can indicate a
function return, an indirect function call, or a loop branch. It
pops the top address off the control stack and transfers control
back to the caller function, to the indirect function, or to the
top of a loop block. The stop bit is just a single bit in the
instruction format. However, it eliminates the need for many
return instructions and conditional branch instructions that
appear at the end of loop blocks.

[0064] Predication reduces the need for conditional branch
instructions in if-else structures. The Intel Itanium architec-
ture as described in Intel, (“Intel Itanium Architecture: Soft-
ware Developer’s Manual”, revision 2.3, May 2010—incor-
porated herein by reference) allows a compare instruction to
compute one or at most two predicates. On the other hand, this
invention allows a compare instruction to target an arbitrary
number of predicates. This approach simplifies the translation
of complex Boolean expressions and nested if-else structures.
[0065] Another feature of this embodiment is the control
stack, which is implemented using high speed control regis-
ters. It has a backing store in memory, which can be defined

US 2015/0227373 Al

only by the system software. The control stack registers save
the return addresses of function calls, the indirect addresses of
functions, the loop block addresses, and the loop counters.
The control stack is not exposed to the programmer as archi-
tecturally visible registers. Instead, it is modified as a side
effect of control instructions that push addresses and counters
on the control stack, and stop bits that pop this data. The
control stack is isolated from direct manipulation by the user
program. This prevents its exploitation and also improves the
security of the architecture.

[0066] It should be noted that some instruction fetch units
have proposed a return-address stack unit for the fast execu-
tion of call and return instructions as described in Henry et al.,
(“Microprocessor with Fast Execution of Call and Return
Instructions”, U.S. Pat. No. 8,423,751 B2, Apr. 16, 2013—
incorporated herein by reference). However, this invention
features a control stack which is more general than a return-
address stack unit. First, there is no return instruction. A stop
bit can be used to achieve a function return. Second, the same
control stack can be used to control loop iterates, to achieve
indirect function calls, in addition to function returns. The
stop bit is used to pop the target loop block address, the
indirect function address, and the return address, without the
need for an extra and more costly branch address predictor.
[0067] FIG. 1A shows a fixed-size 32-bit format for all
instructions. The qualifying predicate (p) occupies the upper
3 bits of the instruction format. The stop bit appears next. The
remaining 28 bits are used for the opcode, register and/or
immediate operands. The qualifying predicate is used for
conditional execution. The stop bit is used for conditional
return, for indirect function call, and for conditional loop
branching.

[0068] A program is divided into instruction blocks. An
instruction block is defined as a sequence of instructions that
terminates with a stop bit, as shownin FIG. 156. The ‘!” symbol
denotes a stop bit in the assembly syntax. The instruction
block can be the target of a control instruction (such as
CALL) that initiates its execution. The last instruction is
marked with a stop bit. Any number of control instructions
may appear inside an instruction block that transfer control to
other instruction blocks.

[0069] The stop bit of a non-control instruction is equiva-
lent to a function return, an indirect function call, or a loop
branch. The instruction fetch unit pops the top address oft the
control stack to transfer control back to the target instruction
block. Program or thread termination is detected when there
is no return address to pop off the control stack.

[0070] Eight single-bit qualifying predicates are defined,
namely p0 thru p7. Predicate p0 is always true, and cannot be
written. It is used for the unconditional execution of instruc-
tions. If the qualifying predicate of an instruction is not speci-
fied, it defaults to (p0).

[0071] Predicates pl to p7 can be written. They control the
execution of instructions. If the qualifying predicate (p) of an
instruction is false then the instruction need not issue for
execution. It can be dropped from the execution pipeline.
Alternatively, if a predicated ALU instruction has been issued
early for execution and its qualifying predicate (p) is com-
puted later as false, then the result is discarded. The destina-
tion register is not updated.

[0072] The CALL instruction invokes a function. It trans-
fers control to a target instruction block. The CALL instruc-
tion format is shown in FIG. 2B. The opcode field is only 4
bits. The address of the target instruction block is encoded as

Aug. 13,2015

a 24-bit PC-relative signed offset in the instruction format.
The CALL instruction computes the target instruction
address as: PC=PC+Offset24.

[0073] An example of function call and return is shown in
FIG. 2A, where function f calls g. The CALL instruction
pushes the return address on the control stack. The A-entry on
the control stack is an address entry that saves the return
address of a function call. The last instruction 168 in function
g is marked with a stop bit (! symbol). The stop bit pops the
return address off the control stack and transfers control back
to the caller function. The stop bit eliminates the need for a
return instruction.

[0074] The CALL instruction is predicated, and executes a
target instruction block conditionally. If the qualifying predi-
cate (p) has a false value, the predicated CALL instruction has
no effect, as if the instruction did not exist. If the qualifying
predicate (p) is not specified, it defaults to (p0), which is
always true and used for unconditional execution.

[0075] The CALL instruction has two meanings depending
on its stop bit. If the stop bit of a CALL instruction is clear, it
is an ordinary procedure CALL with a return address. The
return address is pushed on the control stack as shown in FI1G.
2A. On the other hand, if the stop bit of a CALL instruction is
set, there is no return address and the control stack is not
updated. This is equivalent to a conditional branch, which is
defined as a pseudo-instruction:

(p) BR @target//Pseudo: (p) CALL @target!

[0076] Function calls can be deferred and stop bits can
initiate indirect function calls, in addition to function returns.
The DCALL instruction, shown in FIG. 3, defines a function
call. It pushes two addresses (A-type entries) on the control
stack. The first address is a register indirect function address
(value of Reg[Ra)). The second address is a PC-relative return
address. The register indirect function address is pushed on
top of the PC-relative return address, such that the indirect
function call occurs first. The DCALL instruction has the
following syntax:

(p) DCALL Ra, @target {!}//if (p) push two A entries on the
CS

[0077] The indirect function call does not happen immedi-
ately. It is deferred until a later instruction. For example,
instruction 114 marked with a stop bit in FIG. 3A, invokes
indirectly function g. It pops the register indirect function
address (@g off the control stack. On the other hand, instruc-
tion 168, which is the last instruction in function g, pops the
return address @1 and transfers control back to function f at
the return address.

[0078] The DCALL instruction can also be marked with a
stop bit. If the stop bit of a DCALL instruction is set, then the
indirect function call occurs immediately. Only one A-entry,
carrying the PC-relative return address, is pushed on the
control stack.

[0079] The importance of the DCALL instruction is that it
can be scheduled early by the compiler. This can provide
sufficient time for the fetch unit to push addresses (especially
the register indirect function address) on the control stack,
before the actual indirect function call (or stop bit) appears in
the instruction stream. Therefore, the indirect function call
can be deferred, which reduces the stalling of the instruction
fetch unit and improves its performance.

[0080] The DCALL instruction format is shown in FIG.
3B. Source register Ra specifies the indirect function address,

US 2015/0227373 Al

while the 15-bit PC-relative offset specifies the return
address. The DCALL instruction computes the return address
as: PC=PC+Offset15.

[0081] In addition to function return and indirect function
call, the stop bit can also achieve a loop branch without the use
of a branch instruction. Loops can be defined early in the
instruction stream. The DLOOP instruction, shown in FIG. 4,
defines a counter-controlled loop. Source register Ra speci-
fies the loop counter and a PC-relative offset specifies the loop
block address. The DLOOP instruction format is shown in
FIG. 4D. It has the following syntax:

(p) DLOOP Ra, @target {!}//if (p) push a loop entry on the
CS

[0082] Depending on the stop bit, the DLOOP instruction
defines two types of loops. If the stop bit of a DLOOP instruc-
tion is clear, it is called Loop& Continue. The DLOOP
instruction pushes the L.C entry on the control stack, as illus-
trated in FIG. 4A. The LC entry stores the counter value N of
source register Ra and the loop block address. The stop bit of
instruction 137 is used as a loop branch. It decrements the
counter value of the LC entry and branches to address @1 of
instruction 113. The LC counter is decremented down to 1 on
the control stack to achieve N iterates, as shown in FIG. 4C.
Then, the stop bit of I37 pops the L.C entry (with counter=1)
and continues at the next address after completing the last
iterate. The stop bit is used as a continuation signal to exit the
loop.

[0083] On the other hand, if a DLOOP instruction is
marked with a stop bit then it is called Loop & Return. The
DLOORP instruction pushes the LR entry on the control stack,
asillustrated in FIG. 4B. The LR entry stores the decremented
value (N-1) of source register Ra and the loop block address
on the control stack. Unlike the L.C entry, the LR entry dec-
rements the counter value before pushing it on the control
stack. The counter value N cannot be 1, or else no LR entry is
pushed on the control stack. Similar to L.C, the stop bit dec-
rements the counter value of the LR entry from (N-1) downto
1 on the control stack, as shown in FIG. 4C. However, there is
no continuation signal. The LR entry is popped after com-
pleting (N-1) iterates. Then, the A-entry is popped after com-
pleting the last iterate, hence achieving a function return.
Therefore, the same stop bit of instruction 137 is used as a loop
branch and a function return.

[0084] Loop blocks can be nested. Multiple LC/LR entries
may appear on the control stack, each having its loop address
and counter. The stop bit eliminates many loop branches,
resulting in simpler and faster instruction flow control. The
DLOORP instruction does not accept a zero counter. If the
value of counter register Ra is zero then no LC/LR entry is
pushed on the control stack. The programmer can avoid this
situation by checking and bypassing the loop block when the
counter is zero.

[0085] The SKIP instruction can be used to terminate a
counter-controlled loop prematurely. It pops the top entry off
the control stack, regardless of its type. There are two varia-
tions of the SKIP instruction: Skip & Continue (stop bit is
clear) and Skip & Return (stop bit is set). The SKIP instruc-
tion format is shown in FIG. 5C. The PC-relative offset speci-
fies the continuation address for Skip & Continue. However,
it has no use for Skip &Return, which is marked with a stop
bit. The SKIP instruction has the following syntax:

Aug. 13,2015

(p) SKIP @target
(p) SKIP !

/1 if (p) pop top entry & continue @target
/1 if (p) pop top entry and return address

[0086] An example of Skip & Continue is shown in FIG.
5A. If the qualifying predicate p1 of the skip @2 instruction
is true, the L.C entry that appears on top of the control stack is
popped and instruction fetching continues at address @2.
[0087] An example of Skip & Return is shown in FIG. 5B.
If'the qualifying predicate p1 of skip! is true, the LR entry that
appears on top of the control stack is popped. In addition, the
stop bit pops the next A-entry off the control stack and instruc-
tion fetching continues at the return address. The exact behav-
ior of'the stop bit depends on the second top entry type on the
control stack. For instance, if two LR entries appear on top of
the control stack, then the Skip & Return instruction pops the
top LR entry. However, the stop bit decrements the counter of
the second LR entry. The stop bitis used to branch to the outer
loop (second LR entry address).

[0088] The SKIP instruction can be generalized to pop
multiple entries off the control stack. This is useful when
escaping multiple nested loop blocks or returning from mul-
tiple nested function calls.

[0089] The control stack is a circular buffer implemented
using 64-bit CS Registers. FIG. 7A shows a control stack with
eight CS registers (CS0 to CS7). The control stack registers
are not visible to the programmer. They are modified as a side
effect of control instructions and stop bits. The number of CS
registers allocated to one application (or thread) is implemen-
tation specific, but is always a power of two (such as 8 or 16).
[0090] A control stack has a corresponding backing store in
memory, as illustrated in FIG. 7A. The system software allo-
cates memory for the backing store. The backing store has a
size, which indicates the maximum number of LR entries that
can be saved in memory. Control stack overflow occurs when
the control stack backing store is full. Control stack under-
flow occurs when the control stack is empty and there is no CS
entry to pop. This indicates program or thread termination.
[0091] The CS entry is 64-bit long. The upper 2-bit of a CS
entry specifies the entry type (or operation) on the control
stack. Four CS entry types are defined in FIG. 7B: A, LC, LR,
and LX. The A-entry stores a 62-bit address for a deferred
function or a return address. The 62-bit instruction address is
appended with two implicit zeros to obtain a 64-bit byte
address, because instructions are 4-byte long and aligned in
memory. The LC (or LR) entry is defined by a DLOOP
instruction, whose stop bit is clear (or set). The loop block
address field is only 30-bit long, which is large enough for
loop blocks. The upper address bits of the loop block are
unchanged in the program counter. The implication is that a
loop block should not cross the boundary of a 4-GByte
memory segment (or 2°° instructions). The loop counter field
is only 32-bit long, which is sufficiently large for most situ-
ations.

[0092] The LX entry can be paired with the LC or LR entry
to define aloop with a 64-bit counter. The DLOOP instruction
pushes two entries on the control stack if the counter value is
larger than 32 bits. The LX entry is removed when the counter
value drops below 232,

[0093] The control stack is not exposed to the programmer
as architecturally visible registers. Instead, it is modified as a
side effect of CALL, DCALL, DLOOP, SKIP, and STOP bits.
This isolates the CS entries and addresses from direct
manipulation and prevents their exploitation. The control

US 2015/0227373 Al

stack operation is managed by hardware. Its internal state is
saved in the control stack status register CSSR, shown in FIG.
7C. The following fields define the internal state of the control
stack in Table I:

TABLE I

Field Name Description

BSize Backing Store Size: maximum number of CS entries that
can be saved

Saved Number of CS entries that are currently saved on the
backing store

Used Number of CS registers that are currently used on the
control stack

TOP Top CS register number on the control stack

BOT Bottom CS register number on the control stack

BSPp Backing Store Pointer: Address of next free entry on the
backing store

[0094] The BSize field specifies the maximum number of

CS entries that can be saved on the backing store. The BSize
is defined as multiple of the physical number of CS registers
on the control stack. Ifthere are only 8 CS registers (as shown
in FIG. 7A) then the lower 3 bits of BSize are implicitly zeros.
For instance, if BSize field is 4 then at most 4x8=32 entries
can be saved in memory. The system software allocates a page
(or more) in memory for the backing store. This allocation can
be done once when initializing the control stack, or on
demand when the control stacks overflows.

[0095] The Saved field specifies the number of CS entries
that are currently saved on the backing store. Any number of
CS entries can be saved as long as this number does not
exceed the BSize limit.

[0096] The Used field specifies the number of physical CS
registers that are currently used on the control stack. If there
are only 8 CS registers then O<Used<7. At least one CS
register is kept free. To ensure that all Used CS entries can be
saved in memory, then Saved+Used<BSize.

[0097] The TOP field points to the top CS register on the
control stack. When a new entry is pushed on the control
stack, the TOP field is incremented and then the new TOP CS
register is written. The BOT field points to the bottom CS
register on the control stack. The control stack saves and
restores CS registers at the bottom of the control stack, using
the BOT field.

[0098] The BSP pointer is the address of the next free entry
on the backing store. Since the backing store entries are
aligned in memory on 8-byte boundary, the lower 3 bits of the
byte address are always zeros (implied but not stored in BSP).
In addition, the BOT field is mapped to the lower address bits
of the BSP pointer, as shown in FIG. 7C. The BOT field
changes according to the BSP pointer, when CS entries are
saved and restored.

[0099] Deep recursive calls can push many A-entries and
overflow the control stack. FIG. 8a shows an example recur-
sive function rf with a direct recursive call. The call @ rf
instruction can push many A-entries with identical @1 return
addresses, as shown in FIG. 8B.

[0100] A simple optimization is to merge identical A-en-
tries on the control stack, by introducing the LR entry, as
shown in FIG. 8C. The A-entry with return address @1 is
converted into an LR entry with counter equal to 2, when the
second recursive call pushes an A-entry with identical return
address @]1. Then, each recursive call compares the return
address againstthe LR address ontop ofthe control stack. The

Aug. 13,2015

LR counter is incremented as long as the return address
matches the LR-entry address. For example, the LR counter is
incremented from 2 to 4 in FIG. 8C, indicating four recursive
calls with identical return address @ 1. When returning from
recursive calls, the LR counter is decremented on each return
as shown in FIG. 8D. The LR counter is reduced down to one,
and then the LR entry is popped. This simple optimization
works for direct recursive calls and reduces the number of CS
entries on the control stack.

[0101] The control stack is implemented in the instruction
fetch unit. It processes STOP bits of non-control instructions,
as well as CALL, DCALL, DLOOP, and SKIP instructions
(with and without STOP bits). FIG. 9 shows the control stack
interface. An instruction block, consisting of at most N
instructions, is fetched from the instruction cache. Then, it is
decoded inside the Decode logic that directs STOP bits and
control instructions for processing by the control stack, while
non-control instructions are sent to the I-Queue for process-
ing by the pipeline backend execution units (not shown). In
addition, the Fetch Control logic outputs the PC Select signal
for selecting the next PC value. Instruction fetching proceeds
atthe next instruction block address in memory if there are no
control instructions or stop bits in the current instruction
block, at the top address specified by the control stack if'a stop
bit is encountered, at (PC+Offset) if a CALL instruction or a
SKIP with a continuation address is encountered, or at a trap
address if an exception is encountered.

[0102] The control stack receives as input control signals
(STOP, CALL, DCALL, DLOOP, and SKIP) from the decode
logic. Italso receives as input (PC+4) which can be the return
address of a CALL instruction, or (PC+Offset) which can be
the return address of a DCALL instruction or the loop block
address of a DLOOP instruction. In addition, it receives as
input the value of register Ra, which can be the indirect
function address of a DCALL instruction or the loop counter
for a DLOOP instruction. The control stack outputs the Top
Address of'its top CS register, which can be the return address
of a CALL or DCALL instruction, the indirect function
address of a DCALL instruction, or the loop block address of
a DLOOP instruction. It also outputs the Continue signal,
which is asserted only if the top entry is LC with a counter
value equal to 1. Finally, it outputs Overflow and Underflow
exception signals when pushing an entry on a full control
stack, or popping an entry off an empty control stack.
[0103] The fetch control logic selects the Top Address,
when a STOP bit of a non-control instruction is encountered.
However, it selects the Next Address (instead of the Top
address), when the Continue signal is asserted in the presence
of'a STOP bit.

[0104] The control stack also interfaces with the Data
Cache to save and restore CS registers on the backing store.
The save operation writes one or more CS registers, which are
at the bottom of the control stack, in the data cache. The BSP
specifies the memory address. The BSP pointer is post-incre-
mented after saving a CS register. The restore operation reads
one or more CS registers from the data cache. The BSP
pointer is pre-decremented before restoring a CS register.
[0105] The control stack processes CALL, DCALL,
DLOOP, and SKIP instructions with and without STOP bits.
In addition, it processes STOP bits of non-control instruc-
tions. This processing is described in the flow charts of FIG.
10A thru 10G.

[0106] FIG. 10A describes the processing of the CALL
instruction. This instruction pushes an A-entry with return

US 2015/0227373 Al

address (PC+1) on the control stack, if the STOP bit is clear.
Otherwise no entry is pushed. It can also convert the top
A-entry into an LR-entry with counter equal to 2, if the top
A-entry address matches the return address (PC+1) of the
CALL instruction. In addition, it increments the counter of
the top LR-entry till it matches the return address (PC+1) of
the CALL instruction. This optimization works for recursive
functions, as illustrated in FIG. 8C.

[0107] FIG. 10B describes the processing of the DCALL
instruction. This instruction pushes one or two entries on the
control stack. First, the DCALL instruction pushes an A-entry
with return address (PC+Offset). Then, it pushes a second
A-entry for the indirect function address, which is the value of
Register Ra. The second A-entry is pushed on top of the
control stack if the STOP bit is clear. Otherwise, only one
A-entry carrying the return address is pushed.

[0108] FIG. 10C describes the processing of the DLOOP
instruction. Depending on the STOP bit, this instruction
pushes either an L.C or LR entry on the control stack, which
stores the loop counter and the loop block address (PC+
Offset). The loop counter is initialized to Reg[Ra] for an L.C
entry. However, it is initialized to (Reg[Ra]-1) for an LR
entry marked with a STOP bit. If the counter register Ra is
zero then no LC or LR entry is pushed on the control stack. In
addition, if the counter register Ra is one then no LR entry is
pushed. The LC or LR entry can only store a 32-bit counter
value, as shown in FIG. 7B. If the counter value is larger than
32 bits then a second X entry is also pushed on the control
stack, for the upper 32 bits. Otherwise, no LX entry is
required. The LX entry can be removed dynamically when the
counter value drops below 232 at runtime.

[0109] FIG.10D describes the saving of CS registers on the
backing store. The Save operation is triggered after a CALL,
DCALL, or DLOOP operation, if the number of Used CS
registers exceeds a HI threshold. Then, S registers are saved in
the data cache. The constants HI and S are implementation
specific. The control stack interfaces with the Data Cache for
saving CS registers. If the number of (Used+Saved) entries
exceeds the backing store size (BSize) then the control stack
signals Overflow. The system software should either termi-
nate the execution of the program, or allocated more memory
to increase the BSize. Recall that the BSize, Saved, Used, and
BSP are fields in the control stack status register as shown in
FIG. 7C. The backing store is aligned in memory and the
bottom CS register number (BOT) is mapped to the lower
address bits of BSP. To save a CS register, the control stack
stores the bottom register, CS [BOT], at BSP which points to
the next free entry on the backing store. The BSP pointer is
then incremented, which also increments the BOT register
number.

[0110] FIG. 10E describes the processing of the STOP bit
for a non-control instruction. The control stack always out-
puts the Top Address of the TOP CS entry. This can be a return
address, a register indirect function address, or a loop block
address. The A-entry contains a 62-bit instruction address,
which is the Top Address. However, the LC (or LR) entry
contains a 30-bit loop block address, which is concatenated
with the upper 32-bit of the PC register to form the 62-bit Top
Address. The lower 2 bits of the PC register are always zero
(implicit but not stored) because all instructions are 4-byte
long and aligned in memory. The control stack also outputs
the Continue signal, which is 1 when the top entry is LC and
the L.C counter is equal to 1.

Aug. 13,2015

[0111] If the STOP bit of a non-control instruction is
encountered and the control stack is empty then the control
stack signals Underflow, which terminates the execution of
the program (or running thread) and frees its resources. If
there is no Underflow, the control stack pops the top entry if
it is an A-entry. It also pops the top LC or LR entry if its
counter is equal to 1. However, if the top LC or LR entry has
a Counter>1 then the Counter is decremented only on the
control stack.

[0112] FIG. 10F describes the processing of the SKIP
instruction. As long as there is no underflow, this instruction
always pops the TOP CS entry off the control stack, regard-
less of its type. If the SKIP instruction is marked with a STOP
bit then the STOP bit is also processed according to FIG. 10E,
and can pop a second entry.

[0113] FIG. 10G describes the restoring of CS registers
from the Data Cache. The Restore operation is triggered after
processing a STOP bit or a SKIP instruction, when the num-
ber of Used CS registers drops below a LO threshold. To
restore, R registers are loaded from the data cache into the
control stack registers. The BSP pointer is decremented
(which also decrements the BOT register number), and then
used to load the bottom CS register CS [BOT]. The LO
threshold that triggers the restore operation and the number R
of restored registers can vary according to implementation.

[0114] Compare instructions compute Boolean results and
write these results into predicates. Each predicate stores a
single-bit value (0 or 1). There are eight predicates, named p0
to p7. Predicate p0 is hardwired to true (always 1). It is used
as the qualifying predicate of non-conditional instructions.
The predicate bits are stored in a special-purpose register,
called the PR register.

[0115] FIGS. 6A and 6B show the R-type and I-type for-
mats of the majority of non-control instructions, including
compare instructions. The target of an arithmetic instruction
is denoted as Rd. However, the target of a compare instruction
is denoted as pt or ptf.

[0116] FIG. 11A describes the targeting of predicates in the
PR register. Any number of predicates can be targeted by a
compare instruction. If the target is p0 then no predicate is
written. If the target is pt (pl thru p7) then one predicate is
written. In general, if the target is ptf then the Boolean result
is written to pt, its complement is written to pf, and all the
in-between predicates are zeroed. For example, if the target is
p17 then all predicates are written. The Boolean result is
written in pl, its complement is written in p7, and the in-
between predicates (p2 thru p6) are zeroed.

[0117] FIG. 11B shows an example eq (equal) compare
instruction that targets a group of predicates p1 thru p4, abbre-
viated as p14. The Boolean result is written to p1, its comple-
ment is written to p4, and all the in-between predicates p2 and
p3 are zeroed. Targeting a group of predicates is unique to this
invention. It is different from the approach used in the Intel
Itanium architecture, in which at most two predicates can be
targeted as described in Intel, (“Intel Itanium Architecture:
Software Developer’s Manual”, revision 2.3, May 2010—
incorporated herein by reference). Targeting a group of predi-
cates is useful when translating complex Boolean expressions
and nested IF-ELSE structures.

[0118] FIG. 11C shows the translation of a nested IF-ELSE
structure. Four predicates pl thru p4 are associated with
block1 thru blockd4, respectively in the nested IF-ELSE struc-
ture. The first eq instruction compute p14 as either 1000, or

US 2015/0227373 Al

0001,. If p14=1000, then the following It and ne instructions
are skipped, blockl instructions are executed, while the other
blocks are skipped.

[0119] On the other hand, if eq computes p14=0001,, the
next predicated It instruction computes p24=100, or
p24=001,. If It computes p24=100, then the next predicated
ne instruction is skipped, block2 instructions are executed
only, and the other blocks are skipped. However, if p24=001,
then the next predicated ne instruction computes p34=10, or
p34=01,. This instruction decides whether block3 or block4
should be executed. The nested IF-ELSE structure guarantees
that exactly one predicate (p1, p2, p3, or p4) is true, and that
exactly one block is executed. This example shows that tar-
geting multiple predicates works well with nested IF-ELSE
statements. It eliminates the need for conditional branch
instructions and simplifies instruction flow control.

[0120] The target pt or ptf is represented by a 7-bit access
pattern t, as shown in FIG. 12A. If the target is p0 then no
predicate is written. On the other hand, if the target is p17 then
all predicates are written. The 7-bit pattern t is encoded as a
5-bit target ptf in the instruction format. The 5-bit encoding
scheme of the target ptf also appears in FIG. 12A. The 7-bit
patterns are split into two groups according to the middle bit
t,. The group on the left have t,=0 and the group on the right
have t,=1. Bit t, also appears as the middle bit in the 5-bit
encoding of ptf. It is chosen this way to simplify the decoding
logic.

[0121] The 5-bit coding of ptf is chosen to simplify the
implementation of the 5x7 decoder of FIG. 12C. The ptf code
consists of 5 bits: X, X,t,X;X,. The middle bit t, is identical in
the 7-bit pattern t and in the 5-bit code. The 5x7 decoder
outputs t,t,t; and tstet,. FIG. 12B shows the derivation of the
logic equations for the 5x7 decoder that decodes the 5-bit
target ptf into a 7-bit pattern t.

[0122] FIG. 12C shows the logic diagram for decoding,
computing, and writing predicates. The ptf target is encoded
as a 5-bit field in the instruction format. It is decoded using the
5x7 decoder. The 7-bit output pattern t of the decoder speci-
fies the predicates that should be written. Seven predicates p1
thru p7 are computed, according to the 7-bit output pattern t
and the Boolean result b. Predicate p; is equal to b if t,_;t,=01.
Tt is equal to b if b,_;t,t,,,=110. Otherwise, it is 0.

[0123] The 7-bit write-enable (we) signal enables the writ-
ing of predicates in the PR register, under the control of the
qualifying predicate (p). If (p) is false then all the seven we
bits will be zeros and the PR register will be disabled. Other-
wise, the we signal is identical to the 7-bit pattern t. The value
of the qualifying predicate (p) is read from the PR register,
except (p0), which is hardwired to 1.

[0124] If a compare instruction targets p0 and is marked
with a stop bit (! symbol) then it is called Conditional Com-
pare & Return. The compare instruction computes a Boolean
result b as usual. However, the Boolean result is discarded
because the target is p0. The stop bit of the compare instruc-
tion becomes effective and triggers a return operation (pops
the return address off the control stack), if the qualifying
predicate p and the Boolean result b are both true. Otherwise,
the stop bit of the compare instruction has no effect.

[0125] Two examples of Conditional Compare & Return
that target p0 and are marked with stop bits are shown below.
If a compare instruction does not specify a target then the
target is p0 by default. No predicate is updated. The first eq
instruction computes a Boolean result b. If the Boolean result
is true, then the stop bit becomes effective and control is

Aug. 13,2015

transferred at the return address on top of the control stack.
The second gt instruction is predicated with (p2). The stop bit
becomes effective if the qualifying predicate (p2) and the gt
Boolean result are both true.

eq r1,0!
»2) g rl,r2!

// if (r1==0) return
/I if (p2) {if r2) return}

[0126] If a compare instruction does not target p0 then its
stop bit does not depend on the Boolean result. For example,
the following It instruction computes and writes it Boolean
result to p2. The stop bit that specifies the return operation is
unconditional, regardless of the Boolean result.

[0127] 1t p2=rl, r2!//p2=(r1<r2); return

[0128] Next, a hardware description of the processing cir-
cuitry according to exemplary embodiments is described with
reference to FIG. 13. In FIG. 13, the processing circuitry
includes a CPU 1300 which performs the processes described
above. The process data and instructions may be stored in
memory 1302. These processes and instructions may also be
stored on a storage medium disk 1304 such as a hard drive
(HDD) or portable storage medium or may be stored
remotely. Further, the claimed advancements are not limited
by the form of the computer-readable media on which the
instructions of the inventive process are stored. For example,
the instructions may be stored on CDs, DVDs, in FLASH
memory, RAM, ROM, PROM, EPROM, EEPROM, hard disk
or any other information processing device with which the
processing circuitry communicates, such as a server or com-
puter.

[0129] Further, the claimed advancements may be provided
as a utility application, background daemon, or component of
an operating system, or combination thereof, executing in
conjunction with CPU 1300 and an operating system such as
Microsoft Windows 7, UNIX, Solaris, LINUX, Apple MAC-
OS and other systems known to those skilled in the art.
[0130] CPU 1300 may be a Xenon or Core processor from
Intel of America or an Opteron processor from AMD of
America, or may be other processor types that would be
recognized by one of ordinary skill in the art. Alternatively,
the CPU 1300 may be implemented on an FPGA, ASIC, PLD
or using discrete logic circuits, as one of ordinary skill in the
art would recognize. Further, CPU 1300 may be implemented
as multiple processors cooperatively working in parallel to
perform the instructions of the inventive processes described
above.

[0131] The processing circuitry in FIG. 13 also includes a
network controller 1306, such as an Intel Ethernet PRO net-
work interface card from Intel Corporation of America, for
interfacing with network 1313. As can be appreciated, the
network 1313 can be a public network, such as the Internet, or
a private network such as an LAN or WAN network, or any
combination thereof and can also include PSTN or ISDN
sub-networks. The network 1313 can also be wired, such as
an Ethernet network, or can be wireless such as a cellular
network including EDGE, 3G and 4G wireless cellular sys-
tems. The wireless network can also be WiF1, Bluetooth, or
any other wireless form of communication that is known.
[0132] The processing circuitry further includes a display
controller 1308, such as a NVIDIA GeForce GTX or Quadro
graphics adaptor from NVIDIA Corporation of America for
interfacing with display 1310, such as a Hewlett Packard
HPL.2445w LCD monitor. A general purpose /O interface

US 2015/0227373 Al

1312 interfaces with a keyboard and/or mouse 1314 as well as
a touch screen panel 1316 on or separate from display 1310.
General purpose /O interface also connects to a variety of
peripherals 1318 including printers and scanners, such as an
Officelet or DesklJet from Hewlett Packard.

[0133] A sound controller 1320 is also provided in the
processing circuitry, such as Sound Blaster X-Fi Titanium
from Creative, to interface with speakers/microphone 1322
thereby providing sounds and/or music.

[0134] The general purpose storage controller 1324 con-
nects the storage medium disk 904 with communication bus
1326, which may be an ISA, EISA, VESA, PCI, or similar, for
interconnecting all of the components of the processing cir-
cuitry. A description of the general features and functionality
of'the display 1310, keyboard and/or mouse 1314, as well as
the display controller 1308, storage controller 1324, network
controller 1306, sound controller 1320, and general purpose
1/0 interface 1312 is omitted herein for brevity as these fea-
tures are known.

1. A microprocessor comprising:

a decode configured to decode instructions of an instruc-
tion set architecture;

a fetch control unit configured to fetch instructions from a
memory;

an instruction cache configured to store a plurality of fixed
byte-length instructions;

a data cache configured to store data;

a control stack implemented with high speed control reg-
isters and a backing store allocated memory by a system
software, and configured as a side effect of control and
the stop bits to isolate control stack entries and addresses
from direct manipulation from a user program; and

an instruction set, including:

a stop bit configured to indicate a function return, an indi-
rect function call, or aloop branch, and pop a top address
off the control stack and transfer the control back to a
caller function, to an indirect function, or to a top of a
loop block;

a qualifying predicate configured to allow a compare
instruction to target an arbitrary number of predicates;
and

an opcode configured to specify an operation to be per-
formed.

2. The microprocessor of claim 1, wherein the stop bit
eliminates return instructions and conditional branch instruc-
tions at an end of a loop block.

3. The microprocessor of claim 1, wherein the qualifying
predicate allows a compare instruction to target an arbitrary
number of predicates and reduces the conditional branch
instructions.

4. The microprocessor of claim 1, wherein the stop bit
marked in a conditional compare and return instruction dis-
cards a boolean result and triggers a return operation when the
qualifying predicate and the boolean result are both true.

5. The microprocessor of claim 1, wherein the control stack
replaces return instructions with the stop bit when performing
loop iterates, function returns and indirect function calls.

6. The microprocessor of claim 1, wherein the instruction
set includes a register and an immediate operand.

7. The microprocessor of claim 1, wherein the instruction
set includes a register.

8. The microprocessor of claim 1, wherein the instruction
set includes an immediate operand.

Aug. 13,2015

9. A data processing method, comprising:

fetching, with processing circuitry, instructions encoded
with a stop bit from an instruction set architecture of the
microprocessor;
popping, with processing circuitry, a top address off a
control stack and transfer control back to a caller func-
tion, to an indirect function, or to a top of a loop block
when the stop bit indicate a function return, an indirect
function call, or a loop branch;
saving, with processing circuitry, control stack registers on
a backing store after the stop bit indicate the function
return, the indirect function call, or the loop branch
when a number of used control stack registers exceeds a
HI threshold;

overflowing, with processing circuitry, a control stack sig-
nal when the number of the used and the saved entries
exceeds the backing store size;

allocating, with processing circuitry, more memory to

increase a size of the backing store from a data cache or
terminating the execution;

restoring, with processing circuitry, the control stack reg-

isters from the data cache when the number of the used
control stack registers drops below a LO threshold.

10. The data processing method of claim 9, wherein the
control stack implemented with high speed control registers
and a backing store allocated memory by a system software,
and configured as a side effect of control and the stop bits to
isolate control stack entries and addresses from direct
manipulation from a user program.

11. The data processing method of claim 9, wherein the
stop bit eliminates return instructions and conditional branch
instructions at an end of a loop block.

12. The data processing system of claim 9, wherein the
qualifying predicate allows a compare instruction to target an
arbitrary number of predicates and reduces the conditional
branch instructions.

13. The data processing method of claim 9, wherein the
stop bit marked in a conditional compare & return instruction
discards a boolean result and triggers a return operation when
the qualifying predicate and the boolean result are both true.

14. A non-transitory computer-readable medium storing
executable instructions, which when executed by a computer
processor, cause the computer processor to execute a method
comprising:

fetching, with processing circuitry, instructions encoded

with a stop bit from an instruction set architecture of the
microprocessor;
popping, with processing circuitry, a top address off a
control stack and transfer control back to a caller func-
tion, to an indirect function, or to a top of a loop block
when the stop bit indicate a function return, an indirect
function call, or a loop branch;
saving, with processing circuitry, control stack registers on
a backing store after the stop bit indicate the function
return, the indirect function call, or the loop branch
when a number of used control stack registers exceeds a
HI threshold;

overflowing, with processing circuitry, a control stack sig-
nal when the number of the used and the saved entries
exceeds the backing store size;

allocating, with processing circuitry, more memory to

increase a size of the backing store from a data cache or
terminating the execution;

US 2015/0227373 Al
10

restoring, with processing circuitry, the control stack reg-
isters from the data cache when the number of the used
control stack registers drops below a LO threshold.

#* #* #* #* #*

Aug. 13,2015

