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Abstract 

The cache hierarchy design in existing SMT and 
superscalar processors is optimized for latency, but not 
for bandwidth. The size of the L1 data cache did not 
scale over the past decade. Instead, larger unified L2 
and L3 caches were introduced. This cache hierarchy 
has a high overhead due to the principle of 
containment, as all the cache blocks in the upper level 
caches are contained in the lower level cache. It also 
has a complex design to maintain cache coherence 
across all levels. Furthermore, this cache hierarchy is 
not suitable for future large-scale SMT processors, 
which will demand high bandwidth instruction and 
data caches with a large number of ports. 

This paper suggests the elimination of the cache 
hierarchy and replacing it with one-level caches for 
instruction and data. Multiple instruction caches can be 
used in parallel to scale the instruction fetch bandwidth 
and capacity. A one-level data cache can be split into a 
number of block-interleaved cache banks to serve 
multiple memory requests in parallel. An interconnect 
will be required to connect the data cache ports to the 
different cache banks. The interconnect will increase 
the data cache access time. This paper shows that 
large-scale SMTs can tolerate longer data cache hit 
times. Increasing the data cache access time from 3 
cycles to 5 cycles reduces the IPC by only 2.8%, and 
increasing it from 3 cycles to 7 cycles will reduce the 
IPC by 8.9%. 
 
1. Introduction 

Simultaneous multithreading (SMT) is a latency-
tolerant processor architecture that enables multiple 
threads to simultaneously share the processor 
resources, effectively converting thread-level 
parallelism to instruction-level parallelism [9, 13, 14]. 
SMT improves the utilization of shared resources, such 
as register files, functional units, and caches, as it 
extracts ILP from multiple threads. SMT can also 
better tolerate pipeline and memory latencies, coping 
with the deeper pipelines, branch mispredictions, and 
the longer cache miss penalties. Some manufacturers 
have introduced their versions of SMT processors. 
Examples include the 2-context Intel Pentium 4 [3, 7] 
and the proposed 4-context Alpha 21464.  

To implement higher-context and super-wide SMT 
processors, however, a number of challenges have to 

be addressed. These challenges include dynamic 
instruction scheduling, the shared register file, the 
shared cache hierarchy, and the degree of sharing or 
partitioning of hardware resources. This article 
addresses the problem of the shared cache hierarchy. 

Current SMT processors use small L1 instruction and 
data caches. For example, the hyper-threaded Intel 
Pentium 4 uses a 16K L1 data cache. A thread that 
regularly sweeps through the L1 data cache will evict 
data needed by the other thread as shown in [12]. This 
negative interference will become more serious as the 
number of threads increases. The size of L1 data cache 
did not scale over the past decade. It was kept small to 
match the increasingly higher clock frequencies and to 
optimize the hit access time. Larger unified L2 and 
now L3 caches are introduced to increase the overall 
cache capacity and to optimize the memory access 
time. Figure 1 shows the cache hierarchy of a typical 
small scale 4-to-6 issue superscalar or SMT 
architecture. Two load/store ports are used for the D-
Cache. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Cache hierarchy for a typical wide-issue 
superscalar or a small scale SMT architecture 

Another more serious problem is the demand for 
higher cache bandwidth. Memory instructions account 
for about a third of all instructions executed on 
average. For example, an 8-context 32-issue processor 
should allow 12 load/store instructions to execute each 
cycle. This means that the L1 data cache should be 
designed to have 12 ports. The unified L2 and L3 
caches should also support multiple ports to handle the 
multiple cache misses in parallel. In contrast, the 
current hyper-threaded Pentium 4 is a small scale SMT 
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processor that supports a dual-ported L1 cache, a 
single-ported instruction trace cache, and single-ported 
unified L2 and L3 caches. This cache hierarchy, 
optimized for latency on a superscalar processor, does 
not fit into a large-scale SMT processor. It has to be 
redesigned and optimized for bandwidth rather than for 
latency. A simple scalable one-level banked cache 
design can optimize the bandwidth demand of large-
scale SMT processors, while slightly increasing the 
latency of primary data cache access. This design will 
be described in Section 3. This design will be shown to 
be very effective for large-scale SMT processors, as 
increasing the latency of primary data cache access 
results in a minor degradation on the IPC. 

The remainder of this paper is organized as follows.  
Section 2 discusses some background and related 
work. Section 3 introduces a scalable SMT 
architecture with a scalable cache design. Section 4 
shows the simulation and performance of the 
architecture introduced in Section 3. We conclude in 
Section 5. 

2. Background and Previous Work 

Multiple cache ports can be implemented in one of 
four ways: ideal multi-porting, time division 
multiplexing, replication, and multiple independently 
addressable banks [4, 10, 16]. Ideal multi-porting 
requires that each cache block be simultaneously 
addressable by all the cache ports, allowing all the 
cache ports to operate independently in a given cycle. 
Ideal multi-porting is considered to be impractical, as 
the costs of ideal multi-porting will be enormous in 
terms of area, power consumption, and access time, as 
the number of ports increases. For example, the 24-
ported register file (16-read and 8-write ports) in the 
proposed 4-context 8-issue Alpha 21464 SMT 
processor occupies over five times the area of the 64 
KB primary cache according to [11]. A banked multi-
ported register file is proposed in [11] to reduce the 
area, access time, and energy consumption. For this 
reason, ideal multi-porting is never applied to caches 
and will not be considered further. 

Time division multiplexing is a technique that uses 
time to achieve virtual ports. It is used in the DEC 
Alpha 21264 [5]. The L1 data cache is referenced 
twice each cycle, once for each of the clock phases, 
effectively operating at twice the processor clock 
speed. Although simple enough, this technique is not 
scalable for a large number of ports, as it requires the 
cache to operate at significantly higher clock 
frequencies than the processor core. Current processors 
are already operating at significantly high clock 
frequencies and primary cache access time is already 
increasing from one to few clock cycles and will 
continue to increase in the future. Therefore, time 
division multiplexing is not a feasible solution. 

Another possibility for multi-porting is through cache 
replication. Multiple copies will allow multiple loads 
to go in parallel. However, stores have to be broadcast 
and replicated to maintain identical copies. An 
example is the duplicate primary data cache used in the 
Alpha 21164 [2]. This solution improves the 
bandwidth of the load instructions. However, it will 
not improve the bandwidth of stores. Another 
overhead is the die area required for cache replication. 

The fourth known technique to multi-porting is multi-
banking. A cache is divided into multiple banks that 
can be accessed in parallel. Each cache bank is single-
ported and can handle a single memory instruction per 
cycle. A fast interconnect, such as a crossbar, provides 
parallel access to the cache banks [8]. High bandwidth 
cache access can result, as long as parallel memory 
addresses map to different banks. 

A simple and effective mapping scheme is to map 
contiguous memory blocks onto consecutive cache 
banks. This mapping scheme distributes uniformly the 
cache blocks. However, cache accesses to the same 
cache bank cannot proceed in parallel.  

One problem of multi-banking is the probability of 
bank conflicts that arises from consecutive memory 
references that target the same cache line or the same 
cache bank. The same-line conflicts are shown to be 
high due to the inherent spatial locality in memory 
references, averaging 35% across integer benchmarks 
and 22% for floating-point benchmarks, according to 
[10]. These conflicts cannot be eliminated by simply 
increasing the number of cache banks. However, they 
can be exploited, using access combining, to improve 
multi-bank cache access. Access combining [1, 15] is a 
technique that attempts to combine memory accesses 
to the same cache line into a single request. Combining 
requires additional logic in the load/store queue to 
detect memory addresses targeted to the same cache 
line that can be combined. However, this additional 
logic is a small extension, because load/store queues in 
current architectures already implement a matching 
logic to detect and resolve memory dependencies. 

Line buffering is another technique to avoid same-line 
conflicts. A line buffer holds cache data inside the 
processor load/store unit, allowing a same-line load to 
be satisfied from the line buffer, instead of from the 
cache [16]. A line buffer also reduces the utilization of 
the cache ports and the access latency of a multi-cycle 
multi-ported cache.  

A second problem associated with multi-banked 
caches is the overhead of the interconnect. This 
unavoidable interconnect increases the cost and the 
delay of a multi-banked cache. A crossbar can be used 
for a small number of ports, but a multi-stage 
interconnect should be used for a larger number of 
ports. Depending on the interconnect, non-uniform 



cache bank access [6] may also result, where near 
cache banks are accessed faster than distant banks. 

3. Scalable SMT Architecture 

In this section, we propose a scalable SMT architecture 
that can scale to a large number of contexts. An 8-
context SMT architecture is depicted in Figure 2. The 
most prominent feature of this architecture is the 
elimination of the cache hierarchy. We only preserve 
primary instruction and data caches and scale them 
according to requirements. The cache hierarchy is only 
an added overhead and a waste of space due to the 
principle of containment, as everything in the primary 
caches is contained in L2, and everything in the L2 
cache is contained in L3. The cache hierarchy is also 
an added complexity. This complexity is required to 
maintain cache coherence across the different levels. 
Every store to the primary data cache has to be written 
through to reach the L2 and L3 caches. Every cache 
block invalidate in the L3 cache caused, for instance, 
by a different processor in a multiprocessor, has to be 
propagated upwards to reach the L2 and L1 data cache. 
Therefore, eliminating the cache hierarchy is desirable. 
Observe that what is being proposed here is against the 
current industry trend of increasing the cache hierarchy 
from 2 to 3 levels. The idea is to turn the second (or 
third) level cache into a primary data cache, effectively 
increasing the primary data cache capacity and 
bandwidth, as long as the processor is capable of 
tolerating the increased data cache hit time without 
much affecting the IPC. 

3.1 Scalable Front End 

To allow the front end to scale, multiple independent 
instruction caches must be used. Each instruction 
cache can be shared by a small number of threads 
(typically 2 to 4). The result is a simplified instruction 
cache design. Rather than using a single multi-ported 
instruction cache to fetch multiple instruction blocks 
from different threads per cycle, multiple single-ported 
instruction caches are used instead. One advantage is a 
simplified instruction cache design: single-ported 
rather than multi-ported. A second advantage is the 
increased instruction cache capacity, which can scale 
with the number of threads, and which can eliminate 
negative thread interference and some of the capacity 
misses. For example, if four 64KB instruction caches 
are used in an 8-context processor then the overall 
instruction cache capacity is 256KB, eliminating the 
need for a second level cache. Each i-cache can 
designed to have a large number of ways and to use 
way prediction to reduce cache energy and access 
time. A third advantage is the increased instruction 
cache bandwidth, which is also scalable with the 
number of threads. For example, four instruction cache 
blocks can be fetched per cycle in Figure 3, instead of 
a single one. This is essential to enable the overall IPC 
to scale. A fourth advantage is the absence of 
interconnect in front of the instruction caches. An 
added interconnect will add more cycles to instruction 
fetching, which will also increase the branch 
misprediction penalty. The absence of the 
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Figure 2: An 8-Context SMT Processor 
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interconnect, therefore, reduces the instruction cache 
access latency. However, it implies that instruction 
blocks might be replicated in different instruction 
caches, especially when different threads execute the 
same instruction stream on different data streams. A 
snooping protocol detects and forwards replicated 
cache blocks from one instruction cache to another, to 
avoid the long memory access latency.   

3.2 Partitioned Hardware Resources 

In addition to instruction caches, many hardware 
resources are partitioned and replicated as shown in 
Figure 2. This includes the rename tables, the 
scheduling queues, the register files, and the functional 
units. Limited sharing allows few threads (typically 
two) to share some hardware resources, but hardware 
partitioning is essential to reduce complexity and to 
enable scalability. 

3.3 Scalable and Sharable Data Cache 

For data caches, we split them into multiple banks 
shareable by all threads. The cache banks are block- 
interleaved to obtain a uniform distribution. The use of 
multiple cache banks increases data cache capacity, 
which eliminates the need for a second or third level 
cache. For example, a 1MB data cache can be obtained 
by splitting it into sixteen 64KB banks. Each cache 
bank can be designed to have a large number of ways 
and to use way prediction or selective direct mapping. 
This will increase the capacity of the cache banks and 
will reduce their access time and energy consumption. 
Each cache bank is designed to be single ported, which 
simplifies its implementation. A third advantage is that 
no cache block replication can occur among the 
different banks, since cache block interleaving will 
map a cache block to a unique bank. This eliminates 
the need to maintain cache coherence among the 
different banks. A fourth advantage is that the cache 
banks can use multiple busses to multiple memory 
modules. In other words, the memory modules will 
also be cache block interleaved. This will increase 
main memory bandwidth and will decrease the bus 
conflicts due to the increased number of cache misses 
generated by the increased number of cache banks. 

An unavoidable price is the overhead of the 
interconnect, which increases in complexity with the 
number of ports and the number of cache banks. This 
interconnect can be a crossbar, a multi-stage network 
with uniform data cache bank access, or a distributed 
non-uniform data cache access network. Whatever it 
might be, the interconnect increases the access delay to 

the data cache from one to several clock cycles. 
However, our simulation results indicate that 
increasing the access delay to the data cache can be 
tolerated in a large scale SMT processor. In other 
words, we can trade the increase in threads and the 
cumulative ILP with the increase in data cache access 
time. Therefore, this data cache organization is 
scalable in terms of capacity, bandwidth, and access 
delay. 

3.4 Pipeline Stages for a Load Instruction 

The pipeline stages for a typical load instruction are 
shown in Figure 3. At least ten pipeline stages are 
required, starting with instruction fetch, going through 
decode, rename, and queue, and ending with register 
write and instruction retirement. The data cache access 
delay has increased from one cycle to at least three 
cycles, after computing the effective memory address. 
One or more cycles are used to forward the address 
from the input ports to the corresponding data cache 
banks through the interconnection network. One cycle 
is used for cache bank access, and one or more cycles 
to forward the data to the corresponding physical 
destination register. 

3.5 Data Translation Lookaside Buffers 

The data translation lookaside buffers (DTLBs) are 
searched in parallel while establishing paths through 
the interconnection network to the corresponding data 
cache banks. Observe that the cache bank address is 
NOT part of the virtual page number as shown in 
Figure 4, and hence virtual address translation and 
interconnection path establishment can proceed in 
parallel. The DTLBs are integrated as part of 
Load/Store units, such that each DTLB is associated 
with one or at most few threads. This is much better 
than integrating the DTLBs with the data cache banks, 
as each bank is shared by all the threads. Way 
prediction can be also accomplished during the same 
cycle in parallel with DLTB lookup. 

Data cache banks are physically indexed and 
physically tagged, since address translation is done in a 
previous cycle, before reaching the data cache bank. 
This simplifies cache implementation since there is no 
need to worry about virtual memory aliases. Physical 
tag checking is also done in a separate cycle after data 
cache access. It is done in parallel while establishing a 
network path from the cache bank data output to the 
physical destination register. 
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Figure 3: Pipeline Stages for a Typical Load Instruction 
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Figure 4: Network path establishment can be done in parallel with 
DTLB virtual address translation 

4. Simulation and Performance 

The simulation program was built on top of the 
Simplescalar simulator using the PISA instruction set. 
We simulated an 8-context 32-issue SMT processor 
with 4 � 64KB instruction caches, each shared by 2 
threads, and a 12-ported 16-banked data cache shared 
by all threads. A total of 32 functional units were used: 
24 integer ALUs (half of them shared by load-store 
instructions) and 8 FPUs (used for all FP instructions). 
The scheduling and load-store queues were partitioned. 
Each thread had a 64-entry scheduling queue and a 32-
entry load-store queue. The front end can fetch four 
instruction blocks (up to 64 instructions) per cycle 
from four different threads. The simulation parameters 
are summarized in the following table. 
 

I-Cache 4 independent i-caches are used 
Each is 64KB, 4-way associative, 
64-byte lines, 1 cycle 

D-Cache 12 ports 
16 d-cache banks 
Each is 64 KB, 8-way associative, 
64-byte lines, total capacity: 1MB 
Access time: 3, 5, and 7 cycles 

L2 Unified None 

Memory 100 cycles latency 

Issue width 32 instruction per cycle 

ALUs 24, where 12 are used also to compute 
effective address of load-store 
instructions 

FPUs 8 

Queue 64 entries per thread 

Load-Store 32 entries per thread 

4.1 Benchmarks 

We chose a subset of eight programs to run as 
independent threads. These benchmarks were 
compiled with optimization for the PISA instruction 
set. The first four belong to the SPECfp95 
benchmarks. The last four belong to SPECint95. 

applu: Partial differential equations. 

hydro2d: Navier Stokes equations. 

turb3d: Turbulence modeling. 

wave5: 2D electromagnetic particle-in-cell simulation 

gcc: GNU C compiler generating optimized code. 

li: Lisp interpreter. 

m88ksim: Chip simulator for the Motorola 88100 
microprocessor. 

perl: Interpreter for the Perl language. 

4.2 Simulation Results 

The performance of an 8-context 32-issue SMT under 
different data cache latencies is shown in Figure 5. The 
first column shows the performance under an ideal 
main memory with a 1-cycle latency. The second, 
third, and fourth columns assume a 100-cycle main 
memory access, with 3, 5, and 7-cycle access time to 
the data cache. The overall IPC goes down from 22.18 
(ideal memory case) to 19.79 (3-cycle data cache and 
100-cycle main memory), 19.24 (5-cycle data cache 
and 100-cycle main memory), and 18.02 (7-cycle data 
cache and 100-cycle main memory). 
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Figure 5: Performance of an 8-context 32-issue SMT 

4.3 Discussion 

The minimum latency that can be achieved for a multi-
ported multi-banked data cache is 3 cycles: one cycle 
through the interconnect from the load/store unit to the 
data cache bank, a second cycle through a cache bank, 
and a third cycle thru the interconnect from the cache 
bank output to the physical register file. Increasing the 
data cache latency from 3 to 5 cycles reduces the IPC 
by only 2.8%, while increasing the data cache latency 
from 3 to 7 cycles reduces the IPC by 8.9%, where 
each data cache access has a latency of 7 cycles. These 
results indicate that SMT architectures can tolerate 
longer cache access times, and that a new approach for 
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cache design is required for such processors. These 
results were achieved in the absence of line buffers in 
the load-store units. The addition of line buffers to 
load-store units should further improve the IPC and 
tolerate longer data cache latencies. 

5. Conclusion and Future Work 

We have demonstrated that large primary data caches, 
with a large number of ports and banks, are well suited 
for large-scale SMT processors, which can tolerate 
longer hit times in the data cache. Increasing the 
number of data cache banks increases the overall 
capacity, which in turn eliminates the need for unified 
L2 and L3 caches. Increasing the number of ports 
increases the bandwidth, but also increases the latency 
of data cache access and the cost of the interconnect. 
We are still studying the effect of having line buffers 
(called also level zero caches) with few entries per 
thread (typically 4 to 16) on the overall IPC and its 
effect on reducing the number of ports. We expect the 
number of ports to the data cache to decrease with 
more memory references served through the line 
buffers. 
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