
TOWARDS LOW-POWER SYNTHESIS: A COMMON SUB-EXPRESSION 
EXTRACTION ALGORITHM UNDER DELAY CONSTRAINTS

 
Ihab Amer and Wael Badawy 

Department of ECE 
University of Calgary 

Calgary, Alberta, Canada, T2N 1N4 
{amer, badawy}@enel.ucalgary.ca 

 
 

ABSTRACT 
 
This paper presents a common sub-expression 
extraction algorithm targeting the reduction of power 
consumption of multi-level combinational logic 
networks under delay constraints. The proposed 
algorithm has been prototyped and simulated using 
ORCAD 9.2®. The results show that adding delay 
constraints prevents the combinational logic network 
from suffering uncontrollable degradation in 
performance during the optimization process for 
reducing power consumption. 
 

I. INTRODUCTION 
 

With the expansion of various mobile devices, 
power minimization of digital systems becomes 
greatly required. In fact, the absence of low-power 
design techniques may lead to the situation that future 
portable devices will suffer from either a very short 
battery life or a very heavy battery pack [1]-[2]. In 
addition to portable devices, high-end products 
strongly require reduction in power consumption due 
to the huge cost associated with various packaging and 
cooling strategies [3]-[4]. Moreover, high cost of 
power consumption and some environmental demands 
made it very essential to search for various techniques 
to reduce power consumption [5]-[6]. 

High-level synthesis is a design technique that 
can optimize power consumption at different levels of 
abstraction [7]. Common sub-expression extraction 
targeting low power is a popular method that was 
proposed by Iman and Pedram in [8]. It is an algebraic 
optimization technique that can be applied to a set of 
logic functions in a Boolean network to determine an 
“optimal” set of logic functions such that when this set 
is inserted into the network, the “cost” of the network 
is minimized [9]. The main limitation of the above 
algorithm is the difficulty of applying it to systems 
that are required to work under delay constraints. This 
is because the algorithm may result in uncontrollable 
degradation in performance of the logic network that 
is being optimized. 

This paper presents an enhancement of the 
algorithm proposed by Iman and Pedram. It provides it 
with the ability to work under delay constraints and 
hence it prevents the optimized logic network from 
suffering severe degradation in performance. 

 
Muhammed Mudawwar 

Computer Science Department 
The American University in Cairo 

113 Kasr El Aini Street, Cairo, Egypt 
mudawwar@aucegypt.edu 

 
 

The rest of this paper is organized as follows: 
Section II reviews the algorithm that was proposed by 
Iman and Pedram. In section III, the proposed 
enhancement of the algorithm is introduced. Section 
IV presents the prototype and performance analysis of 
the proposed algorithm. Finally, section V concludes 
this paper. 

 
II. COMMON SUB-EXPRESSION 

EXTRACTION FOR LOW POWER 
 

Common sub-expression extraction is an algebraic 
technique that can be used to optimize multi-level 
combinational logic networks. The extraction process 
relies on the search of common divisors of two (or 
more) expressions. The “best” one (if any) is chosen to 
be extracted representing a new local function of the 
network, and its corresponding variable can be used to 
simplify the original expression [10]. 

Figure 1 shows a flowchart for the overall 
optimization process targeting low power. 

 
 

 
 

 
Figure 1. A flowchart for the overall optimization 

process targeting low power 
 

The input is a non-optimized combinational logic 
network while the output is a functionally equivalent 
network with an altered topology and with minimum 



power consumption that can be achieved using the 
algorithm. This is done by repeatedly extracting best 
sub-expressions (usually called kernels) until the 
algorithm senses that more computations might be 
non-significant from the designer’s point of view. 

The procedure bestPowerSubkernel(), presented 
in Figure 2 shows that the algorithm searches greedily 
for the kernel with the highest power_value (i.e. the 
kernel whose extraction leads to the largest power 
reduction) disregarding any degradation that may 
occur in performance. This appears in the following 
pseudo-code of the procedure bestPowerSubkernel(). 
 
bestPowerSubkernel(){ 
bestK = K1; //Initialize bestK with the                          
                    //first kernel in the kernel-      
                    //intersection list 
for i = 2 to k{ //where k is the number of kernel 

//intersections 
power_value = calcPower(Ki); 
if(power_value > power_value  of bestK) 

 bestK = Ki; 
       } 
return(bestK); 
} 

 
Figure 2. Pseudo-code of the Iman/Pedram 

bestPowerSubkernel() procedure  
 

III. THE PROPOSED ENHANCEMENT 
 

The proposed algorithm handles the limitation in the 
procedure bestPowerSubkernel() shown in Figure 2. 
Each time a decision needs to be taken to choose the 
kernel to be extracted, it checks that the delay 
constraints are satisfied rather than returning the 
kernel whose extraction gives the highest reduction in 
power consumption disregarding the effect of this 
extraction on the performance of the logic network. 

It is important to keep the optimization process 
work under delay constraints due to the fact that the 
output optimized combinational logic circuit is most 
probably going to be placed as a control circuit inside 
a whole sequential circuit. Thus, an important design 
issue is that the control circuit should not represent a 
bottleneck in the whole design. 

Delay constraints can be represented in several 
forms. The simplest is by providing the optimization 
process with the maximum number of logic levels that 
are allowed to exist in the critical paths of all the logic 
functions in the network. 

Our main contribution is to change the procedure 
bestPowerSubkernel() so that it returns the kernel 
whose extraction results in the highest reduction in 
power consumption, however it still satisfies the 
timing constraints that are provided by the user (the 
digital designer in our case). This can be shown in the 
following pseudo-code. 

 
 
 
 

bestPowerSubkernel(){ 
sort(a pointer to the set of all kernel intersections); 
for i = 1 to k{ //where k is the number of kernel 

//intersections 
 if(satisfyTimeConstraints(Ki)){ 
  bestK = Ki; 
  break; 
  } 
} 
 return(bestK); 
} 

 
Figure 3. Pseudo-code of the proposed 

bestPowerSubkernel() procedure  
 
Thus, all the kernel intersections are initially 

sorted in descending order according to their 
power_value. Then, they are checked for satisfying 
delay constraints until a kernel is found whose 
extraction does not break the timing constraints. This 
kernel is the best one to be extracted, hence it is 
returned by the procedure. 

The procedure satisfyTimeConstraints() returns 
TRUE if the extraction of the examined kernel does 
not break the delay constraints. The procedure checks 
that the actual data-ready time of each of the function 
expressions in the network does not exceed the output 
required data-ready time after the extraction operation. 
This is done by repeatedly calling the procedure 
checkFunction() for each of the functions in the logic 
network as shown in the following pseudo-code. 

 
satisfyTimeConstraints(kernel k){  
//k is the kernel being examined 

 satisfied = TRUE; 
for i=1 to m{  //where m is the number of  

       //outputs of the network 
       if(checkFunction(fi, k) == FALSE){ 
  satisfied = FALSE; 

  break; 
} 

} 
return(satisfied); 

  } 
 

Figure 4. Pseudo-code of the proposed 
satisfyTimeConstraints() procedure  

 
The procedure checkFunction() is responsible for 

checking whether the extraction of the examined 
kernel will result in breaking the delay constraints of a 
certain function or not. The contents of the procedure 
checkFunction() differs according to the model used 
for estimating delay. 

 
IV. PROTOTYPING AND PERFORMANCE 

ANALYSIS 
 

A very demanding issue is to test the results that are 
reported by the algorithm after enhancement. Hence, 
the choice of the experimentation scheme is very 
important.  



We spot on what we might consider simple logic 
networks. However, we study these networks 
thoroughly, considering the three different topologies 
that might be taken by the logic network (the original 
non-optimized network, the network after optimization 
for low power without delay constraints, and the 
network after optimization for low power under delay 
constraints).  

The choice of “simple” logic networks stems 
from the fact that the probability of appearance of 
glitches in a certain node of a logic network increases 
with the increase in the size of the network. Thus, the 
choice to verify the developed algorithm (which is 
designed for a zero-delay model) using simple logic 
network is to decrease the possibility of appearance of 
glitches in different nodes of the network. This 
guarantees that the simulated power consumption 
almost results from useful transitions only. Besides, if 
the algorithm works well with “simple” logic 
networks, then it is expected that it is going to work 
better with “complex” networks where there is a great 
pool of common kernels to be extracted.  

A logic-level CAD tool is needed to handle the 
verification process. ORCAD 9.2® of Cadence is 
used for this purpose. 

Two examples of multiple-output combinational 
logic networks are chosen to be our test benches 
during experimentations: A two-bit comparator and a 
two-bit adder. 

The obtained results show that after 
implementing the suggested modifications, the 
performance of the logic network is prevented from 
being severely damaged, which in turns enables the 
designer to include the network in a sequential circuit 
operating under higher speed clocks. 

The following table summarizes the results that 
are obtained during the experimentation phase. 

 

 
 

Table 1. Summary of obtained results 
 

The table shows that for the two-bit comparator, 
when the logic network is optimized for low power 
without delay constraints, a 61.1% reduction in power 
consumption is achieved. However, when the 
optimization is performed under delay constraints, a 
28.6% reduction in power consumption is achieved, 
but the maximum operating frequency of the logic 
network becomes about 38% better than its 
corresponding value when the optimization process is 
performed without delay constraints. Therefore, our 
proposed technique is preferable when a reduction in 

power consumption of the system is required, but in 
the same time, the minimum value of the clock that is 
going to synchronize the system is an important design 
issue. 

Some of the results in the table may appear 
unexpected. For instance, for the two-bit adder, the 
network optimized for low power only consumes more 
power than the network optimized for low power 
under delay constraints. This is due to the appearance 
of glitches, which increase the power consumption 
severely. 

 
V. CONCLUSION 

 
In the present paper we have developed an 
optimization tool that accepts a non-optimized 
combinational logic network as an input and produces 
a network with reduced power consumption, yet under 
delay constraints.  

The system has been tested using ORCAD 9.2®. 
Two examples of multiple-output combinational logic 
networks were chosen to be our test benches during 
our experiments: A two-bit comparator and a two-bit 
adder. 
 

REFERENCES 
 

[1] M. Pedram, “Power Minimization in IC Design: 
Principles and Applications,” ACM Transactions 
on Design Automation of Electronic Systems, 
Vol. 1, No. 1, pp. 3-56, January 1996. 

[2] P. Havinga, “Mobile Multimedia Systems,” 
Ph.D. thesis, University of Twente, February 
2000. 

[3] P. Gray and R. Meyer, “Analysis and Design of 
Analog Integrated Circuits. Third Edition,” John 
Wiley & Sons, Inc. Canada, 1993. 

[4] C. Small, “Shrinking devices put the squeeze on 
system packaging,” EDN 39, 4, pp. 41–46, 
February 1994. 

[5] T. Mudge, “Power: A First-Class Architectural 
Design Constrain,” IEEE J. Computer, IEEE 
Press, pp. 52-58, 2001. 

[6]  G. Cai and C. Lim, “Architectural Level 
Power/Performance Optimization and Dynamic 
Power Estimation,” Cool Chips Tutorial: An 
Industrial Perspective on Low-Power Processor 
Design, T. Mudge, S. Manne, and D. Grunwald, 
eds., IEEE CS Press, Los Alamitos, Calif., pp. 90-
113, 1999.  

[7] L. Benini, and G. De Micheli, “System-Level 
Power Optimization: Techniques and Tools,” 
ACM Transactions on Design Automation of 
Electronic Systems, Vol. 5, No. 2, pp. 115-192, 
April 2000. 

[8] S. Iman and M. Pedram, “Logic Synthesis for 
Low Power VLSI Design,” Kluwer Academic 
Publishers. USA, 1998. 

[9]  J. Rabaey and M. Pedram, “Low Power Design 
Methodologies. Fourth Printing,” Kluwer 
Academic Publishers USA, 2001. 



[10] G. De Micheli, “Synthesis and Optimization of 
Digital Circuits,” McGraw Hill. USA, 1998. 


