
Corner-First Tree-Based Region Broadcasting in Mesh Networks

Hadeel Haddad and Muhammed Mudawwar

Computer Science Department
The American University in Cairo

Abstract

In direct interconnection networks, the collective
communication operation one to all, which is usually
referred to as broadcasting, can be generalized to allow one
source node to send a message to a rectangular region of
nodes, rather than to all nodes. Most of the proposed routing
algorithms for direct mesh and torus networks use a
broadcast tree of unicast messages. The minimum spanning
tree-based region broadcasting is not deadlock free, unless
the network is partitioned into many virtual sub-networks,
where the number of virtual channels grows exponentially
with the dimension of the network [3]. This paper proposes
two versions of the minimum spanning tree region-
broadcasting algorithm that are based on the idea of starting
always at a corner of a region. The first algorithm uses
always a fixed corner, while the second one uses the nearest
corner. The two proposed algorithms are deadlock free and
use virtual cut through for buffering blocked packets. Both
broadcast algorithms can be safely mixed with unicast
routing algorithms.

Keywords: Tree-based region broadcasting, minimum
spanning tree, direct mesh networks, corner-first region
broadcast algorithms, virtual cut through.

1. Introduction

Collective communication, such as broadcasting and
multicasting, are very important for developing parallel
programs. Interconnections networks are a critical
component of distributed shared-memory multi-processors
and message-passing multi-computers because parallel
application performance is affected by their performance.
Network performance is measured by network latency and
throughput.

Most existing systems support only unicast communication
in hardware. In these environments, broadcast must be
implemented in software by sending multiple unicast
messages. Sending a separate copy of the message from the
source node to all nodes in the region may require excessive
time. An alternative approach is to use a broadcast tree of
unicast messages. In unicast based tree the source node
actually sends the message to only a subset of the destination
nodes. Each recipient of the message forwards it to some
subset of the destination nodes that have not yet received it.
This process continues until all destinations have received

the message. An example of unicast based broadcast
algorithm is the Recursive Doubling algorithm [1], [2].

Broadcast can be supported by hardware by replicating the
message at intermediate routers. This intermediate reception
capability allows a router to deliver an incoming message to
the local host while simultaneously forwarding it to another
router. An example of a tree based broadcast algorithm is the
Minimum Spanning Tree MST for meshes [3], [4]. The MST
algorithms are not deadlock free unless network is
partitioned into virtual networks. Although network
partitioning avoids deadlock, it has a major disadvantage.
The required number of virtual sub-networks grows
exponentially with the number of dimensions of the mesh
[5], [10]. In addition, most proposed broadcast routing
algorithms discuss the case where the source node is part of
the broadcast region and ignore the case where the source
node is outside the region. In this paper, two modified
versions of MST broadcast algorithm are discussed, the
Fixed Corner and the Nearest Corner minimum spanning
tree. These two algorithms are deadlock free for mesh
topology and can be mixed safely with unicast messages.
The source node may reside inside or outside the broadcast
region. The fixed corner is deadlock free even with one
virtual channel class, while the nearest corner requires two
virtual channel classes for direct mesh networks with
arbitrary dimension.

2. Tree-Based Broadcast Algorithms

Broadcast algorithms are classified as being either tree-based
or path-based. This paper discusses only on tree-based
broadcast algorithms and does not consider the path-based
ones.

2.1 The Minimum Spanning Tree (MST) Algorithm

One approach to multicast routing is to replicate a message
and forward each copy on a different channel. The path
followed by each copy may further branch in this manner
until the message is delivered to all destination nodes. In
such tree-based routing algorithm, the destination set is
partitioned at the source, and separate copies are sent on one
or more outgoing links. In this algorithm, a router receiving
a message on an input channel is allowed to forward this
message to all output channels along the higher dimensions
as well as to an output channel along the same dimension
and in the same direction. However, it is not allowed to route
a message to an output channel along a lower dimension, or



along the same dimension but in the opposite direction.
Figure 1 represents a 4x4 2D Mesh, in which the source
node is the shaded square. The source node injects four
copies of the message, each for a different direction and
dimension: +X, +Y, -X, and –Y. The copies routed in the X
dimension are responsible of broadcasting the message to
+X, +Y, -Y. While those copies routed to Y are only allowed
to broadcast in the Y dimension.

This routing algorithm is not deadlock free for wormhole
routing unless the network is partitioned into disjoint virtual
sub-networks. The disadvantage of this approach is that the
number of virtual channels grows exponentially with number
of dimensions of the network [5]. Also, this algorithm is not
deadlock free for virtual cut through routing unless certain
restrictions are applied [6], [7].

2.2 The Recursive Doubling (RD) Algorithm

In the RD algorithm, the source node first sends the message
halfway across a dimension, partitioning the network into
two sub-networks. In subsequent steps, each node holding a
copy of the message forwards it to a node halfway across in
its partition that has not yet received the message.
As with other unicast-based broadcast algorithms, the
number of generated and injected messages in the RD
algorithm is equal to the number of nodes in a region.
Another disadvantage is that the generated messages might
pass by other nodes that did not receive the message yet on
their way to their destinations; however, the message is not
delivered to these other nodes until later. The RD algorithm
is deadlock free and uses dimension-order routing to send
messages.

2.3 The Safe Minimum Spanning Tree Algorithm

The safe minimum spanning tree algorithm is a modified
version of the MST algorithm that works when the buffer
size is greater or equal to message length (i.e., virtual cut
through buffering is used), when resources are reserved in
order, and when a header flit is not allowed to advance to an
output buffer until all required resource buffers are allocated.
This algorithm was introduced in [6] and was shown to be
deadlock free.

3. Fixed Corner Broadcast Algorithm

A broadcast region is defined by two opposite node corners.
Whether the broadcasting source node resides inside or
outside the broadcast region, a message is sent first, to a
fixed corner, which can be the lower left corner of the region
(fixed in direction not in location). Deterministic unicast
routing can be used for this purpose. After reaching the
lower left corner, the message will be broadcasted to the
region by replicating the message and sending it to all other
routers in the tree according to the dimension-order rule. A
router in dimension i is allowed to send a message to all
routers in dimensions ≥ i, until the message reaches all
destinations. Turns, such as turning back in opposite
direction and changing from a higher dimension to a lower
one, may occur and they are only allowed to occur at a
router where broadcasting starts (in our case is the lower left
corner of the region). These turns may cause deadlock if
they are not restricted to a fixed corner, by fixing the corner
all turning messages are turning in the same direction
(restricted turns) and this will prevent deadlock. That is why
a fixed corner is chosen to start broadcasting. By choosing
the fixed corner to be the lower left, the restricted turns,
which are allowed in this algorithm at the fixed corner and
for a 2D Mesh direct network are:

Turning back to opposite direction:
-Y to +Y and -X to +X

Turning from a higher to a lower dimension:
-Y to +X and +Y to +X

3.1 Deadlock Formation

Deadlock may occur if any of the following conditions is
violated:

a. All broadcast messages should be routed in a fixed
direction along each dimension when they broadcast to a
region, for example +X and +Y for 2D mesh networks. This
restriction is necessary to prevent deadlock formation caused
by turning back or by turning from a higher dimension to a
lower dimension at a corner router where broadcasting starts.
Since all broadcast messages are routed in the same direction
then deadlock is prevented. Turning back and changing to a
lower dimension, which are not allowed neither in DOR
unicasting nor in MST broadcasting, are only allowed when
broadcast messages reach the corner where to start
broadcasting to a region. Violating this condition causes
deadlock as shown below.

Allowing messages to broadcast from different region
corners causes deadlock. Messages will then broadcast in
opposite directions along the same dimension. Turning back
occurs depending on the location of the corner node in
correspondence with the source node. This turning back
causes deadlock when it is in a different direction along the

Figure 1: Tree Based Broadcast in a 4x4 Mesh



same dimension, as shown in Figure 2. By fixing the corner
where to start broadcasting, possible turns will be in the
same direction along each dimension and messages can
follow each other without causing any deadlock.

Changing dimension from a higher to a lower one also
causes deadlock. However, when broadcasting from a fixed
corner, such as the lower left, changing to a lower dimension
is restricted to the positive direction only. This restriction
prevents deadlock formation.

b. Output buffer size should be greater or equal to message
length. Wormhole routing in MST is not deadlock free. If
one branch of a MST tree becomes blocked, then all other
branches will become blocked as well. To solve this
problem, we may use virtual cut-through buffering and make
the size of output buffers big enough to store the largest
packet. Storing a blocked message should be at the output
buffer rather than at the input buffer. Otherwise, deadlock
may occur, as shown in Figure 3.

At router A, the header of message 1 (H1) is blocked at +Y
output buffer, while allocating and reaching buffers in routes
B and D. H1 is waiting for H3 at +Y output buffer of router
A. H3 is waiting for H2 at +X output buffer of router C. H2
is waiting for +Y output buffer of router D, which is
allocated to message 1.
The problem is that the tail of message 1, which is still at the
+X input buffer of router A, cannot reach the +Y output
buffer of router D and free the allocated buffers on its way.
To advance the tail of message 1 to the +X output buffer of
router A, we should be able to advance it as well to its +Y
output buffer. If the output buffer is small then the tail of
message 1 is stuck at the +X input buffer of router A, which
causes a deadlock. Observe that large input buffers do not
solve the problem. For example, the input X+ buffer of
router D is holding completely message 2, but this did not
solve the problem. Therefore, we should insure that output
buffers are large enough to hold complete packets, while
input buffers can be minimized.

c. Output buffer resources should be reserved in order.
When more than one output buffer resource is required then
buffer resources can be reserved gradually and should be
reserved according to a given order. Ejection should be the
last buffer to allocate. Violation of this condition causes
deadlock as shown in Figure 4. Message 1 and 2 would like
to allocate the same two output buffers in the +X and +Y
directions. Message 1 has allocated the +X output buffer and
is waiting for the +Y buffer, while message 2 has allocated
the +Y buffer and is waiting for the +X buffer. If output
buffers are allocated in order, such that the +X buffer is
always allocated before the +Y buffer then this deadlock
situation would not have happened.

4. Nearest Corner MST Broadcast Algorithm

Nearest Corner is a tree based algorithm, in which the source
node may reside inside or outside the broadcast region. The
broadcast message is first unicast to nearest corner of the
broadcast region. Then it will be sent to other routers in the
region according to the minimum spanning tree algorithm.
Since the broadcasting corner is not fixed, the turns are not
restricted. Therefore, deadlock may occur. Instead of fixing
the corner, virtual channel buffers are used to avoid
deadlock. Two disjoint virtual channel buffer classes are
sufficient to avoid deadlock in direct mesh networks with
arbitrary dimension. One deterministic buffer class and a
second adaptive buffer class when turns are violated. Buffer
allocation is done when all required output buffer resources
are available. Reserving buffers in a specific order caused
deadlocks.

4.1 Deadlock Formation

Deadlock may occur if any of the following conditions is
violated:

Figure 3: Deadlock caused by small output buffer size

Figure 2: Deadlock caused by turning back
in different directions along same dimension

Input buffer

Output buffer

A H1

1 1

C H3

3

H3

D 1

H2

1

B 1

1

H1

H2

2

1

Figure 4: Deadlock caused by unordered reservation



a. Two disjoint virtual channel classes are needed: One is
used for deterministic routing, and the other is used for
unrestricted turns. When a message starts using the non-
deterministic virtual channel class, it will continue using it
until it is ejected. Otherwise, deadlocks may occur.

b. Output buffer size should be greater or equal to message
length: This situation is exactly the same as discussed in the
fixed corner algorithm.

c. Buffer resources should not be reserved: Reserving
buffer resources in a specific order resulted in deadlock
formation. Therefore, we do not allocate output buffers
unless all required buffer resources are available. Otherwise,
no buffer resource is reserved.

5. Network Simulation

To measure the performance of broadcast algorithms, a
number of mesh networks have been simulated varying few
parameters in every run. The simulator is a C++ program
that simulates mesh networks at the flit level. A flit transfers
over the channel is assumed to take place in one cycle. The
simulator can be configured to support different parameters
and can generate various statistics.
Latency is measured starting from the generation time of a
message until the tail is ejected at the destination node.
Traffic is measured as the percentage of channel utilization.
A channel is utilized during a clock cycle if it is used to
transfer a flit successfully. The injection rate of a node is the
percentage of cycles used to inject a flit successfully into the
network. The ejection rate is the percentage of cycles used to
eject a flit successfully from the network. The average
traffic, injection, ejection rates are taken over all channels
and nodes in the network.

5.1 Network Performance using Fixed Corner and
Nearest Corner Algorithms

Two medium sized networks are simulated, a 2D 16x16
mesh and 4D 4x4x4x4 mesh. Simulation of both networks
repeated with different number of virtual channel buffers, 1,
4 and 8 for the fixed corner algorithm and 4 and 8 for the
nearest corner algorithm. Experiments were conducted for
networks with a low probability, 10%, of broadcast
messages and with a high probability, 90%, of broadcast
messages.
The performance of 2D and 4D meshes is shown in Figures
5 through 8. The results show that the nearest corner
algorithm is performing better as the average rate of
injection and ejection is higher while network traffic is lower
for almost the same number of routed messages. The nearest
corner algorithm results in lower latencies and higher
throughput saturation point.

16x16 B = 4 Broadcast 10%

0

50

100

150

200

250

300

0 2 4 6 8 10

Injection Flit Rate %

L
at

e
n

cy
(c

yc
le

s
)

16x16 B = 4 Broadcast 10%

0

50

100

150

200

250

300

0 10 20 30 40 50

Ejection Flit Rate %

L
at

en
cy

(c
yc

le
s)

16x16 B = 4 Broadcast = 90%

0

50

100

150

200

250

300

0.00 0.50 1.00 1.50

Injection Flit Rate %

L
at

en
cy

(c
yc

le
s)

16x16 B = 4 Broadcast 90%

0

100

200

300

400

0 10 20 30 40 50

Ejection Flit Rate %

L
at

en
cy

(c
yc

le
s)

Fig 5: 2D Mesh 16 x 16, VCB = 4 Broadcast = 10%

Fig 6: 16x16 2D Mesh, VCB = 4, Broadcast = 90%



4x4x4x4 B = 4 Broadcast 10%

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14
Injection Flit Rate

L
at

en
cy

(c
yc

le
s)

4x4x4x4 B = 4 Broadcast 10%

0

50

100

150

200

250

300

0 10 20 30 40 50
Ejection Flit Rate

L
at

en
cy

(c
yc

le
s)

4x4x4x4 B = 4 Broadcast = 90%

0

50

100

150

200

0 0.5 1 1.5 2

Injection Flit Rate %

L
at

en
cy

(c
yc

le
s)

4x4x4x4 B = 4 Broadcast = 90%

0

50

100

150

200

0 5 10 15 20 25 30 35 40 45

Ejection Rate %

L
at

en
cy

(c
yc

le
s)

The performance of applying both algorithms on a 2D mesh
network using different number of virtual channel buffers

are shown in figures 9 and 10. Increasing the number of
virtual channels from 1 to 4 improved the network
performance and saturation point significantly. However,
increasing this number from 4 to 8 had little effect on
network performance.

16x16 Fixed Broadcast 90%

0

100

200

300

400

0 5 10 15 20
Channel Utilization %

L
at

en
cy

(c
yc

le
s)

VBC = 1 VBC = 4 VBC = 8

16x16 Fixed Broadcast 90%

0

100

200

300

400

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Injection Rate

La
te

nc
y

(c
yc

le
s)

16x16 Fixed Broadcast 90%

0

100

200

300

400

0 10 20 30 40 50
Ejection Rate%

L
at

en
cy

(c
yc

le
s)

16x16 Nearest Broadcast 90%

0

50

100

150

200

0 5 10 15
Channel Utilization %

L
at

en
cy

(c
yc

le
s)

VBC = 4 VBC = 8

Fig 7: 4x4x4x4 Mesh VCB = 4 Broadcast = 10%

Fig 9: 16x16 Mesh, Fixed-corner, Broadcast = 90%

Fig 8: 4x4x4x4 Mesh, VCB = 4 Broadcast = 10%



16x16 Nearest Broadcast 90%

0

50

100

150

200

0 0.5 1 1.5

Injection Flit Rate %

L
at

en
cy

(c
yc

le
s)

16x16 Nearest Broadcast 90%

0

50

100

150

200

0 5 10 15 20 25 30 35 40 45 50

Ejection Flit Rate %

L
at

en
cy

(c
yc

le
s)

6. Discussion and Conclusions

From the above simulation results, we can conclude that
fixed-corner and nearest-corner region broadcast algorithms
perform equally well. The nearest corner algorithm performs
slightly better than the fixed corner algorithm. However, this
slight improved performance comes at an additional cost.
The nearest corner algorithm requires two separate channel
classes to avoid deadlock. However, the fixed corner
algorithm is very simple. It does not require any buffer
classes and is deadlock free, which means that it can be
implemented efficiently in router chips. Region broadcasting
is not restricted only to source nodes inside the region.
Source nodes can be also outside the broadcast region. The
low channel utilization, which reached only 15% for high
broadcasting rate (90%) indicates the importance of
implementing broadcasting in the hardware. Software-based
broadcasting algorithms, which use unicast messages to
implement broadcasting, require a high channel utilization,
which affects the performance of unicast messages. On the
other hand, hardware-based broadcast algorithms make
better use of hardware resources.

References

[1] Y. J Tsai and P.K. Mckinley, An Extended Dominating Node
Approach to Broadcast and Global Combine in Multiport
Wormhole-Routed Mesh Networks, IEEE Transactions on Parallel
and Distributed Systems, vol. 8, No. 1, pp. 41-57, January 1997.

[2] Y. J Tsai and P.K. Mckinley, A Broadcast Algorithm for All-
Port Wormhole-Routed Torus Networks, IEEE Transactions on

Parallel and Distributed Systems, Vol. 7, No. 8, pp. 876-885,
August 1996.

[3] J. Duato, S. Yalamanchili and L. Ni, Interconnection Networks:
An Engineering Approach, IEEE Computer Society Press, 1997.

[4] X. Lin and L. M. Ni, Deadlock-Free Multicast Wormhole
Routing in Multicomputer Networks, Proceedings of the 18th

International Conference on computer Architecture, pp. 116-126,
May 1991.

[5] X. Lin, P. K. Mckinley, and L. M. Ni, Performance Evaluation
of Multicast Wormhole Routing in 2D-Mesh Multicomputers,
Proceedings of the 1991 International Conference on Parallel
Processing, vol. 1, pp. 435-442, August 1991.

[6] M. F. Mudawwar and R. Mameesh, Region Broadcasting in k-
ary m-way Networks, Proceedings of the ISCA 13th International
Conference on Parallel and Distributed Computing Systems,
August 8-10, 2000, Las Vegas, Nevada, pages 268-274

[7] R. Mameesh, Region Broadcasting in Multiway Channel
Networks, Master Thesis, Computer Science Department, The
Am,erican University in Cairo, January 2000.

[8] M. Barnett, D. G. Payne, and R. van de Geijn, Optimal
Broadcasting in Mesh-Connected architectures, Tech. Rep, TR-91-
38, Department of Computer Science, The University of Texas at
Austin, Dec. 1991.

[9] P. K. Mckinley, Y. J Tsai, and D. F. Robinson, A Survey of
Collective Communication in Wormhole-Routed Massively
Parallel Computers, Technical Report MSU-CPS-94-35, June 1994.

[10] S. J. Johnsson and C. T. Ho, Optimum Broadcasting and
personalized Communication in Hypercubes, IEEE Transactions on
Computers, vol. C-38, pp. 1249-1268, Sept. 1989.

Fig 10: 16x16 Mesh, Nearest-corner, Broadcast = 90%


