
Proceedings of the 8th International Conference on AI Applications, February 2000

1

Thread Programming in SIMPL

Muhammed F. Mudawwar
Department of Computer Science

The American University in Cairo, Egypt
mudawwar@aucegypt.edu

Abstract

Advances in parallel architectures in recent years fueled the demand of a new class of programming
languages that can simplify and promote parallel programming on a wide variety of parallel computers.
This article introduces a new explicitly parallel programming language, called SIMPL. Three
constructs are designed to support parallelism and to coordinate threads. The thread statement is used
for forking threads. The lock and wait statements are used for synchronization. SIMPL is designed to
support functional and data parallelism and to run on a wide variety of architectures. The simplicity
and expressiveness of the parallel constructs is demonstrated. The implementation of these constructs is
also discussed.

1. Introduction

Parallel programming languages differ greatly in their support for parallel programming. Some
languages, such as High Performance Fortran [Koelbel 1994], are designed to support data or array
parallelism. Other languages, such as Ada [Ada 1995], are designed to support task or functional
parallelism. Declarative parallel languages, such as Id [Nikhil 1991], favor implicit parallelism rather
than explicit parallelism. These languages are designed to avoid side effects as much as possible.
Parallelism is easily detected and extracted by the compiler rather than being specified explicitly by the
programmer. Other researchers have favored more complex approaches of extracting parallelism
directly from sequential languages. Examples of parallelizing and optimizing compilers are
PARAFRASE [Kuck 1984] and SUIF [Hall 1996]. The problem with a parallelizing compiler is that
parallelism can be obscured in a sequential algorithm, and it is very difficult to extract it. An explicitly
parallel language, on the other hand, encourages the programmer to write parallel algorithms.
Furthermore, a compiler for an explicitly parallel language is easier to develop.

This article introduces a new programming language called SIMPL. SIMPL is a research-oriented
explicitly parallel language designed to simplify and promote the programmability of parallel
computers, especially shared-memory multiprocessors. This language uses the shared memory model of
communication, and allows the programmer to exploit functional and data parallelism. SIMPL is an
acronym for Simplified Imperative Modular Parallel Language. This language provides three simple
constructs for starting threads and for synchronization. In addition, this language supports
parameterized types, polymorphic functions, interfaces and modules. A complete definition of this
language is provided in [Mudawwar 1998].

The next section discusses previous research on parallel languages. Section 3 presents three SIMPL
constructs designed for parallel execution and synchronization. Examples on how to use these
constructs in parallel programs are shown in Section 4. Section 5 discusses the issues related to the
implementation of the parallel constructs.

2 Previous Work on Parallel Languages

This section focuses on parallel languages that support shared memory as a means of communication.
These languages need constructs for starting and terminating threads, as well as for thread
synchronization. Some languages also support parallel loops and allow the programmer to decompose
and distribute arrays on processors.

2.1 Parallel Execution

Parallel execution differs greatly between programming languages. The parbegin / parend (or
cobegin/coend) compound statement provides a parallel region, in which all enclosed statements can

Proceedings of the 8th International Conference on AI Applications, February 2000

2

potentially execute in parallel. Parallel and sequential regions can be nested inside each other. A thread
can be forked to each statement in the parallel region. This is a simple and structured way to support
parallelism in a programming language. However, the compiler should choose how many of the eligible
statements should actually be executed concurrently, depending on the granularity of statements and the
overhead of parallel execution.

Some languages, like Modula-3 [Nelson 1991], present a fairly low-level view of threads. A thread is
started by a call to a fork procedure, which returns a thread identifier that can be used later for
synchronization. Fork takes a procedure parameter that tells the thread what to execute. Sequential
languages, like C or C++ do not provide parallel execution, but can use thread libraries, such as the
pthread library under UNIX systems. Thread libraries are not simple to use but do support parallel
execution.

Other languages like Ada [Ada 1995], use a high-level concept of a task subprogram to support
parallel execution. When a task subprogram is called, a new thread is forked. The caller and the called
threads progress in parallel. In SIMPL, a thread statement is used to support parallel execution. A
thread statement is simpler and more flexible to use than a task or thread function as will be
demonstrated.

2.2 Parallel Loops

Data-parallel languages include some sort of parallel iterative control structure. This is known as a
parallel loop and is given different names such as doall, pardo, forall, and doacross. All the iterations
of a parallel loop can be executed in parallel, but the statements of a given iteration are executed
sequentially. Some researchers use doacross loops to mean a loop whose iterations are executed in a
pipelined manner, rather than in parallel. A parallel loop is used essentially to expose data-parallelism,
mainly array-parallelism, where the amount of parallelism exposed is equal to the size of arrays. In
SIMPL, a thread statement with an iteration space is used to expose data-parallelism.

2.3 Thread Synchronization

In order for two threads running asynchronously to coordinate their activities, a parallel language must
provide a means of synchronization. Synchronization can further be subdivided into access control and
sequence control. Access control is needed in parallel languages that use shared-memory as a means of
communication. Access control is to restrict the access of a shared data object such that one thread can
manipulate it at a time. Sequence control, also known as condition synchronization, is to coordinate the
execution of threads such that they progress in a correct order.

Many synchronization primitives have been suggested for access and sequence control. These include
mutexes or locks, semaphores, condition variables, event counters, and barriers. For a coverage of
these primitives, see [Finkel 1996]. Language constructs include the join statement, conditional critical
regions, and monitors. The SIMPL language provides two constructs for thread synchronization. These
are the lock and wait statements. These two statements are sufficient and can be used to implement
synchronization primitives, such as semaphores, and monitored types.

2.4 Decomposing and Distributing Data Arrays

Some variations of Fortran 90, most notably High Performance Fortran [Koelbel 1994], allow the
programmer to specify how to decompose and distribute the data arrays on different processors. The
programmer does this in three stages:

1. Declares one or more templates, or virtual processor domains

2. Aligns each distributed data array to another array or one of the templates

3. Distributes the arrays or templates onto the actual processor ensemble

The decomposition and distribution of data arrays improve locality of reference and reduce
communication. However, this is an extra work for the programmer who should be more focused on the
parallel algorithms and shared data structures in a program. SIMPL does not allow the programmer to
decompose and distribute data arrays. It relies more on compiler optimizations [Lim 1999] and
hardware caches to improve locality of reference.

Proceedings of the 8th International Conference on AI Applications, February 2000

3

2.5 Declarative Languages

A declarative language avoids explicit parallelism in favor of implicit parallelism, extracted by the
compiler, the run-time system, or even the hardware. Declarative languages support the single-
assignment rule and permit a variable to be defined once. Since the variables in a declarative language
cannot be updated, an imperative language programmer may view them as runtime constants.
Designers of declarative languages strive to make their languages free from side effects to promote
referential transparency and program reasoning. SISAL [Bohm 1991] and Id [Nikhil 1991] are
examples of implicitly parallel declarative languages designed to address some of the application
domains in which imperative parallel languages are used.

Compilers for declarative languages must perform several important optimizations to improve the
efficiency (speed and memory usage) of the generated code. To support the single-assignment rule, a
declarative program often uses more memory than a corresponding imperative program. For example,
since an array cannot be updated, a new array must be allocated and defined. A compiler can perform
important build-in-place and update-in-place analyses to optimize this, and experience has shown that
the analyses are effective [Cann 1992].

3 SIMPL Constructs for Parallel Execution

SIMPL provides three constructs only for parallel execution and synchronization. These are the thread
statement, the lock statement, and the wait statement. These statements are discussed next.

3.1 SIMPL threads

SIMPL uses a simplified, yet powerful thread statement for parallel execution. A thread statement
specifies a thread name, an optional iteration space, and has a body that consists of a list of
statements. The general form of a thread statement is shown below:

thread name iteration_spaceopt do statement_list end

There are two variations of the thread statement, depending on whether the iteration space is included
or not:

1. A simple thread statement is one without an iteration space.

2. A thread group statement is one with an iteration space.

The order of statement execution in SIMPL is normally sequential. However, when a thread statement
is encountered a new thread, called a child thread is forked. The forking thread is called the parent
thread. The parent and child threads are scheduled independently and can potentially run in parallel. In
the case of a thread group (with an iteration space), one or more threads are forked. An example of a
simple thread and a thread group statement is shown in Program 1. In this example, up to n threads can
be forked for thread group two, one for each iteration. When a small number of processors is available
or when little work is done in each iteration of a thread group, a small number of threads are forked
and the iteration space is distributed among these threads. Thus, a thread group in the SIMPL language
is equivalent to a parallel loop in other languages. A thread group is designed to support data-
parallelism, while a simple thread statement provides functional parallelism.

-- Simple thread statement
thread one do
 ...
end -- thread one
...
-- Thread group statement
thread two for i := 1 to n do
 ...
end -- thread two

C
hi

ld
 th

re
ad

 o
ne

fork one

Pa
re

nt
 th

re
ad

fork two

one or more
threads are forked

th
re

ad
 g

ro
up

 tw
o

Program 1: Forking threads and thread groups

Proceedings of the 8th International Conference on AI Applications, February 2000

4

Thread statements can be nested, exactly like other statements. A forked child thread can itself fork
other threads and become a parent to them. Thus, a hierarchy of threads can result when thread
statements are nested. Program 2 illustrates nested threads.

thread a do
 thread b for i := 1 to n do
 thread c for j := 1 to n do
 ...
 end -- thread c
 ...
 end -- thread b
 thread d do
 thread e do
 ...
 end -- thread e
 ...
 end -- thread d
 ...
end -- thread a

fork a

thread
group b

fork e

fork b

fork d

fork cfork c

group c group c

Program 2: Nested threads and their forking

A thread group is initially forked as a single thread. Depending on scheduling, number of processors,
number of iterations, granularity of each iteration, and the current workload, a thread group can be
split into a number of threads, each carrying a different subset of the iteration space. The runtime
thread library handles the dynamic scheduling and splitting of a thread group. A programmer cannot
specify this scheduling. A thread group with n iterations can be split into at most n threads, all sharing
the same code, but each having a different iteration number. Therefore, the scheduling of a thread
group is implementation dependent and may vary from one implementation to another.

It is important to notice that forking a thread group with n iterations is not identical to having a loop
forking n threads as shown below. In the later case, the overhead of forking n threads can be
substantial if n is large, especially if we were to execute these threads on a multiprocessor with a small
number of processors.

-- Not the same as forking a thread group with n iterations
for i := 1 to n do
 thread x do
 ...
 end -- thread x
end -- for

3.2 The Lock Statement

When objects (variables) are shared by more than one thread, exclusive access to the shared objects
must be guaranteed. The lock statement is used for this purpose. The lock statement specifies an object
name to be locked and has a body that consists of a list of statements. The general form of a lock
statement is shown below:

lock obj_name do statement_list end

The compiler associates a synchronization lock with an object specified in a lock statement. When a
thread executes a lock statement, it attempts to acquire the lock of the specified object name. If the lock
is already acquired, the requesting thread is suspended. When a thread reaches the end of a lock
statement, it releases the lock of the specified object. If other threads are waiting on this lock, one of
them (the oldest waiting thread at the front of the lock's waiting queue) is allowed to resume execution.

Program 3 illustrates the use of a lock statement. A parent thread declares an object named shared and
then forks thread one. Object shared can be accessed concurrently by thread one and its parent thread.
To ensure exclusive access, the parent thread and its child thread one must use the lock statement.

An alternative approach to the lock statement is to define a lock type with two operations acquire() and
release() for acquiring and releasing a lock object. This approach is, however, less structured than the
lock statement and does not guarantee that the programmer will release a lock object at the end of a

Proceedings of the 8th International Conference on AI Applications, February 2000

5

critical section. The lock statement is more elegant because it can lock any object and guarantees its
release at the end. Internally, the compiler takes care of associating a synchronization lock with each
locked object. When a data structure is locked, the entire structure is locked and none of its elements
can be accessed by other threads. A single lock is required in this case. However, when elements of a
data structure are locked separately, an array of locks will be required. The lock statement can be used
to implement a shared data structure, as will be demonstrated in the next section.

obj shared:sometype
thread one do
 lock shared do ... end -- lock
 ...
end -- thread one
...
lock shared do
 ...
end -- lock

fork a

lock shared
lock shared

end -- lock shared
thread suspended

Program 3: The lock statement and its effect

3.3 The Wait Statement

In addition to ensuring the exclusive access to shared objects, SIMPL allows threads to coordinate their
execution. The wait statement is used for this purpose. There are two variations of this statement.
These are the wait for and the wait until statements with the following syntax:

wait for terminated_threads
wait until boolean_expression

A parent thread sometimes needs to await the termination of one or more children threads before it can
proceed. The wait for statement causes a parent thread to suspend execution until children threads,
specified by name, terminate execution. This is a well-known form of synchronization called join
synchronization. The terminated threads condition can further specify and/or synchronization. With
and synchronization the parent thread awaits the termination of all the specified children threads. With
or synchronization, the parent thread awaits the termination of one of the specified threads. Program 4
illustrates and/or synchronization. In the first case, the parent thread is suspended until either thread a
or b terminates. In the second case, the parent thread is suspended until both threads a and b terminate.

We can also use the wait for statement to await the termination of a thread group. In this case, a parent
thread is suspended until all the iterations (or threads) of a thread group terminate. Furthermore, we
can mix and with or synchronization in the terminated threads condition.

thread a do
 ...
end -- thread a
thread b do
 ...
end -- thread b
...
-- wait for either thread
wait for a or b
...
-- wait for both threads
wait for a and b

Pa
re

nt
 th

re
ad

 th
re

ad
 a

fork a

th
re

ad
 b

fork b

wait for a or b

wait for a and b

thread suspended

thread terminated
Program 4: The wait statement with and/or synchronization

Since threads are specified as statements in a block, a thread name is visible only within its scope. This
has two implications. First, the same name can be given to two different threads if they exist in
different scopes, and second, a parent thread can see the names of its direct children threads, but not
the names of its grandchildren threads. In the program shown below, the parent of thread i is awaiting
the termination of its child thread i. It is not permissible for this parent thread to await the termination
of threads j and k directly because they are not visible in its scope. Having the parent of thread i await
the termination of thread i does not guarantee the termination of the children of thread i. However,

Proceedings of the 8th International Conference on AI Applications, February 2000

6

making thread i await the termination of its children threads will ensure the termination of thread j and
k before the termination of thread i and its parent.

If a parent thread does not await the termination of one of its children threads then this child thread is
said to be detached. If the main (root) thread of a program terminates and some of its detached children
(or grandchildren) threads are still alive, the process and its threads are terminated by the underlying
operating system because these threads operate in one address space.

thread i do
 thread j do ... end -- thread j
 thread k do ... end -- thread k
end -- thread i
wait for i
wait for j and k -- error (not visible)

thread i do
 thread j do ... end
 thread k do ... end
 wait for j and k
end -- thread i
wait for i

The wait until statement is used to support condition synchronization. This statement suspends the
execution of a thread until the specified boolean expression (condition) becomes 'true'. When a thread
executes a wait until statement, it evaluates the boolean expression, and suspends itself if this
expression evaluates to 'false'. When a thread is suspended on a wait until statement, it becomes
sensitive to all the variables specified in the boolean expression. When a second thread modifies any of
the variables in the sensitivity list, it triggers the reevaluation of the boolean expression. When the
boolean expression of a suspended thread evaluates to 'true', it allows the suspended thread to resume
execution.

An example of the wait until statement is shown in Program 5. In this example, a parent thread
declares two objects present and shared that are shared by threads producer and consumer. The
producer and consumer threads loop forever, producing and consuming a shared object on every
iteration. The two threads synchronize their execution using the present variable that indicates the
presence of a value in the shared object. Observe that enumeration literals, such as 'true', are enclosed
in single quotes to distinguish them from identifiers. Character literals, enclosed also in single quotes,
are a special case of enumeration literals. String literals are enclosed in double quotes.

The SIMPL language does not impose any requirements on the run-time scheduling of threads and the
exact timing of events. Therefore, when a thread is suspended on a wait until statement and a second
thread modifies one of the variables specified in the sensitivity list of the first thread, it is wrong to
assume that the boolean expression is reevaluated immediately. However, it will be reevaluated at a
later time, depending on scheduling. If more than one modification occurs to the variables in the
sensitivity list, the most recent modifications will be used when the boolean expression is reevaluated.
Thus, care must be taken when using the wait until statement.

obj present: boolean := 'false'
obj shared: some_type

thread producer do
 while 'true' do
 obj local:some_type
 -- produce local object
 ...
 wait until not present
 shared := local
 present := 'true'
 end -- while
end -- thread producer

thread consumer do
 while 'true' do
 obj local:some_type
 wait until present
 local := shared
 present := 'false'
 -- consume local object
 ...
 end -- while
end -- thread consumer

Program 5: Producer-consumer synchronization using wait until

4 Programming with Thread, Lock, and Wait Statements

This section provides examples on the use of the thread, lock, and wait statements in the SIMPL
language. The first example is the definition of a semaphore type, the second one is the definition of a
shared_queue type, and the third example provides two parallel solutions to LU decomposition.

Proceedings of the 8th International Conference on AI Applications, February 2000

7

4.1 Generalized Semaphores

Traditionally, the P and V operations of a semaphore decrement and increment its value by 1. We can
generalize these operations and specify a positive integer n to be subtracted or added to the internal
value of a semaphore. A thread calling P(n) is blocked on a semaphore if it drives its value negative. A
thread calling V(n) can wakeup zero, one, or more threads.

The interface and implementation of a generalized semaphore type is shown in Program 6. A type
interface and a type implementation are normally separated and placed in different files. A type
interface is exportable and contains the public members and function interfaces. A type
implementation, which begins with the private keyword, is not exportable and contains the private
members and the function implementations.

-- Type interface
type semaphore is
 function P(n:positive)
 function V(n:positive)
end -- type semaphore
-- Type implementation
private semaphore is
 obj value:integer := 0
 obj entry:boolean
 function P(n:positive) is
 lock entry do
 lock value do
 value := value - n
 end -- lock value
 wait until value >= 0
 end -- lock entry
 end -- P(n)
 function V(n:positive) is
 lock value do
 value := value + n
 end -- lock
 end -- V(n)
end -- private semaphore

Program 6: The interface and implementation of the type semaphore

The type semaphore has a private integer value member that stores the current value of the semaphore.
The P(n) function decrements value by n, while V(n) increments it by n. The lock value statements in
the P and V functions guarantee the correctness of the update. The wait until statement in the P
function suspends a caller thread when value is negative. The lock entry statement in the P function
blocks calling threads on the private member entry when a thread is currently blocked on the wait until
statement. Thus, only one thread can be waiting on the wait until statement, while others wait on the
entry lock. This has the effect of serializing the waiting of threads.

4.2 A Shared Queue Type

SIMPL does not support monitors or condition variables. Instead, the lock and wait statements can be
used to implement them. A monitor is an abstract data type whose objects can be safely shared by
many threads. The member objects of a monitored type are private and cannot be accessed directly, but
rather indirectly through the public member functions. Several threads can call member functions
concurrently but only one thread is allowed to be active within the monitor at a time. This is the
classical definition of a monitor[Gehani 88], but in SIMPL we can do better and be less restrictive. We
may allow more than one thread to be active within a monitored type. For example, Program 7 shows
the implementation of a shared_queue type that can allow two threads to enqueue() and dequeue()
concurrently. The shared_queue type is essentially a monitored type.

Function enqueue locks the rear index of a queue, while function dequeue locks the front index. If
multiple threads call enqueue concurrently then they are serialized. The same thing occurs for function
dequeue. However, it is possible to have two threads active in enqueue and dequeue concurrently.

Proceedings of the 8th International Conference on AI Applications, February 2000

8

The wait until statement replaces the need for condition variables, which are traditionally supported by
monitors. Since the wait until statements are enclosed in lock statements in the enqueue and dequeue
functions, only one thread can be waiting on them at a time. A thread calling enqueue is blocked on the
wait statement if the queue is full (count = n). A thread calling dequeue is blocked on the wait
statement if the queue is empty (count = 0). These threads are allowed to resume execution later when
the queue is no longer full (for enqueue) or no longer empty (for dequeue). Observe that count is
locked before updating it to ensure a correct update.

-- Interface of type shared_queue
type shared_queue{n:integer,t:type} is
 function enqueue(e:t)
 function dequeue():t
end -- type shared_queue

-- Type Implementation
private shared_queue{n:integer,t:type} is
 obj storage:array{n,t}
 obj front, rear, count:integer := 0

 function enqueue(e:t) is
 lock rear do
 wait until count < n
 storage[rear] := e
 rear := (rear+1) mod n
 lock count do
 count := count + 1
 end -- lock count
 end -- lock rear
 end -- enqueue()

 function dequeue():t is
 lock front do
 wait until count > 0
 result := storage[front]
 front := (front+1) mod n
 lock count do
 count := count - 1
 end -- lock count
 end -- lock front
 end -- dequeue()
end -- private shared_queue

Program 7: The interface and implementation of the type shared_queue

The type shared_queue is an example of a parameterized type with two parameters. The integer
parameter n specifies the size of the private array storage and the type variable t specifies the storage
element type. The actual values of n and t are specified when objects of this type are declared
[Mudawwar 2000]

There is a similarity and a difference between the lock and wait statements. The similarity is that both
statements are used to block threads. The difference is that if there are many threads blocked on the
synchronization lock of a lock statement, only one of them is allowed to resume. However, if there are
many threads blocked on the same wait statement, all of them are allowed to resume execution when
the boolean condition is satisfied. If this is not desirable then the wait statement can be enclosed in a
lock statement. This will ensure that only one thread can access the enclosed wait statement and block
on it at a time.

4.3 LU Decomposition

An example on thread groups is the well-known LU decomposition (gaussian elimination) algorithm.
Two parallel algorithms are show in Program 8. Function LUD illustrates the use of an inner thread

Proceedings of the 8th International Conference on AI Applications, February 2000

9

group to exploit data parallelism. A wait for statement is used after this thread group to ensure the
termination of all its threads, before moving to the next outer loop iteration. Therefore, all threads
forked in this function terminate before returning from this function.

An alternative solution is presented in function LUD2. A boolean matrix p is associated with the
production of the elements in matrix a. The element p[i,j] indicates that the final value of a[i,j] is
computed and hence can be consumed. All the elements in the referenced matrix p should be initialized
to 'false' before function LUD2 is called. The outer loop in function LUD is replaced with an outer
thread group in function LUD2. Synchronization is done using wait until statements. Return from
function LUD2 occurs as soon as the thread group outer is forked. Thus, the caller thread and the
function threads can progress in parallel. Consumer threads (not shown in Program 8) can consume
matrix elements separately as soon as they are produced. Function LUD2 is more aggressive at
exploiting parallelism than function LUD, but requires an additional boolean matrix p for
synchronization. Other variations are possible. In general, the programmer can control the parallelism
to be exposed and the overhead of synchronization.

function LUD {n:integer}(obj a:matrix{n,n+1,real}) is
 for k := 1 to n-1 do
 thread inner for i := k+1 to n do
 a[i,k] := a[i,k]/a[k,k]
 for j := k+1 to n+1 do
 a[i,j] := a[i,j]-a[i,k]*a[k,j]
 end -- for
 end -- thread inner
 wait for inner
 end -- for
end – function

function LUD2{n:integer}
 (obj a:matrix{n,n+1,real},
 obj p:matrix{n,n+1,boolean})
is
 thread row_1 for j := 1 to n+1 do
 p[1,j] := 'true'
 end -- thread row_1
 thread outer for k := 1 to n-1 do
 wait until p[k,k]
 for i:= k+1 to n do
 a[i,k] := a[i,k]/a[k,k]
 p[i,k] := 'true'
 end -- for
 thread inner for j := k+1 to n+1 do
 wait until p[k,j]
 for i := k+1 to n do
 a[i,j] := a[i,j] - a[i,k]*a[k,j]
 end -- for
 p[k+1,j] := 'true'
 end -- thread inner
 end -- thread outer
end -- function LUD2

n+1k-1 k1 2

k+1

. . .

Row 1

k

1

n

Produced by iteration k-1

Produced by iteration k

Iteration 1 2
Iteration 2 3

Program 8: LU decomposition without pivoting.

The figure associated with function LUD2 depicts the production of elements of matrix a. The strip
covered in black is produced by iteration k-1 of the outer thread group, while the strip identified by
crosses is produced by iteration k. The production of the subcolumn a[k+1 to n, k] is synchronized by
the production of a[k, k], as indicated by p[k, k]. The update of element a[i, j], in the submatrix a[k+1
to n, k+1 to n+1] is synchronized by the production of element a[k, j]. The production of element
a[k+1, j] is delayed until all the elements in the subcolumn a[k+1 to n, j] have been updated.

Functions LUD and LUD2 are examples of polymorphic functions parameterized by the size n of
matrix a. n is called a hidden parameter and is not passed explicitly when these functions are called.
The hidden parameter n is inferred and passed implicitly for each function call [Mudawwar 2000]. n is
considered a constant and cannot be modified in the bodies of functions LUD and LUD2. Matrices a
and p are passed by reference.

Proceedings of the 8th International Conference on AI Applications, February 2000

10

5. Implementation Issues

This section discusses the issues related to the implementation of the thread, lock, and wait statements.

5.1 Implementing Threads

The connection between programming languages and operating systems is especially close in the area
of parallel programming. Modern operating systems provide threads for supporting parallelism. Each
thread has its private program counter, stack, and register context [Vahalia 1996]. Unlike UNIX
processes that have separate address spaces, threads belong to and share the same address space. A
SIMPL compiler can take advantage of existing thread libraries under UNIX systems. A thread group
is forked initially as a single thread with an iteration space. Depending on the number of active threads
and processors in the system, a thread group can split itself into two or more thread groups, each
having part of the iteration space.

To allow SIMPL programs to run on a network of workstations, we have developed a virtual machine
called VMTD (Virtual Machine for Thread Distribution). This is essentially a thread library that can
distribute and migrate threads on a homogeneous network of workstations. A pool of workstations is
initially selected and a process is forked on each workstation. We chose a homogeneous network of
workstations to run the same binary code on all workstations and to simplify the implementation of a
shared data segment. The shared data segment is actually replicated on all workstations. Consistency is
maintained by broadcasting changes in the shared segment. Because the network is homogeneous and
the same binary code is used, we were able to use the same virtual address (pointer) to access the
shared data segment in all processes. Another feature of VMTD is that it simplifies the migration of
threads. When a thread is created, a thread identifier is added to the local scheduling queue, but no
thread context is created and the thread is not committed to its current workstation. When a
workstation becomes idle, load balancing takes place and uncommitted threads are migrated. Only
thread identifiers are transferred, because uncommitted threads have no context and the code is already
replicated on all workstations. When a thread is scheduled to run on a workstation, a new context
(stack and private area) is allocated and the thread becomes committed. Once committed to a
workstation, a thread cannot migrate. A committed thread continues to run until it terminates or it
suspends on a synchronization statement. Scheduling of threads within a process is non-preemptive,
while the scheduling of processes within the kernel is preemptive.

5.2 Implementing the Lock Statement

As mentioned earlier, the compiler associates a synchronization lock with each locked object. A lock is
a boolean flag and a waiting queue of threads. A lock is acquired at the beginning of the lock statement
and is released at the end. When a lock is currently acquired, a thread suspends itself of the waiting
queue until the lock is released by another thread.

Locks are implemented using primitive hardware instructions, such as test-and-set or swap. They are
also implemented as part of existing thread libraries. Thus, lock statements can be implemented quite
easily. One possible variation is to insert suspended threads at the end of the scheduling queue rather
than putting them on the waiting queue of the acquired lock. By the time they run again and reacquire
the lock, the lock might have been released. This will simplify the implementation of a lock to a
boolean flag. Waiting queues are no longer necessary.

5.3 Implementing the Wait Statement

The wait statement with its two variations, wait for and wait until can be implemented in one
consistent way. A boolean variable is associated with the termination of each thread and thread group
that is awaited in a wait for statement. Thus, the thread termination condition can be formulated as a
boolean expression and a wait for statement can be reduced to a wait until statement.

A wait statement is implemented as a while loop. As long as the boolean expression is not satisfied, a
waiting thread is put at the end of the scheduling queue. When the same thread runs again, it will
reevaluate the boolean expression. The thread will be able to resume execution when the boolean
expression is satisfied. Observe that this is not equivalent to busy waiting.

wait until boolean_expression

Proceedings of the 8th International Conference on AI Applications, February 2000

11

is translated as:

while not boolean_expression do
 put this thread at the end of scheduling queue
end

Putting a waiting thread at the end of the scheduling queue is less costly and more efficient than
implementing a waiting queue. By the time, a thread gets its turn to run again, it is likely that the
condition it is waiting on becomes satisfied.

6 Conclusion

This paper has demonstrated that thread programming can be simplified if language constructs are
designed properly. The SIMPL thread, lock and wait statements are used to solve a wide variety of
problems. These constructs are simple enough and can be implemented quite easily. We have designed
and implemented a virtual machine, called VMTD, to distribute and migrate threads on a homogeneous
network of workstations. Future research in this direction is to exploit hardware support for the
efficient implementation of these constructs.

References

[Ada 1995] Ada 95 Reference Manual, ISO/IEC 8652:1995, International Organization for
Standardization/International Electrotechnical Committee, January 1995.

[Bohm 1991] Bohm A. P., Oldehoeft R. R., Cann D. C., and Feo J. T., Sisal 2.0 Reference Manual,
Technical Report CS-91-118, Computer Science Department, Colorado State University, Nov.
1991.

[Cann 1992] Cann D. Retire Fortran? A Debate Rekindled, Communications of the ACM, August
1992, p. 81-89.

[Finkel 1996] Finkel R. A., Advanced Programming Language Design, Addison-Wesley Publishing
Company, 1996.

[Gehani 1988] Gehani N. and McGettrick A. D. editors, Concurrent Programming, Addison-Wesley,
1988.

[Hall 1996] Hall M., Anderson J., Amarasinghe S., Murphy B., Liao S., Bugnion E., and Lam S.,
Maximizing Multiprocessor Performance with the SUIF Compiler, IEEE Computer, December
1996, (special issue on multiprocessors)

[Koelbel 1994] Koelbel C., Loveman D., Steele G., and Zosel M., The High Performance Fortran
Handbook. The MIT Press, Cambridge, MA, 1994.

[Kuck 1994] Kuck D., Kuhn R., Leasure B. and Wolfe M., The Structure of an Advanced
Retargetable Vectorizer", in Tutorial of Supercomputers, IEEE Press, 1984, p. 163-178.

[Lim 1999] Lim A. W., Cheong G. I., and Lam M. S., An affine Partitioning Algorithm to Maximize
Parallelism and Minimize Communication, in Proceedings of the 13th ACM SIGARCH
International Conference on Supercomputing, June 1999.

[Mudawwar 2000] Mudawwar M., Parameterized Types and Polymorphic Functions in SIMPL, in
Proceedings of the 8th International Conference on AI Applications, Feb. 2000.

[Mudawwar 1998] Mudawwar M., SIMPL: Language Definition, Technical Report, Computer
Science Department, the American University in Cairo, June 1998.

[Nelson 1991] Nelson G., Systems Programming with Modula-3, Prentice Hall, 1991.

[Nikhil 1991], Nikhil R. S., Id (Version 90.1) Reference Manual, Technical Report CSG memo 284-2,
MIT Lab for Computer Science, Cambrigde, MA, July 1991.

[Vahalia 1996] Vahalia, Unix Internals: The New Frontiers, Prentice Hall, 1996.

[Wolfe 1996] Wolfe M., High Performance Compilers for Parallel Computing, Addison-Wesley, 1996.

