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Abstract 

k-ary m-way networks are multi-dimensional mesh and tori 
networks based on m-way channels. An m-way channel is 
the physical wiring of m links. An m-way router interfaces 
two m-way channels only, irrespective of the network 
topology or dimension. This has important advantages: the 
same router can be used to build networks of various 
dimensionalities and topologies; physical channels can 
have very wide data links; and broadcasting and 
multicasting are facilitated. The design of a switch-free m-
way channel wormhole router is detailed in this paper. 
Channel arbitration, buffer management, and routing are 
presented. The performance of k-ary m-way networks is 
evaluated. 

Keywords: m-way channel, k-ary m-way network, m-way 
router architecture, performance evaluation. 

1 Introduction 

Direct interconnection networks use direct links between 
routers. A physical bi-directional link connecting two 
routers in a k-ary n-cube network can be implemented 
either as one set of bi-directional wires called half-duplex 
organization, or as two sets of unidirectional wires called 
full-duplex organization. With a full-duplex organization, a 
router element has 4n input and output channels to adjacent 
routers. As the dimensionality, n, of a network increases, 
the number of input and output channels also increases. 
Since the number of I/O pins in a router chip is limited by 
the packaging technology, the increase in the 
dimensionality of a network will decrease the number of 
wires and thus the bandwidth of a single physical channel. 
Routers designed for low dimensional k-ary n-cube 
networks have physical channels that typically are 8-bit-
data to 16-bit-data wide [2] [3] [8] [9] [10]. 

In this study, I am proposing a new network topology, 
called k-ary m-way network, which is based on the concept 
of m-way channels. The idea of an m-way channel is that a 
maximum number, m, of routers and processors can link 
directly to it, and hence share the same physical channel. k-
ary m-way networks can be viewed as the dual of k-ary n-
cube networks. Routers, called m-way routers, are designed 

to interface two m-way channels only, irrespective of the 
network topology or dimension. This is not possible with 
traditional wormhole routers. k-ary m-way networks are 
detailed next. 

2 k-ary m-way Networks 

An m-way channel (called also multiway channel) is a 
physical channel shared by a fixed number, m, of routers 
and nodes. It is the physical wiring of m router/processor 
links. An m-way router interfaces two m-way channels 
only. It defines the operation of an m-way channel. At any 
clock cycle, only one of the m routers or processors can 
drive the channel. However, all m routers and nodes 
concurrently read the channel. m-way channels and routers 
can be used to build a variety of network topologies [7]. 

A k-ary m-way network is a multi-dimensional mesh or 
torus constructed using m-way channels. The factor k is the 
number of m-way channels along each dimension. To 
simplify equations, one factor k is used for all dimensions, 
but in practice different values of k can be assigned to 
different dimensions. The maximum number of ways, m, of 
an m-way channel is called the sharing factor of a channel. 
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Figure 1: 3-ary 5-way Torus 

An example of a 3-ary 5-way torus is shown in Figure 1. 
This is a 2-dimensional torus with 9 processors and 18 
routers. Each 5-way channel wires 4 routers directly to a 
processor. A channel is identified as Ci, a processor node 
linked to channel Ci is identified as Pi, and a router linked 
to channels Ci is identified as Rix if it along the positive X 
dimension, or Riy if it is along the positive Y dimension. 
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Although one processor is shown connected to each 
channel, it is possible to link several ones. If p processors 
are linked to each m-way channel and n is the network 
dimension then m = 2n + p. p is called the processor factor. 

A k-ary (2n + p)-way network (where m = 2n + p) is 
constructed recursively as 2k k-ary (2n- 2)-way networks 
wired together orthogonally to produce the nth dimension. 
The wiring is done on channels, rather than on routers. p 
processor nodes are then linked directly to each channel. A 
k-ary (2n + p)-way network has kn m-way channels, p k

n
 

processors, and n k
n routers in case of a torus, or n (k- 1) 

k
n- 1 routers in case of a mesh network. A channel address 

is an n digit, radix k number: c = an- 1…a1a0. Each address 
digit ai represents a channel's coordinate in dimension i and 
can take the values 0 through k-1. Two m-way channels are 
adjacent if their addresses differ in one digit by ± 1 (mesh) 
or by ± 1 mod k (torus). A processor linked to channel     
an- 1…a1a0 has address an- 1…a1a0, l where l is the local 
processor address and can assume the values 0 through p- 1. 
If p = 1 then a node address becomes equal to its 
corresponding channel address. There are 2n routers linked 
to each channel. A router linked to channel an- 1…ai…a0 has 
address an- 1 …ai…a0, i if it is along the positive i th 
dimension, or address an- 1…(ai- 1 mod k)…a0, i if it is 
along the negative i th dimension. The modulo-k operation is 
necessary when the network has a torus structure. 

m-way routers interface two channels, regardless of the 
network topology or dimension. This is a distinguishing 
feature of multiway channel networks, of which k-ary m-
way networks are a special case. This has important 
advantages. First, an m-way channel can be made much 
wider than a direct channel. Given a packaging technology, 
say about 300 I/O pins per router chip, an m-way router can 
be designed to interface channels that are 128-bit data wide. 
The 8-way router design that will be discussed in this paper 
defines 8-way channels with 128 data and 17 control lines. 
A total of 290 I/O pins are used for both channel interfaces. 
Contrast this with the router chip of the Cray T3D, which 
uses 16 data lines and 8 control lines per physical channel. 
There are 6 input and 6 output channels for a total of 288 
I/O pins, not counting the lines connecting to the local 
node. Therefore, although there are more channels in a k-
ary n-cube than in a k-ary m-way network of similar size 
and cost, each channel in a k-ary m-way network can be 
made much wider. The overhead of control lines is also less 
in a k-ary m-way network. 

A second advantage of using m-way channels and routers is 
that the same router chip, if carefully designed, can be used 
to implement different networks. For instance, an m-way 
router can be used to implement low-dimensional and high-
dimensional meshes and tori. This is more difficult to 
achieve with direct channel routers because the dimensiona-
lity of a network is related to the number of links per router. 
A third advantage is that m-way channels facilitate 

broadcasting and multicasting because they are shared. A 
message flit placed on a channel can be received in multiple 
routers concurrently during the same clock cycle. 

3 Router Architecture 

The internal structure of an m-way channel router is 
depicted in Figure 2. A router has two channel interfaces, 
two channel arbitrators, and two sets of buffers with 
allocation/mapping units, routing logic, and buffer 
arbitrators. The dimensionality of a router, DIM, is 
specified through external pins. The directionalities of the 
two sets of buffers are DIM+ and DIM- . The directionality 
is used to identify a buffer set when selecting a driver for a 
channel or when transferring message flits. This 
identification should be unique across an m-way channel. In 
the case of a processor node, we need also to uniquely 
identify its injection and ejection buffer sets. Observe that 
no crossbar switch is required. This simplifies the 
implementation of a router and makes it faster. 
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Figure 2: Internal Structure of a Router 

A physical channel consists of data, control, and arbitration 
lines. The Flit  lines carry one flit of a message. The Ack 
lines are used to acknowledge the transfer of a flit and to 
report the full status of the receiver buffer. The priority 
lines, Pri, are used for arbitration and carry the sum of 
output priorities of requesting drivers. The Stat lines carry 
the availability and full status of receiver buffers in a cyclic 
fashion. The Clk line is used to synchronize the operation of 
an m-way channel. 

A buffer set can concurrently receive a flit while 
transferring a second one across a channel. To avoid the use 
of a global clock, each channel is designed to operate on a 
separate clock. A buffer set operates on two clocks because 
it interfaces two channels. The first clock synchronizes the 
receiving of a flit, while the second one synchronizes the 
transfer of a flit. An arbitrary skew can exist between the 
two clocks. 
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3.1 Message Format 

A message consists of a header flit followed by an arbitrary 
number (possibly zero) of body flits, followed by a tail flit. 
A Tag, identifying the kind of flit, is generated at the 
sending node and transmitted with each flit. Four tags are 
used: Header (H), Body (B), Tail (T), and Invalid (I). This 
is depicted in Figure 3. A valid tag is a request to transfer a 
flit across an m-way channel. In addition to the tag, the 
driver's buffer number, Buf, is transmitted with every flit. 
This number identifies the driver's buffer and can change on 
every router a message reaches. The tag and driver's buffer 
number are control information sent with every flit. 

Buf 

Buf 
Buf 
Buf 
Buf 

B 

T 

H 

B 

Data 
. . . 
Data 

 Way Class Dest Len Other Control 
Data 

B 
 

Figure 3: Message Format 

The header flit carries additional control information. It 
carries the routing Way, which specifies the direction of a 
header flit when it is transmitted across an m-way channel. 
It is a number between 0 and m-1. This field is defined at 
each router a header flit reaches. If broadcasting or 
multicasting on an m-way channel is to be supported then 
Way becomes an m-bit field, where each bit is associated 
with one direction. The routing Way is required to transfer 
header flits, but is not required to transfer body or tail flits. 
This is why it is encoded in the header flit only. The Class 
field identifies the buffer class or the subset of buffers that 
can be allocated at the receiver side. An adaptive routing 
algorithm may divide buffers into classes (possibly non-
disjoint) to restrict allocation and to avoid deadlocks. Such 
buffer class information should be carried by a header flit to 
guide buffer allocation at the receiver side. The destination 
processor address, Dest, is another header field that can be 
encoded either absolutely or relative to the source processor 
address. If a router is designed for networks of different 
dimensionalities then the destination field should have 
different interpretations of sub-fields. The length field, Len, 
encodes the number of data bytes in the flits that follow the 
header flit. The length field can be used to allocate storage 
at the destination node as soon as a header flit is received. It 
can be also used to ensure the correctness of the tags and to 
establish a limit on the length of a message. 

Additional control information can be carried by a header 
flit. For instance, a non-minimal routing algorithm may 
require the number of misrouting steps to be carried in the 
header flit to avoid livelocks. Other control information can 
also include the priority of a message or the address and 
context of a thread to be executed at the destination node 
when a message header flit is received. 

3.2 Channel Arbitration 

An m-way channel can have only one router or processor 
driving it at any given clock cycle. The channel arbitrator 
ensures exclusive access to the channel. It determines 
which router (processor) is driving a channel at the current 
clock cycle and which router (processor) will be driving the 
channel at the next cycle. Channel arbitration is a 
distributed hardware algorithm. All channel drivers apply 
the same algorithm and reach the same decision. The 
channel arbitrator must be fair to avoid starvation. Thus, it 
cannot assign fixed priorities to drivers. 

At the beginning of each clock cycle, m requests, Req, are 
generated internally by the m drivers (buffer sets) of a given 
channel (see Figure 2). These m requests are input to all the 
channel arbitrators. The channel arbitrators concurrently 
compute their internal priorities. The internal priority is 
unique in every arbitrator. Output priorities, Pri_out, are 
produced at the outputs of all arbitrators. The output 
priorities are wired together on the channel priority lines, 
Pri, to produce the wired-OR sum. The requester with the 
highest internal priority wins and its priority appears on the 
channel priority lines. All channel arbitrators read the 
channel priority lines and update an internal register that 
holds the current channel driver. This is done concurrently 
with the edge of a clock that synchronizes the operation of 
all drivers interfacing a channel. 

The channel arbitrator can generate the internal priorities 
according to Round Robin. This implementation is shown 
in Figure 4. A maximum of 8 drivers, uniquely identified as 
0 to 7, are allowed across a channel. The internal priority of 
driver i, PRI_int(i), is computed as Drv – i, where Drv is 
the current driver number in all channel arbitrators and i is 
the driver's identifier (DIM+ or DIM–). The subtraction is 
done modulo 8. Because i is unique in every driver, the 
internal priorities are guaranteed to be unique. The internal 
priorities also change in cycles (round-robin) when the 
current driver changes. The output priority of driver i, 
PRI_out(i), is a function of its internal priority, PRI_int(i), 
the sum priority, PRI_sum, and the request input, Req(i), 
from the buffer set. The sum priority, PRI_sum = s2s1s0, is a 
3-bit vector that represents the wired-OR sum of all output 
priorities. The sum priority is fed as input to all channel 
arbitrators to adjust their output priorities. The output 
priorities are adjusted according to the table of Figure 4. 
PRI_out(i) is defined such that the sum priority, PRI_sum, 
will be equal to the highest internal priority of a requesting 
driver. 

Once the sum priority is determined, it is subtracted from 
the current driver number, DRV, to determine the next one, 
Next_DRV. The driver register that holds the current driver 
number is updated at the beginning of a clock cycle. The 
update is done concurrently in all channel arbitrators. The 
current driver number is used to enable the output of 
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exactly one driver (OE(i) = 1 when DRV = i). Channel 
arbitration does not waste clock cycles. It is done 
concurrently while transferring a message flit. 
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Figure 4: Channel Arbitrator and Output Priority Function 

3.3 Buffer State 

Each buffer in a buffer set has associated state information, 
as depicted in Figure 5. The allocation bit, A, indicates the 
allocation status. The full bit, F, indicates the full status. 
The driver number, Drv, indicates the driver set from which 
the flits of a message are received. The driver's buffer 
number, Buf, specifies a buffer in a buffers set. Drv and Buf 
locate the previous buffer along the routing path. The front 
pointer, Fptr, points to the front entry in a buffer. The rear 
pointer, Rptr, points to the rear entry. The receiver's full 
status, RF, indicates whether the receiver buffer of a 
message has a full status. 

 A: Allocation bit 
F: Full bit 
Drv: Driver number 
Buf: Driver's Buffer number 
Fptr: Front Pointer 
Rptr: Rear Pointer 
RF: Receiver's Full status 
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Figure 5: Buffer associated state information 

3.4 Buffer Allocation 

An m-way channel operates as follows: At the beginning of 
a clock cycle, a driver puts a header flit on an m-way 
channel. The header flit carries the header tag, H, the 
driver's buffer number, Buf, and the routing Way in addition 
to other control information. The buffer allocation and 
mapping units in all the directions of an m-way channel 
receive the header flit. However, only one buffer allocation 
unit will accept the header flit, depending on the routing 
Way. In the case of multicasting and broadcasting, it is also 
possible to have several buffer allocation units concurrently 
accepting the header flit. Once accepted, the buffer 
allocation unit will allocate a buffer for the header flit and 
send back an acknowledgment, Ack_out. 
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Figure 6: Allocation of a buffer in a buffer set 

Figure 6 illustrates the allocation of a buffer to a header flit. 
All channel arbitration units at a given channel have 
concurrently selected buffer set X+ to be the current driver. 
Observe that the current driver, Drv, is passed from the 
channel arbitrator to the buffer allocation unit as shown in 
Figure 2. The header flit carries the driver's buffer number, 
which is 2 in Figure 6. The driver's number, Drv, and the 
driver's buffer number, Buf, are stored in the allocated 
entry. This allows each buffer to identify the previous 
buffer along the routing path. 

3.5 Buffer Mapping 

When a driver places a body or a tail flit on a channel (Tag 
= B or T), it does not include the routing Way as part of the 
flit. All allocation and mapping units across a channel 
receive the flit that carries the driver's buffer number, Buf. 
They also receive the current driver number, Drv, from the 
channel arbitrator. All allocation and mapping units are 
searched in parallel by content for a match with Drv and 
Buf. If a match occurs and the allocation bit is set, the 
corresponding buffer allocation and mapping unit will 
accept the body or tail flit. Otherwise, it will reject it. An 
acknowledgment is sent back. 

An allocated buffer can be freed as soon as a tail flit is 
received. This is called early buffer freeing. Alternatively, 
we can free a buffer after a tail flit is transmitted, which is 
called late buffer freeing. With early buffer freeing, it is 
possible to have more than one message stored in a buffer. 
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This is not a problem because the tags, which are stored 
with the data of each flit, indicate the boundaries of each 
message. Early buffer freeing improves the utilization of 
buffers. However, the analysis of deadlock-free adaptive 
routing algorithms with early buffer freeing becomes more 
complex. 

Allocating buffers and mapping them at the receiver side 
rather than on the driver side has several advantages. It 
reduces the number of control lines because the routing way 
is carried only in the header flit and is not required in the 
body and tail flits. It also simplifies the implementation 
because a driver does not have to keep track of the 
allocation status of every buffer across an m-way channel. 
Furthermore, broadcasting and multicasting are facilitated 
because only the driver's buffer number has to be carried in 
every flit, rather than the numbers of all allocated buffers at 
the receiver sides. 

3.6 Routing 

Routing across an m-way channel is to determine the next 
router and buffer along the routing path. A routing 
algorithm is defined as a routing function and a selection 
function. It is implemented in the routing logic at the 
driver's side as well as in the allocation unit at the receiver's 
side. The routing logic at the driver's side determines the 
routing Way and buffer Class for a header flit, denoted as 
(Way, Class). The routing Way specifies the next router 
across an m-way channel. The buffer Class specifies a 
subset of buffers. It is used to ensure deadlock freedom for 
some adaptive routing algorithms. The routing function 
specifies one (deterministic) or more (adaptive) choices of 
(Way, Class) pairs, and the selection function chooses one 
of them (in case of adaptive routing). The routing function 
must be deadlock-free and livelock-free. The selection 
function can affect only performance. The allocation unit at 
the receiver side accepts a header flit only if it along its 
Way and allocates a new buffer that belongs to the specified 
buffer Class. The same routing algorithms and deadlock-
avoidance theories discussed in the literature [4], [6] for 
wormhole-routed k-ary n-cube networks are also applicable 
to k-ary m-way networks. 

4 Network Simulation and Results 

To measure the performance of interconnection networks 
with multiway channels, I have simulated a number of mesh 
networks varying few parameters in every run. The 
simulator is a C++ program that simulates k-ary m-way 
networks at the flit level. A flit transfer between two 
adjacent routers, over an m-way channel, takes place in one 
clock cycle. The network is simulated synchronously, 
moving all flits that have been granted channels in one 
clock cycle and then advancing time to the next cycle. The 
simulator can be configured to support different network 
sizes, dimensionalities, processor factors, buffers in a set, 

buffer sizes, routing algorithms, arbitration algorithms, 
messages lengths, message generation rates, and traffic 
patterns. Flags indicating the use of full and availability 
status by a router can also be set. The simulator can 
generate various statistics, such as average message latency, 
maximum latency, latency standard deviation, latency 
histogram, channel utilization rate, injection rate, and 
ejection rate. 

Latency is measured from the time a message is queued at a 
source processor until the tail flit is ejected at a destination 
processor. Source queuing time is included in the latency 
measurement. Traffic is measured as the percentage of 
utilization of channels. A channel is utilized during a clock 
cycle if it is used to transfer a flit successfully. The 
injection/ejection rate of a processor is the percentage of 
channel cycles used to inject/eject a flit successfully 
into/from the network. The injection and ejection rates are 
equal at steady state. 

4.1 Effect of Increasing the Buffers and their Sizes  

The purpose of this experiment is to measure the effect of 
increasing the buffer size and the number of buffers in a 
buffer set. A medium size 2D-mesh network with 16 × 16 
5-way channels and 256 nodes is simulated. Dimension-
order routing is used. The traffic is uniform. All messages 
carry 64 bytes of data. They occupy 4 data flits + a header 
flit. Each flit is 16 bytes long and is transferable over a 
channel in one clock cycle. The first experiment uses 1 
buffer only in each set. However, the size of the buffer is 
varied from 1 to 128 flits. The second experiment varies the 
number of buffers in each set from 1 to 16. However, the 
size of each buffer is fixed at 2 flits. Each simulation run 
took 100,000 cycles of which the first 30,000 cycles are 
startup. Startup cycles are ignored in the statistics. The 
results of these experiments are shown in Figures 7 and 8, 
respectively. 

The graphs shown below are not functions. Both the latency 
and the traffic are measured values. When the traffic is 
below saturation, the message latency is affected only 
slightly by the traffic. However, as the network saturates, 
latencies start increasing sharply. The latency standard 
deviation, not shown in the figures, also varies with the 
offered load and traffic. Below saturation point, the latency 
standard deviation is a small value that is almost a constant. 
However, the latency standard deviation increases sharply 
beyond the saturation point. Saturation occurs when the 
nodes of a network generate messages at a higher rather 
than they can be delivered. These messages end up waiting 
at the source node queues. Adding more buffers or 
increasing the depth of buffers improves the injection and 
ejection rates and allows the network to accept more traffic. 
Increasing the depth of a buffer from 1 to 8 flits in Figure 7 
improves the traffic significantly. However, little 
improvement is obtained beyond this buffer size. Similarly, 
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increasing the number of buffers in a set from 1 to 4 is 
justifiable. Adding more buffers increases the cost and 
latency of hardware and does not provide significant 
improvement. 
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Figure 7: Effect of increasing the buffer size 
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Figure 8: Effect of increasing the number of buffers 

5.2 Traffic Distribution in a Mesh 

The traffic of Figures 7 and 8 did not exceed 70%. The 
question is why? To answer this question, it is important to 
examine the traffic distribution in a mesh. The traffic 
distribution or channel utilization is not uniform, even when 
the generated traffic is uniform. The traffic distribution is 
shown in Figure 9. The traffic is saturated (about 100%) at 
the center of the mesh, while it is very light (about 20%) at 
the corners. This is a property of the mesh topology because 
it is not a symmetric network. The problem can be 
alleviated using a torus network, but with added cost. It can 
also be alleviated if the generated traffic exploits locality. 

5.3 Effect of Network Dimension, and Processor Factor 

In this experiment eleven networks are simulated. All 
networks have 512 processors. All buffer sets consist of 4 

buffers each of size 2 flits. All messages carry 64 bytes of 
data (1 header + 4 data flits). The traffic pattern is uniform. 
Dimension order routing is used. The results are shown in 
Figure 10. The first graph shows 2D and 3D networks. The 
second graph shows 4D, 7D, 8D, and 9D networks. The 
processor factor varies from 1 to 4. For example, the 
network 32×16×P1 is a 2D mesh with 32 channels along the 
X dimension, 16 channels along the Y dimension, and a 
processor factor of 1. The network 8×4×4×P4 is a 3D mesh 
with 8 channels along the X dimension, 4 channels along 
the Y and Z dimensions, and a processor factor of 4. The 
network 8D-HC×P2 is an 8D-hypercube network with a 
processor factor of 2. The total number of channels varies 
from 128 to 512 depending on the processor factor. The 
size, cost, and bandwidth of a network decrease when the 
processor factor increases. 
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Figure 9: Traffic Distribution in a 16 × 16 mesh network 

The results of Figure 10 reveal that high-dimensional k-ary 
m-way networks perform better than low-dimensional ones. 
However, they have a higher cost. The higher the ejection 
rate, the more the number of flits (or messages) that can be 
transferred in a network in a given period of time. The 
highest performer is the 9D-HC×P1 hypercube network, 
which also has the highest number of routers and cost. The 
average ejection rate per processor exceeds 17%. The 
network traffic reaches 95% at saturation point (not shown 
in Figure 10). At steady state, the injection rate is equal to 
the ejection rate. Thus, 17% + 17% = 34% of channel 
cycles is used for injection and ejection. The remaining 
95% − 34% = 61% is used to transfer flits between routers. 
The lowest performer is the 2D 16×8×P4 network, which 
also has the least number of routers. The average injection 
rate per router is about 1.9% and the network traffic is 68% 
at saturation. Because 4 processors are wired to a channel in 
the 16×8×P4 network, 4 × 1.9% × 2 = 15.2% of channel 
cycles are used for injection and ejection. This leaves 68% 
− 15.2% = 52.8% of channel cycles for transferring flits 
between routers. 
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Figure 10: Effect of network size, dimension, and node factor 
in low and high dimensional networks 

It is interesting to observe that the 7D-HC×P4 hypercube 
network with 448 routers outperforms the 3D 8×8×4×P2 
network with 640 routers, which also outperforms the 2D 
32×16×P1 network with 976 routers. The average injection 
rate at saturation point is 5.1% for the 7D-HC×P4 
hypercube network, while it is 4.7% for the 3D 8×8×4×P2 
network and 3.9% for the 2D 32×16×P1 network. Similarly, 
the 8D-HC×P2 hypercube network with 1024 routers 
outperforms the 3D 8×8×8×P1 network with 1344 routers 
and comes close to the 4D 8×4×4×4×P1 with 1600 routers. 

6 Conclusion and Further Research 

This paper introduced a new class of interconnection 
networks called k-ary m-way networks. These networks are 
based on m-way channels. The idea is to reduce the number 
of links per router to only two and to make channels very 
wide. The design of an m-way switch-free router was 
detailed in this paper. The performance of multi-
dimensional mesh and hypercube networks was evaluated. 
The initial results are encouraging and stimulate more 

research in this direction. The router discussed in this paper 
is described in VHDL and was tested for correctness. It is 
currently being extended to support broadcasting and 
multicasting. Further research in this direction is to study 
the engineering-aspects of system packaging for higher 
dimensional networks and to support fault-tolerant routing. 
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