
In Proceedings of 12th IASTED International Conference on Parallel and Distributed Computing and Systems

k-ary m-way Networks: the Dual of k-ary n-cubes
Muhammed F. Mudawwar

Computer Science Department
The American University in Cairo

113 Kasr el Aini street, Cairo, Egypt
mudawwar@aucegypt.edu

Abstract

This article presents k-ary m-way networks, multi-
dimensional mesh and tori networks that are viewed as the
dual of k-ary n-cube networks. An m-way channel is the
physical wiring of m router and processor links. An m-way
router interfaces two channels only, irrespective of the
network topology or dimension. This has important
advantages: the same router can be used to build networks
of different dimensionalities or topologies, physical
channels can be very wide, and broadcasting and
multicasting are facilitated. Routing in a k-ary m-way
network is detailed in this paper. The performance of k-ary
m-way meshes, tori, and hypercubes is evaluated for
different routing algorithms.

Keywords: k-ary m-way network, m-way channel, m-way
router, bus-based interconnection network, performance
evaluation.

1 Introduction

An interconnection network is often a critical part of a
massively parallel computer because application
performance is sensitive to network latency and throughput.
An important class of interconnection networks is the direct
network, in which routers and nodes are linked directly
using dedicated point-to-point channels. k-ary n-cubes are
strictly orthogonal direct topologies with n dimensions and
k routers (nodes) along each dimension. Low dimensional
k-ary n-cube networks have been implemented in many
parallel architectures, which include the Intel Teraflops [3],
MIT J-Machine [10], and Cray T3E [11].

A physical bi-directional link connecting two routers in a k-
ary n-cube network can be implemented either as one set of
bi-directional wires called half-duplex organization, or as
two sets of unidirectional wires called full-duplex
organization. With a full-duplex organization, a router
element has 4n input and output channels to adjacent
routers. As the dimensionality, n, of a network increases,
the number of input and output channels also increases.
Since the number of I/O pins in a router chip is limited by
the packaging technology, the increase in the
dimensionality of a network will decrease the number of
wires and thus the bandwidth of a single physical channel.

Routers designed for low dimensional k-ary n-cube
networks have physical channels that typically are 8-bit-
data to 16-bit-data wide.

In this study, I am proposing a new class of interconnection
networks, called k-ary m-way networks that can be viewed
as the dual of k-ary n-cubes. The idea is to exchange routers
and channels in a k-ary n-cube network. Routers in a k-ary
n-cube are replaced with m-way channels in a k-ary m-way
network, while bi-directional links in a k-ary n-cube are
replaced with m-way routers. This will be detailed in the
next section.

2 k-ary m-way Networks

An m-way (called also multiway) channel is a physical
channel shared by a maximum number, m, of routers or
processors. It is the physical wiring of m links. An m-way
router interfaces two m-way channels only, irrespective of
the network topology or dimension. It has a constant degree
2. An m-way router defines the operation of an m-way
channel. At any clock cycle, only one of the m routers (or
processors) linked to an m-way channel can drive the
channel. However, all m routers (and processors) can
concurrently read the channel. m-way routers, of constant
degree 2, can be used to define a variety of network
topologies.

A k-ary m-way network is a multi-dimensional mesh or
torus structure constructed using m-way routers and
channels. The factor k is the number of m-way channels
along each dimension. To simplify equations, one factor k
is used for all dimensions, but in practice different values of
k can be assigned to different dimensions. The maximum
number of ways, m, of an m-way channel is called the
sharing factor of a channel.

There are two approaches of linking processors (their local
memories and/or caches) to a k-ary m-way network. The
first approach is to link processors to channels directly. A
3-ary 5-way torus with one processor linked to each
channel is shown in Figure 1. A channel is identified as ci, a
processor node linked to channel ci is identified as Pi, and a
router linked to channels ci is identified as Rix if it along the
positive X dimension, or Riy if it is along the positive Y
dimension. Although one processor is shown connected to
each channel, it is possible to link several ones. If p

In Proceedings of 12th IASTED International Conference on Parallel and Distributed Computing and Systems

processors are linked to each m-way channel and n is the
network dimension then m = 2n + p. p is called the
processor factor. The second approach is to have
processors linked internally to routers. Figure 2 shows a 3-
ary 4-way torus with one processor linked internally to each
router. Here, a processor node has the same identification of
its associated router. The sharing factor m = 2n in this case.

c3

c6

c1

c4

c2

c5

c7 c8

c0
R0x

P0 R0y

R1x

P1 R1y P2 R2y

c3
R3x

P3 R3y

R4x

P4 R4y P5 R5y

c6
R6x

P6

R7x

P7 P8

R5x

R8x

c0
R2x

c1 c2 c0

R6y R7y R8y

c3

c6

c1

c4

c2

c5

c7 c8

c0
P0x

P0y

P1x

P1y P2y

c3
P3x

P3y

P4x

P4y P5y

c6
P6x P7x

P5x

P8x

c0
P2x

c1 c2 c0

P6y P7y P8y

Figure 1: A 3-ary 5-way torus Figure 2: A 3-ary 4-way torus
processors linked to channels processors linked to routers

Linking processors directly to channels simplifies routing
and the router design, but will increase the sharing factor of
an m-way channel. The number of processors can be less
than, equal to, or greater than the number of routers,
depending on the processor factor. On the other hand,
integrating a processor within each router has the advantage
of reducing the sharing factor, m, and the total number of
components of a system. However, routing and the router
design will be more complicated.

2.1 Topology

A k-ary 2n-way network (m = 2n) is defined recursively as
2k k-ary (2n- 2)-way networks wired together orthogonally
to produce the nth dimension. The wiring is done on
channels, rather than on routers. A k-ary 2-way network is
either a linear array of routers or a ring. If linear arrays of
routers are used then the resulting k-ary 2n-way network
will have a mesh structure. If rings are used, the resulting k-
ary 2n-way network will have a torus structure. If p
processors are linked directly to each channel then this will
result in a k-ary (2n+p)-way network (m = 2n + p).

A channel address, c, is an n-digit radix k number: c = an-

1…ai…a0. Each digit ai represents a channel's coordinate in
the i th dimension and can take the values 0 through k-1.
Two m-way channels are adjacent if their addresses differ
in one digit by ± 1 in a mesh and ± 1 mod k in a torus
network. Between every 2 adjacent channels is an m-way
router. A router linked to channel an- 1…ai…a0 has address
an- 1 …ai…a0, i if it is along the positive ith dimension, or
address an- 1…(ai- 1 mod k)…a0, i if it is along the negative
i th dimension. The modulo-k operation is necessary when
the network has a torus structure. A processor linked to
channel an- 1…a0 has address an- 1…a0, l where l can assume

the values 0 through p- 1. If p = 1 then a processor address
becomes equal to its corresponding channel address. A
processor linked internally to a router will assume the
router address.

2.2 Properties

Some properties of k-ary m-way networks are shown in
Figure 3 and are contrasted with the properties of k-ary n-
cube networks. Four k-ary m-way network types are
considered to distinguish a torus from a mesh and whether
processors are linked directly to channels (m = 2n + p) or
internally to routers (m = 2n). For k-ary n- cube networks,
full duplex bi-directional channels are assumed between
adjacent routers.

Diameter

 12/ +kn

Network Type

k-
ar

y
n-

cu
be

m = 2n + p

M
e

sh

T
or

us

k-
ar

y
m

-w
ay

 kn

m = 2n

m = 2n + p

m = 2n

Torus

Mesh

Processors Routers Channels Degree

n kn p kn 2

kn n kn n kn 2/ kn 2

kn n (k–1) kn–1 p kn n (k–1) + 1 2

kn n (k–1) kn–1 n (k–1) kn–1 n (k–1) – 1 2

2 n kn kn kn 2/ kn 4 n

2n (k–1) kn–1 kn kn n (k–1) 4 n

Figure 3: Some properties of k-ary m-way and k-ary n-cube
networks

A k-ary m-way network has several advantages. First, an m-
way channel can be made much wider than a direct channel
used in a k-ary n-cube network. For example, an 8-way
router design for low-dimensional k-ary m-way networks,
given in [9], defines 8-way channels with 128 data and 17
control lines. Thus, 290 I/O pins are used for both channel
interfaces in a router. This is to be contrasted with the
router chip of the Cray T3D, which uses 16 data lines and 8
control lines per physical channel. There are 6 input and 6
output channels for a total of 288 I/O pins, not counting the
lines connecting to the local node. Therefore, although there
are more channels in a k-ary n-cube than in a k-ary m-way
network of similar size and cost as shown in Figure 3, each
channel in a k-ary m-way network can be made much
wider. This example also shows that the overhead of control
lines can be less in a k-ary m-way network.

A second advantage of k-ary m-way networks and m-way
routers is that the same router, if carefully designed, can be
used to implement networks of different dimensionalities.
For instance, an m-way router can be used to implement
various dimensional meshes and tori. This is more difficult
to achieve with direct channel routers because the
dimensionality of a network is related to the number of
links per router. A third advantage is that m-way channels
facilitate broadcasting and multicasting because they are

In Proceedings of 12th IASTED International Conference on Parallel and Distributed Computing and Systems

shared. A message flit placed on a channel can be accepted
in multiple routers concurrently during the same clock
cycle.

2.3 Graph Model

A direct interconnection network is modeled as a strongly
connected directed multigraph Id = G(N, C) [6]. The
vertices of Id are the network nodes, denoted as set N. The
arcs are the virtual channels (or buffers), denoted as set C.
More than a single virtual channel is allowed to exist
between two adjacent nodes, hence it is called a multigraph.
Although this graph model is useful for direct networks, it
is not appropriate for m-way-channel based networks.
Therefore, a new graph model is needed.

DEFINITION 1: An m-way-channel interconnection network
is modeled as a strongly connected directed multigraph
Im = G(P ∪ C , B). The vertices of Im are the network
processors, P, and the m-way channels, C, denoted as
the union set P ∪ C. The arcs are the network buffers,
denoted as the set B. Buffers exist in routers and in
processor interfaces. A router interfacing channels ci
and cj ∈ C will have buffers from ci to cj, identified as
ordered triples (ci , cj , #), where # is used to number
the individual buffers. There are also buffers from cj to
ci, identified as (cj , ci , #). A processor pi ∈ P
interfacing a channel cj ∈ C will have injection buffers,
identified as (pi , cj , #), as well as ejection buffers,
identified as (cj , pi , #). Therefore, B ⊂ (C × C × N) ∪
(P × C × N) ∪ (C × P × N), where N is the set of non-
negative integers.

The graph model of the 3-ary 5-way torus network of
Figure 1 is shown in Figure 4. The processors and channels
are the vertices of this graph. The buffers are the arcs.
There is one injection and one ejection buffer at the
interface of each processor, and two buffers for each
routing direction. A message starts at an injection buffer of
a source processor. It uses a sequence of buffers in the
network graph until it reaches an ejection buffer of a
destination processor. Messages are buffered in the arcs of a
network graph. This view is consistent with the graph
model of a direct network, in which arcs are virtual
channels, or buffers. This means that the routing algorithms
and the deadlock-avoidance theories discussed in the
literature [6], [8] for wormhole-routed k-ary n-cube
networks are also applicable to k-ary m-way networks.

2.4 Related Work

An m-way channel is a bus and a k-ary m-way network can
be classified as a bus-based interconnection network. Many
bus interconnection structures were discussed in the
literature. They are modeled as hypergraphs [1]. A
hypergraph is a set of vertices and a set of hyperedges. The

vertices are the processor nodes. The hyperedges, identified
as subsets of vertices, are the buses. A hypergraph does not
identify the buffer resources of a network. Hence, it is not a
useful tool to study routing algorithms and deadlocks in a k-
ary m-way network.

c3

c6

c0

c1 c2 c0

P0 P1 P2

P3 P4 P5

P6 P7 P8

c3 c4 c5

c6 c8

c0 c1 c2

c7

Figure 4: Graph model of a 3-ary 5-way torus

Examples of bus interconnection networks are the
hypermesh [12], hypergrid (hypertorus) [7], and hyperbus
[2]. In a hypermesh, each node is connected to all the nodes
in each dimension through a bus. If k is the number of
nodes along each of the n dimensions then nk is the number
of buses in the network. Each node is connected to n buses
and the network diameter is n. The hypergrid and
hypertorus structures are defined as the Cartesian product of
hyperpaths and hyperrings [7]. The node degree is not a
constant, but is twice the network dimension. The hyperbus
is defined as the dual of a generalized hypercube. Each
node is connected to exactly two buses, but the network
topology is different than a k-ary m-way network. To
minimize distances between nodes, bus interconnection
networks tend to have a large number of nodes sharing a
small number of buses. The sharing factor of each bus tends
to be high. This increases the length of wires, the system
packaging costs, and reduces the speed of buses. On the
other hand, an m-way channel in a k-ary m-way network is
localized and shared by a small number of routers and
processors. This localization is meant to minimize the
length of wires, to reduce the system packaging costs, and
to increase the speed of shared channels.

3 Routing

Routing in a k-ary m-way network is different than routing
in a k-ary n-cube network. In a k-ary n-cube network, a
router routes a header flit internally from an input buffer to
an output buffer. The routing logic decides which output
channel (physical and virtual) to select according to a
routing function and a selection function. The routing logic
controls a crossbar switch that establishes simultaneous
paths between input and output buffers.

In Proceedings of 12th IASTED International Conference on Parallel and Distributed Computing and Systems

Routing in a k-ary m-way network is to determine the next
router and buffer along a routing path. The routing logic
determines the routing way and the buffer class, denoted as
(way, class), according to a routing function and a selection
function. The way specifies the next router across an m-way
channel. The class specifies a subset of buffers that can be
allocated when a header flit is received. The buffer class
ensures deadlock freedom for some routing algorithms. The
routing function specifies one (deterministic) or more
(adaptive) choices of (way, class) pairs, and the selection
function chooses one of them (in case of adaptive routing).
The routing function must be deadlock-free and livelock-
free. The selection function can affect only performance.

Once a (way, class) pair is determined, a header flit is ready
to be transferred. When a channel driver places a header flit
on an m-way channel, it includes the routing way and the
buffer class as part of the header information. All routers
and processor interfaces examine the header flit, but only
one accepts it according to way. Once a header flit is
accepted, the allocation unit at the receiver side allocates a
free buffer in the specified buffer class. This buffer is kept
allocated for all the flits of a message.

3.1 Formal Definitions

Given the following set definitions:

Buffer = set of all buffers in a k-ary m-way network (same
as B in Definition 1)
Channel = set of all m-way channels (same as C in
Definition 1)
Processor = set of all processors (same as P in Definition 1)
Way = set of all routing ways = {X+, X–, Y+, Y–, etc.}
Class = set of all buffer classes = {adaptive, deterministic,
etc.}

Routing of a header flit in a k-ary m-way network can be
described with four functions: drive, route, select, and
allocate.

DEFINITION 2: drive: Buffer → Channel is a function that
maps a buffer b ∈ Buffer to an m-way channel c ∈
Channel. It means that buffer b drives channel c. b can
be an injection buffer or a router buffer, but cannot be
an ejection buffer. If b is an ejection buffer then an
error result is returned.

DEFINITION 3: route: Channel × Processor → P (Way ×
Class) is a function that returns a set of (way, class)
pairs that identifies all the next buffers that can accept
a header flit along the routing paths from a current
channel c ∈ Channel to a destination processor p ∈
Processor. P () is the power set.

DEFINITION 4: select: P (Way × Class) × Channel × avail →
Way × Class is a function that returns one (way, class)

pair that can receive a header flit from a channel c ∈
Channel. The decision is based on an avail function:
Channel × Way × Class → N that returns the number
of available buffers in all the routing ways and buffer
classes that can be reached from a channel c. The input
set of (way, class) pairs should not be empty;
otherwise, select returns an error result.

DEFINITION 5: allocate: Channel × Way × Class → Buffer
returns a free buffer b ∈ Buffer in the buffer class ∈
Class that can be reached from a channel c ∈ Channel
along the routing way ∈ Way. If no buffer is found
free, allocate returns an error result.

3.2 Router Structure

A router for k-ary m-way networks is depicted in Figure 5.
A router has two channel interfaces, two channel
arbitrators, and two groups of buffers with
allocation/mapping units, routing logic, and buffer
arbitrators. The directionalities of the two groups of buffers
are DIM+ and DIM–, where DIM is the dimensionality of
the router. The directionality is used to identify a buffer set
when selecting a driver for a channel or when accepting
message flits. This identification should be unique across an
m-way channel. Observe that no crossbar switch is required.
This simplifies the implementation of a router and makes it
faster.

 DIM

Drv

Drv Req OE

Req OE

Ack

Clk

Flit

Stat

Pri

Ack

Clk Ack_out

Stat_out

Stat_in

Ack_in

Ack_in

Ack_out

Pri_sum

Pri_out

Flit

Stat

Pri

Flit_in

Pri_out

C
ha

nn
el

 In
te

rf
ac

e
1

Flit_out

Pri_sum

C
ha

nn
el

 In
te

rf
ac

e
0

DIM+ Buffer Set

Stat_out

Flit_in

Buffer Alloc
and Mapping
(DIM+ way)

Channel Arb
(DIM+ set)

R
ou

tin
g

B
uf

 A
rb

Flit_out

DIM– Buffer Set

R
ou

tin
g

B
uf

 A
rb

Buffer Alloc
and Mapping
(DIM– way)

Stat_in

Channel Arb
(DIM– set)

Figure 5: Internal Structure of a Router

The router structure of Figure 5 assumes that processor
nodes are linked directly to channels. If processors are
linked internally to routers then the router structure has to
be modified to include injection and ejection buffers in both
directions. For the remaining of this paper, I consider only
processor nodes linked directly to channels as shown in
Figure 1.

A physical channel consists of data, control, and arbitration
lines. The Flit lines carry one flit of a message. The Ack
lines are used to acknowledge the transfer of a flit and to
report the full status of the receiver buffer. The priority

In Proceedings of 12th IASTED International Conference on Parallel and Distributed Computing and Systems

lines, Pri, are used for arbitration and carry the wired-OR
sum of output priorities of requesting drivers. The Stat lines
carry the availability and full status of receiver buffers. The
Clk line is used to synchronize the operation of an m-way
channel.

3.3 Buffer Status and Flow Control

Each buffer in a buffer set has associated status
information, as depicted in Figure 6. The allocation bit, A,
indicates the allocation status. The full bit, F, indicates the
full status. The driver number, Drv, indicates the driver
from which the flits of a message are received. The driver's
buffer number, Buf, indicates from which buffer a flit is
received. Drv and Buf locate the previous buffer along the
routing path. The front pointer, Fptr, points to the front
entry in a buffer. The rear pointer, Rptr, points to the rear
entry. The receiver's full status, RF, indicates whether the
receiver buffer of a message has a full status.

 A: Allocation bit
F: Full bit
Drv: Driver number
Buf: Driver's Buffer number
Fptr: Front Pointer
Rptr: Rear Pointer
RF: Receiver's Full status

BUF0

BUF1

BUF2

BUF3

A F Drv Buf Fptr Rptr RF

Figure 6: Buffer status information

The flow control mechanism of a network determines how
buffers are allocated and freed. The allocation must be done
in a manner that keeps the flits associated with a particular
message together. When a header flit is received, a buffer is
allocated (Allocation bit A is set). An allocated buffer is
freed after a tail flit is transmitted and the buffer is emptied.

3.4 Router Operation

An m-way channel can have only one router or processor
driving it at any given clock cycle. The channel arbitrator
ensures exclusive access to the channel. It determines
which router (processor) is driving a multiway channel at
the current clock cycle and which router (processor) will be
driving the channel at the next cycle. Channel arbitration is
a distributed hardware algorithm. All channel drivers apply
the same algorithm and reach the same decision. The
channel arbitrator must be fair to avoid starvation. An
implementation for 8-way channels that uses Round Robin
with 3 priority lines is discussed in [9].

At the beginning of a clock cycle, a driver puts a header flit
on an m-way channel. The header flit carries the header tag,
H, the driver's buffer number, buf, and the routing way in
addition to other control information. The buffer allocation
and mapping units in all the directions of an m-way channel
examine the header flit. However, only one buffer

allocation unit will accept the header flit, depending on the
routing way. Once accepted, the buffer allocation unit will
allocate a buffer for the header flit and send back an
acknowledgment, ack_out.

When a driver places a body or a tail flit on a channel (tag =
B or T), it does not include the routing way as part of the
flit. All allocation and mapping units across a channel
examine the flit that carries the driver's buffer number, buf.
They also obtain the current driver number, drv, from the
channel arbitrator. All allocation and mapping units are
searched by content for a match with drv and buf. If a
match occurs and the allocation bit is set., the
corresponding buffer allocation and mapping unit will
accept the body or tail flit. Otherwise, it will reject. Once
accepted, an acknowledgment is sent back.

3.5 Routing Algorithms

A k-ary m-way network with shared channels can use the
same routing algorithms developed for a k-ary n-cube
network with direct channels. Four routing algorithms are
used for the simulation of k-ary m-way networks in the next
section. The first algorithm is dimension-order routing
(DOR) [4]. This algorithm is known to prevent deadlocks in
mesh and hypercube topologies because it does not allow
cycles in the channel dependency graph. No buffer classes
are required and any buffer can be allocated when a header
flit is received. We can also apply the early buffer free
policy and allow more than one message to be queued in a
single buffer without causing deadlocks.

Dimension-order routing is, however, problematic in the
case of a torus. We need to avoid deadlocks caused by the
rings along all dimensions. An efficient routing algorithm
that avoids deadlocks in a unidirectional ring and makes
good use of buffers is presented in [5]. This algorithm
divides buffers in two classes low and high. We allocate a
buffer in the low class if the destination node address is less
than the current node address. We allocate a buffer in any
class if the destination node address is greater than the
current node address. This algorithm was shown to avoid
deadlocks. Although cycles exist in the channel dependency
graph according to [4], no cycles exist in the new extended
channel dependency graph according to [6].

The ring algorithm used in this paper is a minor
modification to the one presented in [5]. It also uses two
buffer classes: low and high. The buffer classes are used for
router buffers only. They are not required for injection and
ejection buffers. An example of an 8-ary 3-way ring with 2
router buffers along each direction and 1 injection/ejection
buffer at the interface of each processor node is shown in
Figure 7. The channels and processors are divided into two
groups. Group 0 consists of c0 to c3 and P0 to P3. Group 1
consists of c4 to c7 and P4 to P7. A buffer that drives a

In Proceedings of 12th IASTED International Conference on Parallel and Distributed Computing and Systems

channel in Group 0 belongs to group 0; otherwise, it
belongs to Group 1. The ring algorithm is defined as
follows: if the next buffer along the routing path and the
destination processor belong to the same group the next
buffer can be allocated from any class. If they belong to
different groups, the next buffer can be allocated only from
the low class. This algorithm can be shown to avoid
deadlocks according to the theory presented in [6].

c0

P0

c1 c2 c3

P1 P2 P3

c7

P7

c6 c5 c4

P6 P5 P4

Figure 7: Graph of an 8-ary 3-way Ring

The ring algorithm makes adaptive decisions when the
distance between a source and a destination processor is the
same along the positive and negative directions in a given
dimension. The DOR algorithm can be combined with the
ring algorithm to obtain a partially adaptive deadlock-free
minimal algorithm for tori networks, referred to as
DOR_RING. The DOR_RING algorithm requires 2 router
buffers per buffer set, irrespective of the number of
dimensions. Adding more buffers improves performance,
but is not required to avoid deadlocks.

A fully adaptive deadlock-free minimal routing algorithm
for k-ary m-way mesh and hypercube networks can be
designed as follows: Two buffer classes, deterministic and
adaptive, are required irrespective of the number of
dimensions. Adaptive decisions are allowed at any router
along the routing path. If a selected routing way has the
least dimension among the other adaptive ways (i.e., it
matches the one produced by DOR), then a buffer from any
class can be allocated. Otherwise, a buffer from the
adaptive class should be allocated. This algorithm will be
referred to as ADAPTIVE and can be shown to be
deadlock-free.

Finally, a fully adaptive deadlock-free minimal routing
algorithm for k-ary m-way tori networks can be designed
based on the DOR_RING algorithm as follows: A third
buffer class, adaptive, is required in addition to the low and
high classes used by the ring algorithm. Adaptive decisions
are allowed at any router along the routing path. If a
selected routing way matches the one produced by DOR
and the RING algorithm matches the same group for the
next buffer and destination processor, then the next buffer
can be allocated from any class. If the selected routing way

matches the one produced by DOR but the RING algorithm
does not match the same group, then the next buffer can be
allocated either from the low or from the adaptive class. If a
selected routing way does not match the one produced by
DOR then the next buffer should be allocated from the
adaptive class only. This algorithm will be referred to as
ADAPTIVE_RING and can be shown also to be deadlock-
free.

4 Network Simulation and Results

To measure the performance of interconnection networks
with multiway channels, I have simulated a mesh, a torus,
and a hypercube k-ary m-way network varying few
parameters in every run. The simulator is a C++ program
that simulates k-ary m-way networks at the flit level. A flit
transfer between two adjacent routers, over an m-way
channel, is assumed to take place in one clock cycle. The
network is simulated synchronously, moving all flits that
have been granted channels in one clock cycle and then
advancing time to the next cycle. The simulator can be
configured to support different network sizes,
dimensionalities, processor factors, buffers in a buffer set,
buffer sizes, routing algorithms, arbitration algorithms,
messages lengths, message generation rates, and traffic
patterns. Flags indicating the use of full and availability
status by a router can also be set. The simulator can
generate various statistics, such as average message latency,
maximum latency, latency standard deviation, latency
histogram, channel utilization rate, node injection rate, and
node ejection rate.

Latency is measured from the time a message is generated
at a source node until the tail flit is ejected at a destination
node. Source queuing time is included in the latency
measurement. Traffic is measured as the percentage of
utilization of channels. A channel is utilized during a clock
cycle if it is used to transfer a flit successfully. The
injection rate of a node is the percentage of channel cycles
used to inject a flit successfully into the network. The
ejection rate is the percentage of channel cycles used to
eject a flit successfully from the network. The average
traffic, injection, and ejection rates are taken over all
channels and nodes in the network and over a period of
time.

4.1 Effect of Increasing the Number of Buffers

The purpose of this experiment is to measure the effect of
increasing the number of buffers in a buffer set. A medium
size 3D-torus network with 8 × 8 × 8 7-way channels and
512 processor nodes is simulated. The DOR_RING
algorithm is used. The traffic is uniform. All messages
carry 64 bytes of data. They occupy 4 data flits + a header
flit. Each flit is 16 bytes long and is transferable over a

In Proceedings of 12th IASTED International Conference on Parallel and Distributed Computing and Systems

channel in one clock cycle. The number of buffers in each
set is 2, 4, and 8 respectively. However, the size of each
buffer is fixed at 2 flits. The results of these experiments are
shown in Figures 8 and 9, respectively.

The graphs of Figures 8 and 9 are not functions. The
average latency, ejection rate, traffic, and latency standard
deviation are all measured values. The independent
parameter, specified to the network simulator, is the
average period between message generations. The period
between two message generations is a random value
generated according to an exponential distribution. In other
words, the message arrival rate is a Poisson distribution.

0

50

100

150

200

250

300

0% 2% 4% 6% 8% 10% 12% 14%
Ejection Rate (Flits/Processor/Cycle)

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

)

2 Buffers 4 Buffers 8 Buffers

Figure 8: Average latency and Ejection Rate in an 8x8x8 Torus

0

50

100

150

200

250

300

350

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Traffic (% channel utilization)

La
te

nc
y

S
ta

nd
ar

d
D

ev
ia

tio
n

2 Buffers 4 Buffers 8 Buffers

Figure 9: Latency Standard Deviation and Traffic in an 8x8x8
Torus

When the traffic is below saturation, the message latency is
affected only slightly by the traffic. However, as the
network saturates, latency starts increasing sharply. The
latency standard deviation also varies with the traffic.
Below saturation point, the latency standard deviation is a
small value and increases only slightly with the traffic.

However at saturation, the latency standard deviation
increases also sharply. Saturation occurs when the nodes of
a network generate messages at a higher rate than the one
that can be handled by a network. These messages end up
waiting at the source node queues. Increasing the number of
buffers in each buffer set from 2 to 4 improved the ejection
rate and the traffic. However, increasing it from 4 to 8 is not
justifiable in this case.

4.2 Effect of Topology and Routing Algorithm

In this experiment an 8x8x8 mesh, an 8x8x8 torus, and a
9D hypercube network are simulated. All networks have
512 processor nodes. All buffer sets consist of 4 buffers
each of size 2 flits. All messages carry 64 bytes of data (1
header + 4 data flits). The traffic pattern is uniform. The
DOR and ADAPTIVE routing algorithms are used in the
mesh and hypercube networks. The DOR_RING and
ADAPTIVE_RING algorithms are used in the torus
network. The results are shown in Figures 10 and 11.

0

50

100

150

200

250

300

0% 2% 4% 6% 8% 10
%

12
%

14
%

16
%

18
%

Ejection Rate (Flits/Processor/Cycle)

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

)

MESH_D MESH_A TORUS_D

TORUS_A CUBE_D CUBE_A

Figure 10: Average latency and Ejection Rate in a 3D
Mesh, a 3D Torus, and a 9D Hypercube

The graphs of Figures 10 and 11 clearly indicate that the
performance of a hypercube is better than that of a torus,
which in turn is better than the performance of a mesh. A
hypercube can provide the highest throughput (ejection
rate) and lowest latency amongst all topologies. The reason
is that the number of wires per channel is kept constant in a
k-ary m-way network irrespective of the network topology
or dimension and the distances between processors are the
shortest in the case of a hypercube. However, there are
other factors that can make the hypercube less attractive.
For instance the sharing factor, m, of an m-way channel is
10 in the case of a 9D hypercube, while it is 7 in the case of
a 3D mesh or torus with a processor factor of 1. Increasing

In Proceedings of 12th IASTED International Conference on Parallel and Distributed Computing and Systems

the dimension of a network will increase the costs of
packaging, the lengths of wires, and reduces the speed of a
channel. The clock period was assumed to be same in all
network topologies, while it may increase as the network
dimension increases. The board-level packaging of a k-ary
m-way network is also an open problem that needs further
study. Lower-dimensional networks are favored over
higher-dimensional networks from the engineering point of
view.

The performance of a torus is clearly better than the
performance of a mesh. The throughput is almost twice as
much. The traffic in a torus can easily exceed 95%, but it
barely reaches 75% under adaptive routing in a mesh. The
reason is that the traffic distribution is not uniform in a
mesh topology even when the traffic pattern itself is
uniform. The traffic is very heavy (near 100%) at the center
of mesh at saturation, but is very light (about 20%) at the
corners and boundary channels. This problem does not exist
in a torus because it has a symmetric topology.

0

50

100

150

200

250

300

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100
%Traffic

La
te

nc
y

S
ta

nd
ar

d
D

ev
ia

tio
n

MESH_D MESH_A TORUS_D

TORUS_A CUBE_D CUBE_A

Figure 11: Latency Standard Deviation and Traffic in a 3D
Mesh, a 3D Torus, and a 9D Hypercube

The results of Figures 10 and 11 also indicate that the
ADAPTIVE routing algorithm, used in MESH_A and
CUBE_A, and the ADAPTIVE_RING algorithm, used in
CUBE_A, perform always better than deterministic routing
algorithms. The performance improvement can be even
more substantial when the traffic is not uniform.

5 Conclusion and Further Research

This paper presented a new class of interconnection
networks called k-ary m-way networks. These networks are
based on m-way channels and routers. The idea is to reduce
the number of links per router to only two and to make
channels very wide. The performance of k-ary m-way mesh,

torus, and hypercube networks was evaluated under
different routing algorithms. The initial results are
encouraging and stimulate more research in this direction.
The router discussed in this paper is described in VHDL. It
is currently being extended to support broadcasting and
multicasting. Further research in this direction is to link
processor nodes within routers and to support routing in
faulty networks.

References

[1] J.-C. Bermond and F. Ergincan, Bus Interconnection
Networks, Discrete Applied Mathematics, 68, pages 1-15,
1996.

[2] L. Bhuyan and D. P. Agrawal, Generalized Hypercube
and Hyperbus Structures for a Computer Network, IEEE
Transactions on Computers, vol. 33, no. 4, pages 323-
333, April 1984.

[3] J. Carbonaro and F. Verhoorn, Cavallino: The teraflops
router and NIC, Proceedings of Hot Interconnects
Symposium IV, August 1996.

[4] W. Dally and C. Seitz, Deadlock free message routing
in multiprocessor interconnection networks, IEEE
Transactions on Computers, vol C-36, no. 5, pages 547-
553, May 1987.

[5] J. Duato and P. Lopez, Performance Evaluation of
Adaptive Routing Algorithms in k-ary n-cubes, in
Proceedings of the Parallel Computer Routing and
Communication Workshop, May 1994.

[6] J. Duato, A Necessary and Sufficient Condition for
Deadlock-Free Adaptive Routing in Wormhole
Networks, IEEE Transactions on Parallel and
Distributed Systems, vol. 6, no. 10, pages 1055-1067,
October 1995.

[7] A. Ferreira, A. G. vel Lejbman, and S.W. Song,
Broadcasting in bus interconnection networks, CONPAR
94, Lecture Notes in Computer Science, Springer-Verlag,
September 1994.

[8] E. Fleury, P. Fraigniaud, A General Theory for
Deadlock Avoidance in Wormhole-Routed Networks,
IEEE Transactions on Parallel and Distributed Systems,
vol. 9, no. 7, pages 626- 638, July 1998.

[9] M. Mudawwar, A Switch-Free Router for k-ary m-way
Networks, submitted to the International Conference on
Parallel and Distributed Processing Techniques and
Applications, June 2000.

[10] M. Noakes, D. Wallach, and W. Dally, The J-Machine
Multicomputer: An architecture evaluation, Proceedings
of the 20th International Symposium on Computer
Architecture, pages 224-235, May 1993.

[11] S. L. Scott and G. Thorson, The Cray T3E network:
adaptive routing in a high performance 3D torus,
Proceedings of Hot Interconnects Symposium IV, August
1996.

[12] T. Szymanski, Hypermeshes: Optical interconnection
networks for parallel processing, Journal of Parallel and
Distributed Computing, vol. 26, pages 1-23, January
1995.

