
Proceedings of the ISCA 11th International Conference on Parallel and Distributed Computing Systems, September 1998

105

XTPVM : An Extended Threaded Parallel Virtual Machine

Tarek Abdel-Radi and Muhammed Mudawwar
{ tradi, mudawwar }@aucegypt.edu
The American University in Cairo

113 Kasr Al Aini, Cairo, Egypt

ABSTRACT
Providing the parallel programming community with a single

abstract view to a heterogeneous network of workstations is a very
intrinsic task. Parallel programmers want a facility to combine a set
of workstations and use this pool to create and execute threads.
Alleviating the programmers from time consuming mechanisms such
as managing communication among the threads over a network,
scheduling threads and balancing the load through thread migration
are all crucial. We developed XTPVM (eXtended TPVM) to be a
transparent thread scheduling and migrating virtual machine based on
TPVM (Threaded Parallel Virtual Machine) that provides parallel
programmers with the ability of using a network of workstations for
parallel processing. It considers heterogeneity and differences in
processing power between workstations, and also the dynamics of the
system as a whole. In such a computing environment, where the use
of resources vary as other applications consume and release
resources, transparent scheduling of parallel threads onto the least
loaded hosts was achieved. As workstation loads vary due to their use
by other users, XTPVM adapts by migrating ready threads before
being committed from loaded workstations to less loaded ones using
DGP (Distributed Global Plan). Experiments have been performed to
demonstrate the effect of some parameters of XTPVM on total
execution speed and to show the usefulness of migration.

Keywords: XTPVM, TPVM, PVM, Virtual Machine, Thread
Scheduling, Thread Migration, Distributed Dynamic Load
Balancing.

1. Introduction

Considerable advances have been made in recent years in both
parallel and distributed computing. However, despite common
interests, the work in the two areas has remained quite distinct. The
main concern of the parallel community is with speed and processor
scalability, resulting in specialized architectures and minimal reliance
on system software, while the distributed community is concerned
with wide area connectivity and resource sharing, resulting in open
system platforms and largely functional system software [1]. The
recent trend is using workstation clusters for parallel computation
indicating that these distinctions are potentially disappearing. The
emergence of high-powered workstations connected via fast
communication networks has increasingly been considered as an
alternative to dedicated high performance parallel computers. These
workstation networks are not only cheaper, but also provide a
general-purpose computing environment that is typically shared by
both parallel and non-parallel application developers and users.
Distributed Parallel Programming has been of major concern over the
past few years, and is based on heterogeneous networked platforms,
frequently comprising powerful workstations and software systems
that together emulate the general purpose virtual parallel computers
[2]. Networks of workstations can be used as large scale parallel

machines, although at present their use is restricted to coarse grained
computation.

It is thus required to allow parallel program writers to make use
of the abundantly available idle workstation power on a LAN
transparently by giving the ability to define and run threads
transparently and remotely. This can be achieved by using a virtual
machine as a layer of abstraction that allows the application
programmer to view different heterogeneous computers in a single
perspective. A virtual machine takes advantage of the underlying
operating system and network resources and presents a usable
programming interface to applications. A thread-based parallel virtual
machine should be able to schedule and migrate threads
transparently, and adapt to changing workstation loads. Just as
normal threads can share memory, threads in the parallel virtual
machine should also be able to share memory.

The goal of XTPVM is to develop a thread-based parallel virtual
machine that provide a library of functions to develop parallel
programs, that will schedule threads transparently on a network of
workstations, and that will maintain a load balance through thread
migration. Thus the application programmer will have no control
over which workstations will be used for the execution of a particular
thread. However, he can specify the pool of workstations over which
threads will run. The programmer will only see an interface to a
library of functions that can be used to execute relatively independent
threads that can possibly share remote memory in a distributed way.

XTPVM will balance the load on a network using the user
specified load band that is tolerable to make use of the idle
workstations and remove the burden off heavily loaded workstations.
Only ready but non-committed threads can migrate. A thread is
committed to a workstation once a context has been created for it.
Non-committed threads do not have a context. Thus, their migration
is simplified and the cost of migration is greatly reduced because
there is no need to transfer their contexts across a network. The share
of each workstation in the number of non-committed threads thus
grows and shrinks, as a program runs. A good load metric for
migration is the number of non-committed threads queued at each
workstation which must be balanced within a user selected load band.

This paper is organized into 7 sections. Section 2 presents a
brief background of PVM and TPVM. Section 3 discusses the
abstract machine developed, namely XTPVM. Section 4 investigates
the scheduling and migration alternatives, and those selected for the
implementation of XTPVM. Section 5 presents a performance
evaluation of XTPVM. Section 6 presents related work in this field,
and section 7 rounds off with the conclusion and discusses some
future enhancements.

Proceedings of the ISCA 11th International Conference on Parallel and Distributed Computing Systems, September 1998

106

2. Background: PVM and TPVM

PVM enables a collection of different computer systems to be
viewed as a single parallel virtual machine for hosting processes [3].
It provides an infrastructure where networks of workstations can be
viewed by application developers as a large distributed-memory
multiprocessor machine, making it convenient to create parallel
applications by virtualizing the workstation network and by
providing the necessary primitives for process communication (via
message passing) and for process control [4]. The PVM task is a
process that isn’t thread safe. TPVM, on the other hand, is a thread-
based virtual machine, implemented as a layer over the native release
version of PVM[5]. TPVM’s threads retain the original computing
model in which an application is comprised of “components” or sub-
algorithms, each of which may be manifested as a collection of
instances that safely cooperate via message passing [6]. TPVM
threads form the units of parallelism and are hosted within regular
PVM processes or “pods”. In other words, a collection of TPVM
threads that comprise an application are created and executed within
the context of a smaller number of pods which provide an
environment shell and do not contribute to the computation as is
typical with other thread systems such as SunOS LWP. Host
processes or pods are initiated via normal native PVM mechanisms
e.g. pvm_spawn. These pods must export thread entry points that
specify the types and numbers of threads that the process is willing
and able to host.

Figure 1 shows the TPVM system. It consists of three
components : a library, a portable thread interface, and a thread
server module, which performs scheduling and system data
management [6,7].

user
threads

master
thread

PVM

TPVM Thread ServerTPVM librar y

live thread
instance list

Available
invocations

local thread
export list

message
queue

global thread
export database

global available
invocation database

PVM Task
Figure 1: The TPVM system

The user interacts with the TPVM system via library calls that
provide a number of required support services. The TPVM library is
used for thread-based distributed computing. The library routines are
based on PVM primitives for services such as message passing, on
the portable thread interface module for services such as thread
creation and scheduling, and on a TPVM thread server task for
scheduling and export database services. Thus, the three modules
interact together to provide the user with the TPVM system.

The Portable Thread Interface module handles all thread-related
services such as thread management, communication and
synchronization. It abstracts basic thread services required to
implement the TPVM library routines. This abstraction allows the
implementation of the TPVM library to be decoupled from the
available thread services on various OS and machine platforms. It

provides for thread creation, exiting, yielding, obtaining and
releasing mutual exclusion, and determining a unique identifier
number associated with the running thread. There are fairly basic
operations, which can be supported by most typical thread systems
with little implementation effort.

TPVM relies on a centralized thread server task which provides
support for the thread export database, scheduling, and data-driven
thread creations that is neither scalable nor failure resilient.

3. XTPVM

3.1 The Need for XTPVM

The goals of having a simple, complete and easy to use library
for a virtual machine that is easy to set up has been met by both PVM
and TPVM, but in different degrees. PVM has existed for quite some
time, and its interface has gone over several enhancements and
modifications, and thus has a more complete set of library functions.
TPVM on the other hand is more recent, and is not as clear as PVM,
and thus lacks in some points. For example, it does not support non-
blocking receive between threads while PVM supports it between
processes, making TVPM not complete enough. Also, lack of
documentation on concepts such as remote memory, makes
programming with TPVM difficult at first until some rules are
discovered by experience. An example is the inability to declare
remote memory anywhere in the program except by the main thread
of only one pod which should then call tpvm_go. To program with
TPVM, the user should be familiar with both the PVM and TPVM
libraries and call appropriate functions when necessary. XTPVM can
supply the user with only one set of library calls that provides
consistency and simplifies programming [8].

Despite the success of PVM, there are areas such as resource
allocation where PVM lacks support. In a computing environment
where the availability of resources changes over time, the allocation
and reallocation of resources in response to these changes is essential
to utilize the resources effectively. Also, PVM has no provisions for
thread safe processes, which are its basic unit of scheduling rather
than threads. Parallel programmers are more familiar with threads
and thus cannot port their parallel algorithms easily to PVM. TPVM,
on the other hand, handles thread definition, creation, termination
and invocation and has also introduced the idea of dataflow
computation for threads over PVM. PVM and TPVM are neither
abstract nor transparent enough, requiring the parallel programmer to
concentrate on many non-application specific tasks. For example, to
schedule tasks, an application must use one of PVM’s three modes of
scheduling processes when spawning. These are PvmTaskDefault
(PVM can chose any machine to start task), PvmTaskHost (PVM
should chose a particular host), and PvmTaskArch (PVM should
chose any workstation of a particular architecture). TPVM, on the
other hand, has 2 modes for scheduling its threads at spawn time:
PvmThreadLocal (to start the thread in the spawning pod) and
PvmThreadWild (to start the thread on any of the pods running in a
workstation in the current virtual machine.

One of the limitations of TPVM is the use of round robin
scheduling, rather than load sensitive scheduling, to schedule threads.
Neither PVM nor TPVM supports process/thread migration. TPVM
requires strong encapsulation of threads, and so shared variables are
not permitted. XTPVM alleviates some of the problems of PVM and
TPVM for the parallel programming community. The next section
discusses its features.

Proceedings of the ISCA 11th International Conference on Parallel and Distributed Computing Systems, September 1998

107

3.2 Features of XTPVM

The features of the proposed virtual machine are:
• A simple, complete and easy to use library that runs under the

application layer. The user interface is a small set of library
functions whose declaration is provided in a header file to be
included for compilation with the user's program. A library
called libxtpvm.a should be linked with the user's code to
generate the executable.

• Ease of virtual machine setup over a heterogeneous network. A
simple text file called hosts.ini should be edited by the user to
specify a list of host names to use as the pool of workstations in
the virtual machine setup as well as the location of the user’s
application on each workstation.

• A simple method of thread management. XTPVM is thread-
based. The XTPVM library provides a complete set of
operations for thread definition, creation, termination and
invocation.

• Transparent thread scheduling. XTPVM thread scheduling
gives priority to least loaded workstations to receive the newly
created threads, rather than the round robin scheduling of
threads provided by TPVM.

• Transparent thread migration. A major contribution of XTPVM
not available in PVM and TPVM is load balancing through
thread migration, which is in fact an implementation of the
decentralized global plan algorithm discussed later. Providing
location transparency allows the programmer to deal with
threads without having to know where on the network they are
located. The user can easily and transparently create and
terminate these threads without any knowledge of their location.
This location transparency is achieved by assigning a unique
name for each thread function. All thread creation, termination,
invocation, sending and receiving is done using this unique
name and not the TPVM integer thread id, since a thread might
migrate dynamically, and any id returned to the user might be
invalid in later library calls.

• Allowing threads to cooperate. XTPVM provides send and
receive primitives between threads as well as remote shared
memory for inter-thread communication. To use remote shared
memory, the programmer would first specify the shared
variables to be registered by XTPVM at initialization time, and
then threads can get and put values to them easily, using
xtpvm_get and xtpvm_put.

3.3 Overall Architecture

XTPVM is built over PVM and TPVM as shown in Figure 2,
thus making use of previous research efforts and experimental
experience to develop a more powerful tool for the parallel
programming community. In summary, XTPVM has a somewhat
abstract structure, and the user only needs to know a small set of
XTPVM library calls. No prior knowledge of PVM or TPVM is
required.

XTPVM has access to both PVM and TPVM subsystems. The
user application will have access to XTPVM, TPVM and PVM even
though it is recommended that the XTPVM interface should be used
solely and not bypassed via calls to TPVM or PVM routines. The
XTPVM interface is complete enough for its specified purpose.

TPVM

User Application

PVM

OS kernel and libraries

XTPVM

Figure2 : Layered Diagram relating XTPVM to PVM and TPVM

3.4 The XTPVM Interface

The XTPVM library is written in C and makes calls to TPVM
and PVM. Both TPVM and PVM are portable across many
platforms, and this makes the XTPVM library also portable. XTPVM
is intended to work on a heterogeneous group of workstations and
this has been accounted for (e.g,. whenever a pod is created on a
machine, all function pointers are reevaluated).

The following is a list of all the library calls the programmer can
use. For a more complete description, refer to [8].

• xtpvm_init(threads, memnames, memlocs, memtypes): The user
should supply this function. In it, thread names, thread function
pointers, shared memory names, and shared memory addresses
should be set.

• xtpvm_main(): The user's main function.
• xtpvm_end(): This function terminates all the pods, frees all

allocated buffers, and then halts the PVM system for a clean
termination.

• xtpvm_beginthread(functionname, instance): starts a user thread
with the XTPVM name given in functionname and instance.

• xtpvm_beginthreads(functionname, startinstance, number):
starts a set of user threads with the XTPVM name given in
functionname, starting with a startinstance and ending with
startinstance+number.

• xtpvm_endthread(functionname, instance): broadcasts a
message to all thread spawners to terminate a thread.

• xtpvm_endthreads(functionname, startinstance, number):
broadcasts a message to all thread spawners to terminate a group
of threads.

• xtpvm_getexitcondition(): checks if a thread is marked for
ending condition or not.

• xtpvm_setloadband(band): sets the value of delta to be used.

• xtpvm_send(threadname, instance, messagetag): non-blocking
send of a message with a tag to a thread.

• xtpvm_receive(threadname, instance, messagetag): blocking
receive waiting for a message with a tag from a thread.

• xtpvm_nreceive(threadname, instance, messagetag): non-
blocking receive, returns false if no message exists, else true.

• xtpvm_initsend(): initializes the send buffer. should be called
before xtpvm_send().

• xtpvm_remoteput(name, number, loc): copy to a named shared
memory buffer from a user specified variable.

• xtpvm_remoteget(name, number, loc): copy to a user specified
variable from a named shared memory buffer.

• xtpvm_log(string): writes string to the log file. A single log file
is created for each pod.

Proceedings of the ISCA 11th International Conference on Parallel and Distributed Computing Systems, September 1998

108

• xtpvm_exit(): removes the calling thread from XTPVM.

• xtpvm_getinstance(): returns the instance number of a thread.

• xtpvm_upkXXX(pointer, count, stride): unpacks data of type
XXX (can be byte, double, int, long, etc.) to address pointer.
count items are unpacked and spaced stride appart.

• xtpvm_pkXXX(pointer, count, stride): packs data of type XXX.

3.5 XTPVM Internal Design

The xtvpm_init function associates user thread names with
thread function pointers. It should be the first xtpvm function to be
called. The user can also declare names to remote shared memory
regions, and sets appropriate pointers. Since every pod will first call
this function, the problem of a function pointer having a different
value on different architectures is alleviated by reloading its value
whenever a pod is created, thus heterogeneity is provided.

After calling xtpvm_init, XTPVM sets up the virtual machine by
starting the PVM system if it is not running, adding the hosts
specified in the hosts.ini file to the virtual machine, and spawning
one pod per host. The hosts.ini file specifies the location of each pod
on its corresponding host so that different pod versions run on their
corresponding architectures. Every pod first exports all the threads
declared by the user (so that threads can migrate to any pod in the
virtual machine) and then exports and spawns two private XTPVM
threads, the thread_spawner and the load_monitor threads as shown
in Figure 3. If xtpvm_init returns TRUE, XTPM converts the master
process into a pod, creating for it these two private threads,
otherwise, a pod is spawned on the local machine with these two
threads. The advantage of converting the master into a pod is that
inter-process communication is eliminated on the local machine, thus
increasing performance. Another advantage is that the xtpvm_main
function is managed as a normal migratable thread.

Pod

• export thread spawner,
load monitor

• tpvm_recv sync_key
• tpvm_export all threads
• tpvm_spawn thread spawner
• tpvm_spawn load monitor
• tpvm_send spawnerid,

monitorid

• pvm_addhosts
• pvm_spawn pod

• tpvm_send mytid, serial#, hostn

• tpvm_recv from allpods

• tpvm_send
 hostn, monitortids, spawnertids

Master Process

Load
Monitor

tpvm_recv

Thread
Spawner

Figure 3: Creating a pod and setting the load monitor and thread spawner.

The pod and the master processes are in fact the same
executable, but after calling xtpvm_init as the first function, both call
xtpvm_start which will execute differently for a master process than a
pod process. A process knows if it is a pod or a master just by making
the PVM call pvm_parent, since only pods have a parent that spawns
them and assigns them a serial number. The master process has no
parent. This ensures that only the master process performs the virtual
machine setup.

The thread_spawner and the load_monitor threads are non-
migratable. They are exported and spawned by the main thread of
every pod. Master processes that have changed into pods also own

these two threads. All other threads that run in a pod are migratable
user threads and the programmer can reference them by name.

The thread spawner is responsible mainly for user thread
creation and termination. Send and receive commands require
mapping from thread name to id for transparent access to threads, and
this is done by multicasting a message to all thread spawners
requesting them a lookup of a thread name. The thread spawner that
has the thread currently running on its host replies. Thus, send and
receive require thread names as the destination and source
respectively and not thread ids. This is how location transparency is
achieved. A mapping is also provided from thread ids to thread
instances so that threads can know their instance number. This is
useful for data parallelism, where each thread works on a separate
section of the data.

The load monitor thread is responsible for calculating the load
average at the local pod. It then sends this system load and the
number of queued threads to the neighboring load monitor (the one
in the pod with the next serial number) in a chain fashion to construct
one common load array. The load array is used for initial scheduling
as well as for migration (see section 4). The DGP algorithm is used to
select threads for migration. The load monitor on the most loaded
machine migrates the selected threads to the pod on the least loaded
machine, while other load monitors do nothing.

4. Scheduling and Migration in XTPVM

4.1 Scheduling in XTPVM

Several static scheduling schemes have been proposed. Some of
these include Source Processor Scheduling (SPS), Sorted Spiral
Scheduling (SSS), and Global Plan Scheduling (GPS) [9]. All these
can be categorized as static off-line scheduling since a schedule for
the entire system is determined at design time, before the execution
of the system. The advantages of this approach are its low run-time
overhead, its deterministic behavior, its provision for system-wide
optimizations, and the ease in which task dependencies and resource
conflicts can be resolved, eliminating the need for costly resource
locking and synchronization operations. The disadvantages of any
static off-line scheduling include its inflexibility to adapt to a
changing environment, and the difficulty of finding an optimal
schedule (which is an NP-hard problem). Heuristics are often used to
find a feasible schedule, which might result in low system utilization.

In XTPVM, we are concerned with the dynamic scheduling of
threads over a set of workstations whose local loads might fluctuate
as the threads run. Thus, we require a distributed scheduling scheme
that takes into account local workstation loads and tries to balance
these loads via migration of threads. The load metric used for initial
scheduling of threads is the reported system load average since this
adds a prediction factor as to where a thread might finish quicker. For
migration, the load metric used is the number of ready threads
queued at each workstation by a particular application owner. Thus,

XTPVM scheduling = initial scheduling + migration

Whenever the user wishes to spawn a thread, a call to
xtpvm_beginthread is made, specifying the thread name and thread
instance. The thread name is the name associated with a particular
function specified in xtpvm_init by the user. A name, rather than a
TPVM thread id, is used for location transparency since threads
might migrate after being spawned. Since several instances of a
thread function might be spawned, each instance is qualified by its

Proceedings of the ISCA 11th International Conference on Parallel and Distributed Computing Systems, September 1998

109

instance number, which is also required for communication and
termination of threads.

Once this call is made, XTPM retrieves the Load Array from the
Load Monitor thread in the caller's pod, and the least loaded
workstation is selected as the destination to spawn this new thread.
Once a destination host has been selected, a message is sent to the
Thread Manager in the pod on that workstation requesting it to
create a new thread in its encapsulating pod. The Thread Manager
can choose either to directly spawn this new thread thus creating a
context and committing it, or to place it on a queue until some
currently running threads terminate. The maximum number of
committed threads per host is determined as the number of processors
available on the workstation multiplied by a thread Commit Factor.
Thus, the Commit Factor is the number of threads committed per
processor. Since flooding a processor with many threads
simultaneously slows down the system, a Commit Factor is chosen to
be the suitable number of threads a single processor can handle
efficiently. Once committed, a thread cannot migrate. If a thread
performs a blocking wait, XTPVM would be counting it as
committed, when in fact it is not running, and another thread could
be scheduled to run instead. To avoid this, just before blocking on a
receive another thread on the queue is allowed to commit. This
means that at times more than Commit Factor threads may be
running to avoid deadlocks.

Another approach for the initial scheduling of n threads is to
fairly distribute them over the available workstations and let
migration move them around to achieve quickest execution. As the
results presented later show, the initial scheduling scheme does not
affect execution time since migration is performed frequently.

4.2 Distributed Global Plan (DGP) Algorithm

In XTPVM, we are concerned with the dynamic scheduling of
threads over a set of workstations whose local loads might fluctuate
as the threads run. Thus, we require a distributed scheduling scheme
that takes into account local workstation loads and tries to balance
these loads via migration of threads. One method is to use a Genetic
Algorithm. We have implemented one that has chromosomes
selected, reproduced and mutated in order to converge to the best
possible distribution of a fixed size block of totally independent tasks
that are determined prior to scheduling. When loads change on the
workstations, the GA will adapt to account for such a change with a
new distribution strategy of these blocks [10]. Even though a GA is
adaptable and performed well in the experiments conducted, yet it is
not useful for XTVPM, which requires scheduling of threads that
might start and end at different times.

An alternative way of developing a scheduling policy for
XTPVM is to investigate multiprocessor scheduling algorithms.
These suffer from the global state problem, since it is impossible to
know the current state of the entire system exactly, due to the latency
of acquiring the information. When this problem is looked at from a
distributed perspective, then the latency in acquiring information
about the current state is much greater. Some systems such as the
MARS architecture escape this problem via static scheduling. Kara
has introduced a new algorithm called DGP (Distributed Global Plan)
that addresses the problem of coherence and coordination and makes
good local scheduling decisions without jeopardizing global goals.
DGP is distributed since control is decentralized and no host has a
true image of the overall state of the system. A scheduler is replicated
on each host, and each scheduler:

• accounts for local decisions made by other schedulers,
• accounts for the effect of its local decisions on the system, and
• ensures load balancing

DGP thus prevents host overloading which occurs when several
hosts target the least loaded host, which in turn becomes heavily
loaded. Its use of the parameter delta (∆) avoids job thrashing which
is when jobs infinitely move around the network and hosts spend
their time in redistributing jobs and little on executing local jobs. The
DGP algorithm is based on a strategy called Global Plans (GP) that
aims at maintaining all computational loads of a distributed system
within a band ∆. We have analyzed DGP as a static scheme for
scheduling on multiprocessors, and experiments have shown good
performance both in speedup and efficiency [9], and thus it looks
promising to use for XTPVM's migration algorithm.

The Global Goal is defined as follows:

A network of hosts is balanced if the load on all hosts are within
a band called ∆, (where ∆ is constant, and has the same unit as the
load of the hosts). Furthermore, ∆r(t) is defined as the minimum band
that contains all loads at a time t. In other words, a system is
balanced at time t if ∆ ≥ ∆r(t) [1,2]

To illustrate this definition, assume that two snapshots of a
multiprocessor with five processors were taken at time t1 and t2. Also
assume that the load metric is the number of jobs queuing for
execution. Using the above definition Figures 4 represents the system
at these two times and shows the individual loads of each host.
Assuming ∆ = 3, Figure 4A exhibits an unbalanced state because
∆(t1)=7 and therefore ∆(t1)> ∆. Figure 4B shows a balanced system
since all loads belong to the band ∆ since ∆ ≥ ∆(t2)

Hosts

Lo
a

d
 M

et
ric

0 1 2 3 4 5
0

2

4

6

8

0 1 2 3 4 5
0

2

4

6

8

(A) Before (B) After

)(1tr∆)(2tr∆

Figure 4: Loads of 5 hosts before and after balancing

The Global Plan Strategy aims to satisfy the global goal by
ensuring that all loads are within delta and are thus balanced,
preventing instability and host overloading. This is done via

• An Input Loads vector X
• A parameter ∆
• Output loads vector Y (withing the interval ∆)
• A table of global allocations T = { (p,q,r) .. } p units from host

q to host r

In general GP can be described by the following pseudo-code

1. Y=X
2. compute the processor with lest load (l)
3. compute the processor with the highest load (h)
4. while (load of processor h - load of processor l) ≥ delta do

• Search T for a matching triple (p,h,l) for any p
• if Search successful then increment triple by 1 => (p+1,h,l)
• else insert new entry (1,h,l)
• Decrement load of processor h
• Increment load of processor l
• Compute the new l
• Compute the new h

For example, if a network consists of 5 hosts, and we use ∆ = 2
for the initial load vector X = (2,7,3,6,3), then T would develop as
follows:

Proceedings of the ISCA 11th International Conference on Parallel and Distributed Computing Systems, September 1998

110

Step # Y ∆ at t Status T
0 (2,7,3,6,3) 5 unbalanced {}
1 (3,6,3,6,3) 3 unbalanced {(1,2,1)}
2 (4,5,3,6,3) 3 unbalanced {(2,2,1)}
3 (4,5,4,5,3) 2 balanced {(2,2,1) ,(1,4,3)}

Table 1 : The development of the table of global allocations in GP.

So to move from the unbalanced state (2,7,3,6,4) where host1
has load 2, host2 has load 7 and so on, to the balanced state
(4,5,4,5,3), T tells us to take 2 tasks from host2 and give it to host1,
and 1 task from host4 to host3. As one can see, the final state has a
maximum host load of 5 and a minimum host load of 3, and since ∆
was selected to be 2, then such a state would have the hosts balanced.
The GP strategy is executed periodically depending on how
important system balance is to the user. Since XTPVM will use this
strategy, the library calls xtpvm_setloadband and xtpvm_setloaddelay
are required for programmers to set the load band and the delay
between load broadcast periods respectively.

The application of the GP policy to a distributed algorithm
leads to several considerations. The algorithm based on the GP policy
is called Distributed GP or DGP because of the distributed nature of
the environment in which GP is applied. Each host only has control
over its own resources and local load information is periodically
broadcast. The GP algorithm is executed at each machine to create T
and each machine i executes all entries that include it as a source (*,
i, *) or as a destination (*, *, i) depending whether it is sender
initiated or receiver initiated.

4.3 Dynamic Load Balancing and Migration in XTPVM

Recall that load monitors cooperate in a chain fashion, passing
their loads around back to the first load monitor which then
broadcasts this load. In fact, not only are the load averages circulated
this way, but with them the load managers circulate the length of
their ready queue in terms of the number of threads queued in it. This
in effect generates the input loads vector, X, discussed in DGP that
must be balanced to be within ∆.

XTPVM uses a third parameter in its specialization of DGP
other than ∆ and the Commit Factor discussed previously. This is the
Threshold_to_start_DGP parameter. To prevent excessive migration,
we can control migration to initiate it only when queues are empty
enough. Whenever the minimum queue load is less than
Threshold_to_start_DGP then migration is invoked, otherwise
nothing happens and execution of committed threads continues as
normal.

5. Performance Evaluation

This section examines the effect of changing XTVPM
parameters on the overall execution time of an application. To assess
the performance, we declared 100 thread instances of the same
function but with different instance numbers. The thread function
loops one million times to consume CPU cycles. Upon termination, a
message is sent from a thread instance to its parent thread indicating
its completion before calling xtpvm_exit to remove itself from the list
of running threads. The parent thread waits for 100 such messages
and calculates the time difference between starting these threads and
receiving all 100 messages. This is the total time of execution of the
threads, which changes as different values are chosen for XTPVM
parameters.

5.1 The Effect of Commit Factor

The first experiment aims at finding the optimal number of
committed threads per processor. Recall that a committed thread is
the one for which a context has been created. Once committed, a
thread cannot migrate. The Commit Factor in this experiment was
ranged from 1 to 10 while other parameters were kept constant. The
load monitor was set to run once every second (Load Delay =1), a
DGP delta value of 2 was chosen, and the Threshhold_to_start_DGP
was set to a relatively large value, 100, so that migration can take
place anytime when enabled, and its effects can be obvious. A value
of 100 was chosen since a queue will always have less than 100
threads in this experiment. The experiment was first performed with
migration disabled on 2 hosts, and with migration enabled on 2 hosts
and then 5 hosts (Sparc 5 workstations running Solaris 2.x). All hosts
had a relatively low load average, ranging from 1 to 1.5 as reported
by the system during the experiment. Figure 5 shows the results.

4

9

14

19

24

1 2 3 4 5 6 7 8 9 10

Commit Factor (

T
im

e
 in

 s
e
co

n
d

Migration Disabled (2 host s

Migration Enabled (2 hosts)

Migration Enabled (5 hosts

Figure 5: Effect of commit factor on execution time

The curves of Figure 5 have a common pattern, regardless of
whether migration is enabled and the number of hosts used. As the
number of committed threads per host increases, the overall
execution time improved up to a certain point (3 in our example), due
to the ability of each host to run more than one thread. The optimal
commit factor value can vary from one application to another
depending on what threads are doing. For example, if a committed
thread waits on I/O, another committed thread can run making better
use of CPU time and decreasing overall execution time. Increasing
the number of committed threads beyond a certain value made
XTPVM perform worse, since more time is wasted in creating new
contexts for threads and switching between them. Furthermore,
increasing the number of committed threads will decrease the number
of threads that can be migrated and will imbalance the loads of
workstations.

Besides the effect of Commit Factor, Figure 5 demonstrates the
advantage of using migration in XTPVM and the speedup achieved
when using many hosts. The advantage of migration is apparent,
especially when initial scheduling is not proper or when the hosts
have different loads or speeds. Although the upper and middle curves
of Figure 5 were obtained by running the experiment on two hosts,
the middle curve, with migration enabled, has much better
performance. This is because the initial scheduling algorithm did not
distribute the threads properly resulting in a load imbalance.
However, with migration enabled, the Load Monitor maintained a

Proceedings of the ISCA 11th International Conference on Parallel and Distributed Computing Systems, September 1998

111

load balance, achieving high CPU utilization since all hosts are
almost always busy.

The sequential (non-XTPVM) version of the application ran in
22.81 seconds. The XTPVM version ran in 14.88 seconds on two
hosts and 5.02 seconds on five hosts with one thread committed per
host at a time, thus achieving a speedup of 1.53 and 4.54
respectively. When 3 threads are committed per host, the execution
times were 9.81 seconds on two hosts and 4.23 seconds on five hosts.
The speedups were 2.32 and 5.39 respectively. The super-linear
speedups were because the threads were doing I/O writing data to a
file. Committing more than one thread per processor made better use
of CPU time. While a thread is waiting for I/O, another thread ran
reducing the overall execution time.

5.2 Changing the Initial Scheduling policy

We now examine the effect of initial scheduling policy on
overall execution time. Figure 6 depicts the number of non-
committed threads in the ready queues of two hosts at each migration
step. The initial scheduling policy of Figure 6A assigned all the
newly created threads to one host. At first, Q2 was empty due to the
initial scheduling scheme, but after the first migration, the queues
were balanced out with 48 threads each. One host was faster than the
other, and was able to run more of its queued threads. When the Load
Monitor ran for the second time, it balanced the loads to 42 and 41
(difference less than ∆=2). The end effect is that threads are migrated
from slower to faster hosts. Even though the initial execution policy
was improper, migration had compensated for it.

0

20

40

60

80

100

120

Before
#1

After
#1

Before
#2

After
#2

Before
#3

After
#3

Before
#4

After
#4

Migration S t

N
u

m
b

e
r

o
f
T

h
re

a
d

s
in

 Q
u

Q1

Q2

Q1+Q2

Figure 6A: Balancing the thread queues with initially imbalanced queues.

When the initial scheduling policy fairly divides the threads
among the hosts, the changes in queue sizes were very similar to the
first situation as shown in Figure 6B. The overall execution times in
both cases were very close (14.9 and 14.5 seconds). Thus, initial
scheduling does not play a significant role when the number of
threads is large and migration is enabled. It should be emphasized
that migration has a very small overhead in XTPVM, since only one
message is required to specify the n threads to be migrated, just by
sending n thread names and instances. The message is also small in
size since no thread context is transferred. This is to be contrasted
with alternative methods of migration in which the entire thread
context (code, data, and state) is migrated.

0

10

20

30

40

50

60

70

80

90

100

Before
#1

After
#1

Before #
2

After
#2

Before #
3

After
#3

Before
#4

After
#4

Migration S t

N
u

m
b

e
r

o
f

T
h

re
a

d
s

Q
u

e
u

e

Q1

Q2

Q1+Q2

Figure 6B: Balancing the thread queues with initially balanced queues.

5.3 The Effect of Threshhold_to_start_DGP

An experiment similar to that in section 5.1 was performed but
with a different Threshhold_to_start_DGP value. Instead of setting it
to 100, a value of 10 was chosen this time. It was noticed that
migration took place usually once only rather than 4 or 5 times as
with a value of 100, and this had a noticeable effect on the total
execution time only when the hosts had noticeably different loads.
More frequent migration of threads to the fast host meant that the fast
host was executing most of the threads while less frequent migration
didn’t migrate too many threads to the fast host. For example, out of
100 threads, the fast host executed an average of 66 threads when
Threshhold_to_start_DGP=100 compared to an average of 64 when
Threshhold_to_start_DGP=10.

6. Related Work

Introducing a new abstract machine necessitates a comparison
with the existing ones to see the similarities and differences, the
advantages and disadvantages. We already discussed the differences
between XTPVM, PVM and TPVM. We will now compare XTPVM
with other abstract machines surveyed.

6.1 Orca/Panda and HAWK

These deal with objects as the major item of abstraction and not
threads, and thus use the Object-Oriented programming paradigm,
which is at a higher level of abstraction. In both VMs, objects are
shared and replicated transparently, and in HAWK they are also
partitioned transparently. Unlike XTPVM, these VMs do not have
provisions for threads and the process model of programming.
XTPVM, on the other hand, does not replicate or partition shared
regions as in Orca/Panda and HAWK [11,12].

6.2 TAM and LAM

These expose communication, synchronization, and scheduling
of threads to allow compilers to optimize for important special cases,
whereas no compiler optimization is provided in XTPVM. They also
deal with threads but do not transparently migrate them [13,14]. They
run on a single multiprocessor with only one running activation
frame at any moment in time possibly with several threads, while
XTPVM can work on multiprocessors and effectively exploit them,
allowing multiple threads in different address spaces (pods) to
concurrently run on the same machine. Thus, in TAM and LAM,
synchronization is only among threads of same activation frame
rather than threads of different activations, whereas in XTPVM

Proceedings of the ISCA 11th International Conference on Parallel and Distributed Computing Systems, September 1998

112

threads in different pods, possibly on different hosts, can
synchronize.

6.3 LPVM

LPVM is a Lightweight process version of PVM but with a
different user interface. It has threads that are thread safe as its basic
unit, but it is specifically targeted at symmetric multiprocessors that
support threads and global shared memory and does not provide
smart scheduling and migration of these threads over a network of
workstations[15].

6.4 MPVM and MIST

Just like XTPVM, MPVM is also based on PVM, but migrates
processes rather than threads over a pool of workstations, and the
system MIST has been build to support task migration, application
checkpointing, and multi-user application execution, having an
MPVM kernel [16,17]. MIST has a Multi-user Migratable PVM
kernel, which is an enhanced version of PVM that supports
transparent task migration, application checkpointing and multi-user
application execution, but not thread migration. It makes use of the
enhanced version of the resource manager interface provided by
PVM [16].

7. Conclusion and Future Enhancements

XTPVM, a transparent thread scheduling and migrating virtual
machine, has been implemented as a layer on top of TPVM and PVM
to simplify the task of parallel programmers producing applications
for a virtual parallel computer constructed by the cooperation of
several hosts on a LAN. The DGP algorithm was used to initiate the
migration of ready non-committed threads queued in a FIFO queue,
waiting to be committed on the current host. An experiment was
performed to show the advantage of queuing threads and not
committing them as soon as they are ready.

A future enhancement to include in XTPVM is fault tolerance
since PVM makes no attempt to automatically recover tasks that are
killed because of host failure but leaves this task to the application
programmer. Another feature is to make the commit factor change
dynamically at runtime according to the behavior of threads.

REFERENCES

[1] M. Kara, "Simulation and Prototyping of a Coherent Distributed
Dynamic Load Balancing Algorithm", Research Report Series,
School of Computer Studies, The University of Leeds, Report
97.17, May 1997.

[2] M. Kara, "Using dynamic load balancing in distributed
information systems" Research Report Series, School of
Computer Studies, The University of Leeds, Report 94.18, May
1994.

[3] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck, and
V. Sunderam, "PVM: A User's Guide and Tutorial for
Networked Parallel Computing'', MIT Press, 1994.

[4] A.S. Tanenbaum, H.E. Bal, and M.F. Kaashoek, "Programming
Multicomputers Using Shared Objects", In Proceeding of the
Third International Workshop on Object Orientation in
Operating Systems (IWOOOS'93), pages 199--202, December
1993.

[5] A. Ferrari, and V. Sunderam, "Multiparadigm Distributed
Computing with TPVM", Technical Report CSTR-951201,
Department of Mathematics and Computer Science, Emory
University, December 1995, Submitted to the Journal of
Parallel and Distributed Computing, Special Issue on
Multithreading for Multiprocessors

[6] A. Ferrari, and V. Sunderam, "TPVM: Distributed Concurrent
Computing with Lightweight Processes", Proceedings of IEEE
High Performance Distributed Computing 4, Washington, D.C.,
pp. 211-218, August 1995.

[7] A. Ferrari, and V. Sunderam, "TPVM: A Threads-Based
Interface and Subsystem for PVM", Technical Report CSTR-
940802. Department of Math and Computer Science, Emory
University, Atlanta, August 1994.

[8] T. Abdel-Radi, "XTPVM: A Transparent Thread Scheduling
and Migrating Abstract machine", Master thesis, April 98, AUC.

[9] M. Mahmoud, A. Abdelbar and T. Abdel-Radi, "A Framework
for Analyzing Multiprocessor Scheduling", Submitted to PDCS-
98, Chicago, Illonois.

[10] A. Sameh, T. Abdel-Radi, and I. Khalil. "Scheduling jobs using
a Genetic Algorithm in a Distributed Environment", 6th
International Conference on Artificial Intelligence Applications
’98 (ICAIA’98).

[11] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum, "Orca: A
Language For Parallel Programming of Distributed Systems",
IEEE Transactions on Software Engineering, 18(3):190-205,
March 1992.

[12] R. Bhoedjang, T. Ruhl, R. Hofman, K. Langendoen, H. Bal, and
M.F. Kaashoek, "Panda: A Portable Platform to Support Parallel
Programming Languages," Symposium on Experiences with
Distributed and Multiprocessor Systems IV, San Diego, pp. 213-
226, Sep. 1993.

[13] T. Eicken, D. Culler, S.C. Goldstein, and K.E. Schauser, "TAM
- a Compiler Controlled Threaded Abstract Machine", J.
Parallel and Distributed Computing, 1992.

[14] S. Davis, "The Liquid Abstract Machine", MIT Transit Project,
Transit Note #86, October 1993.

[15] H. Zhou, and A. Geist, "LPVM: A Step Towards Multithreaded
PVM", Oak Ridge National Laboratory. Mathematical Sciences
Section, Oak Ridge National Laboratory, Oak Ridge.

[16] J. Casas, D.L. Clark, P.S. Galbiati, R. Konuru, S.W. Otto, R.M.
Prouty, and J. Walpole, "MIST: PVM with Transparent
Migration and Checkpointing", presented at the 3rd Annual
PVM Users' Group Meeting, Pittsburgh, PA, May 7-9, 1995.

[17] J. Casas, D.L. Clark, R. Konuru, S.W. Otto, R.M. Prouty, and J.
Walpole, "MPVM: A Migration Transparent Version of PVM,"
Technical Report CSE-95-002, Oregon Graduate Institute of
Science and Technology, February 1995.

