Muhammad F. Mudawwar

American University in Cairo

Multicode: A Truly
Multilingual
Approach to Tex
Encoding

Unicode was designed to extend ASCII

)
bk
©
)
o
)]
4
Q
0
e
@)

for encoding text in different languages,

but it still has several important

] drawbacks. Multicode overcomes

those drawbacks.

he Internet’s explosive growth and the recent asecond language, you must use the ASCII extension
interest in building international software appro- for the second language. However, this approach pre-
priate for use in different countries have sents two key problems:
increased demand for a standard character set

for use with many different languages. e The 128 characters represented by the extensions
& Currently, the ASCII character set® is the are used for every language besides English.
world’s most widely accepted and used stan- Therefore, mixing more than one language with
dard character set for computers, operating English presents a problem: You cannot tell
systems, compilers, and e-mail systems. which language they refer to in a piece of text.
However, while ASCII encoding adequately Traditionally, programs used awkward escape
represents English text, it does not address sequences to shift the meaning of bits.
the problem of handling text in other lan- e The 8-bit extension cannot accommodate lan-
guages. guages with more than 128 characters, such as
ASCII is a 7-bit code and defines only 128 Japanese, which would require a 16-bit extension.
characters. When used with an 8-bit character
format, the 128 characters that ASCII would Major computer companies and organizations

not use could be used as extensions to ASCII. developed the Unicode character set standard to
These extensions would be used to define address these problems. However, the 16-bit Unicode
characters of different languages. For exam- system, which uses one character set for all languages,
ple, the ISO 8859 standard? defines a Latin creates some new problems. | developed Multicode,
extension (that supports many European lan- which uses multiple character sets for multiple lan-
guages), as well as Cyrillic, Arabic, Greek, guages, to address Unicode’s principal drawbacks.
Hebrew, and other language extensions. The Multicode system is new, so it needs more study
To handle documents that mix English with and more exposure to the computer industry before

0018-9162/97/$10.00 LI 1997 IEEE April 1997

Figure 1. Comparing
ASCII and Unicode.
ASCII, which was
designed primarily to
represent English,
uses 7-bit characters
to represent letters,
symbols, numbers,
and so on. Unicode,
which was designed
to represent a variety
of languages, uses
16-bit characters to
represent letters,
symbols, and
ideographic
characters.

ASCII text Unicode text
A 41 A 0041
S 53 S 0053
c 43 o 0043
[49 [0049
[49 [0049

20 I 0639

t 74 I 0631
e 65 - 0628
X 78 (G 064A
t 74 a 03B1

2E O 21D2

it can be considered for standardization. However, it
shows great promise as a system that can effectively
encode text in many languages.

UNICODE STANDARD

The Unicode3# standard is a fixed-width scheme for
encoding written characters, including alphabetic
characters, ideographic characters, and symbols. The
standard is modeled on the ASCII character set but
uses 16-bit encoding to support full multilingual text.
Unicode requires no escape sequence or control code
to specify a character. Figure 1 illustrates the differ-
ence between ASCII text and Unicode text. (All char-
acter codes in this article appear in hexadecimal
notation.)

The Unicode project began in 1988, and its primary
goal is to remedy two serious problems common to
most multilingual computer programs:

* They overload the font mechanism when encod-
ing characters.

« They use multiple, inconsistent character codes
because of conflicting national and industry char-
acter standards.

Major computer companies and organizations
incorporated the Unicode Consortium in January
1991 to promote the Unicode standard as an interna-
tional encoding system for information interchange, to
aid in the standard’s implementation, and to maintain
quality control over future revisions.

Design principles

The Unicode standard’s designers envisioned a sim-
ple, comprehensive uniform encoding system that could
meet the needs of technical and multilingual computing,
as well as high-quality typesetting and desktop pub-
lishing. The designers tried to achieve a balance between
consistency, simplicity, efficiency, and compatibility

Computer

with existing encoding standards.? Unicode’s design was
based on the following principles:

e 16-bit characters: All Unicode character codes
are 16 bits wide, which provides more code space
than the 8-bit ASCII system.

< Full encoding: The full 16-bit code space can be
used to represent up to 65,536 characters.
Unicode Standard Version 2.0 represents 38,885
characters.

< Encoding of characters, not glyphs: The Unicode
standard encodes characters (the smallest com-
ponent of a written language that has a semantic
value, not glyphs (the shape of a character when
it is rendered or displayed).

< Semantics: Characters have well-defined seman-
tics. Unicode includes character property tables
that can be used with parsing, sorting, and other
algorithms that require semantic knowledge
about code points.

< Plain text: The Unicode standard encodes plain
text, rather than fancy (or rich) text, which
includes such information as font, size, color, and
hypertext links.

= Logical order: For all scripts, Unicode text is stored
in memory in the same order in which the text is
typed, which affects text rendering in some bidi-
rectional scripting systems.

< Unification: Because of the limited 16-bit code
space, the Unicode standard avoids duplicate
encoding of characters. It uses the same code for
the same character, regardless of the language
that is being represented or the way the language
uses the character. So, the letter “a” has the same
code whether you are encoding text in English,
Spanish, or French.

« Dynamic composition: The Unicode standard
permits the dynamic composition of accented
forms (those letters having diacritical marks).
Dynamic composition allows us to form a new
character on the fly by combining a character
with a diacritical mark.

< Equivalent sequence: Some text elements can also
be encoded as static precomposed forms—
more convenient, compact representations. The
Unicode standard provides a way to map to the
equivalent dynamic composition, so programs
can check for equivalent character sequences.

« Convertibility: The standard provides accurate
convertibility between Unicode and other widely
accepted encoding standards.

Unicode’s drawbacks

Although Unicode can remedy some problems expe-
rienced by multilingual computer programs, it also
has several drawbacks.

Efficiency. Most documents are written entirely in
one language, and most languages can be encoded
using an 8-bit system. Using a 16-bit encoding scheme
uses twice the storage capacity and incurs twice the
transmission delay. Although compressing Unicode-
encoded files or strings would alleviate this problem,
it would have a substantial overhead if done fre-
quently and is thus impractical.

Language orientation. To ensure simple character
representation, the Unicode standard is not (and was
not) intended to be language-oriented. No informa-
tion about the language that is being used in a par-
ticular piece of text is encoded in a Unicode file.

This can be a problem because in many cases, the
same letter exists in different languages. For example,
the Latin letter “a” (Unicode 0041) exists in English,
Spanish, and French. The Arabic letter “alef”
(Unicode 0627) exists in Arabic, Farsi, and Urdu. The
same is true for the Chinese letter “zi,”” Japanese let-
ter “ji,” and Korean letter “ja.” The same character
code (Unicode 5B57) represents these letters.

Different languages use letters or symbols in differ-
ent ways, and this affects multilingual text process-
ing. You need to know which languages are being used
to perform many kinds of character data processing,
such as searching, sorting, spell checking, and gram-
mar checking. However, Unicode encoding does not
tell you which languages are being used in text files.

A programmer might be able to determine the lan-
guage of a Unicode text heuristically, based on its con-
tent. However, this requires additional work, and the
accuracy of such an effort depends on the effective-
ness of the heuristic used.

Encoding. The unification principle necessary to
Unicode results in a poor encoding of character
blocks. For example, the Latin 1 supplement (0080-
00FF) mixes over a dozen major European languages.
Similarly, the Arabic character block (0600-06FF)
encodes characters for Arabic, Persian, Urdu, Pashto,
Sindhi, and Kurdish. The same can be said about the
unified Chinese, Japanese, and Korean (CJK) ideo-
graphs. This causes difficulties in designing applica-
tions for a single language, such as those for natural
language processing. It is much easier to design such
applications if the characters in the underlying block
are restricted to one language. This argues for an
encoding system that uses separate character blocks
for different languages.

Compatibility with ASCII. Unicode is not truly com-
patible with ASCII. Unicode files are sequences of 16-
bit characters, while ASCII files are sequences of 8-bit
characters. Unicode’s encoding scheme does not rec-
ognize ASCII files and requires that you convert them
to Unicode format by adding a null byte to the begin-
ning of each ASCII code.

Although conversion from ASCII to Unicode is

straightforward, to exchange plain Unicode files over
the Internet, you would have to use universal charac-
ter transformation formats (UTF-7 and UTF-8) with
each file.3# It is not clear whether systems that adopt
the Unicode standard should convert all ASCI] files to
Unicode and convert their low-level 1/O routines so
they can handle Unicode’s 16-bit characters.

MULTICODE

In response to the recognized shortcomings of
Unicode, | developed Multicode in early 1996.

Multicode’s most important feature is its use of mul-
tiple character sets. Multicode is not an extension to
ASCII but rather a collection of character sets. Most
character sets are designed for specific languages, but
a few can be designed to be language-independent,
representing arrows, mathematical symbols, and so
on. Thus, unlike Unicode, Multicode is language-ori-
ented. Each character set is designed to be self-suffi-
cient and, like ASCII, includes all necessary control
characters, punctuation, and special symbols.

Character sets

Instead of unifying all languages into a 16-bit char-
acter set, Multicode defines 8-bit character sets for
most languages and 16-bit character sets for some oth-
ers, such as Chinese, Japanese, and Korean. There can
be a total of 256 character sets, enough to represent
all the world’s official written languages. (There are
about 185 independent countries, and some share the
same written language.) Each character set has a
unique code; the default set, ASCII, has code 0.

A considerable overlap may exist between two char-
acter sets, but each set will have some unique charac-
ters and symbols and a unique ordering of characters.
For example, Latin languages share many common
letters, but each has some unique letters and a unique
ordering. The same can be said of Arabic, Farsi, and
Urdu, and about East Asian languages. It is also pos-
sible to use more than one character set for a language,
in cases where a different version of the same language
is used in different countries or regions.

Multicode attempts to define a unique character set
for each written language, rather than unifying char-
acters across languages as Unicode does. It is also pos-
sible to incorporate more than one character set
standard in a given language, in case different coun-
tries or regions use these sets.

Switching between character sets

Multicode provides a simple and uniform technique
for switching between character sets, which is essen-
tial for handling text in multiple languages. A switch
character triggers switching.

For 8-bit character sets, Multicode reserves the last
character (code FF) as the switch character. To switch

You need to
know which
languages
are being
used to
perform
many kinds
of character
data
processing,
such as
searching,
sorting,
spell
checking,
and grammar
checking.

April 1997

File 1

FF

30

5E

37

20

A7

64

5B

3

Switch to
Arabic

8-bit
Arabic
chars

File 2 File 3
4A FF Switch to
3B 8-bit E1 Japanese
ASCII
. chars 02
* 5D 16-bit
Japanese
FF | | switch to 12 chars
o1 French FE
65 FF Switch to
7C 8-bit 00 ASCII
French
. chars 41 8-bit
. 72 ASCII
chars

Figure 2. Switching between character sets in Multicode. File 1 is an Arabic text file. To
start in Arabic, a switch character (FF) is followed by the code of the Arabic character set
(suggested code 30). File 2 mixes ASCIl and French characters. Since this file does not
start with a switch character, the character set code defaults to 00 (the code for ASCII),

an 8-bit character set. Following the ASCII characters is a switch (FF) to French
(suggested code 01), another 8-bit character set. File 3 mixes Japanese and ASCII char-
acters. It starts with a switch (FF) to Japanese (suggested code E1), continues with 16-bit
Japanese characters, switches to ASCII (FF00), and finishes with 8-bit ASCII characters.

from one 8-bit character set to another 8- or 16-bit
set, you would use the switch character and then a sec-
ond byte, which designates the second character set’s
code. For example, if you want to switch from French
(suggested code 01) to Hindi (code 50) you would use
character FF and then 50.

For 16-bit character sets, Multicode reserves the last
256 characters (codes FFOO to FFFF) as switch char-
acters. The first byte of the 2-byte switch character is
always FF, while the second byte designates the code
of the new character set. Figure 2 shows how to switch
between character sets in Multicode. In Files 1 and 2,
the switches from the 8-bit character sets were accom-
plished with two 8-bit characters. In File 3, the switch
from 16-bit Japanese was accomplished with one 16-
bit character.

Addressing Unicode’s drawbacks

Multicode is designed to overcome Unicode’s major
drawbacks.

Efficiency. Because Multicode uses 8-bit and 16-bit
character sets, it can use 8-bit characters for 8-bit doc-
uments. It will thus use only half the storage capac-
ity handling such documents that the 16-bit Unicode
system would use.

Computer

Language orientation. Multicode is designed to be
language-oriented. Each character set is designed for
a particular language and includes all the necessary
control characters and special symbols. Control char-
acters are similar to those used in ASCII, which elimi-
nates the need to switch character sets for control. For
example, Multicode incorporates the newline charac-
ter—a control character at the end of each line in an
ASCII file—in the character sets of other languages.

Unlike Unicode, Multicode provides language infor-
mation directly via the switch characters in Multicode
text. This information can be important to language-
dependent applications.

Meanwhile, because character sets are language-
oriented and small, character and string operations
are well-defined and can be implemented easily.

Compatibility with ASCII. Multicode recognizes and
is truly compatible with ASCII. You do not even have
to use a switch character to begin an ASCII file, since
ASCII’s character set code (00) is Multicode’s default
code.

Multicode also recognizes and accommodates the
Unicode standard by reserving its last 16-bit charac-
ter set (FF) for Unicode. In Multicode, you begin a
plain Unicode file with the “switch to Unicode” char-
acter (FFFF).

Scripting systems

In Multicode, various languages or character sets
can share acommon scripting system. A scripting sys-
tem designates the rules for rendering characters,
including their display, order, and format.® Scripting
systems differ due to the direction in which the text is
written (English is written left-to-right; Arabic, right-
to-left), alignment, character representation, and
whether a character changes its form depending on its
position relative to other characters. One scripting sys-
tem can serve several languages. For example, the
Roman scripting system can serve ASCII, French,
German, and other character sets.

A scripting system is responsible for interpreting a
character sequence and handling font files. Characters
and glyphs can have one-to-one, one-to-many, or
many-to-one relationships. The Roman scripting sys-
tem is relatively simple because character codes have
a one-to-one mapping with glyph codes (used to access
a glyph in a font file). The Arabic scripting system is
complex because it uses all three relationships. For
example, an Arabic letter can change its form accord-
ing to its relative position within a word; such a letter
requires a one-to-many mapping. Ligatures, which
combine two or more characters into a single glyph,
require a many-to-one mapping.

Two characters in different character sets may share
the same form (or glyph) but have different codes. For
example, the French ““a” may be designed to have a dif-

8-bit chars

Multicode

text
—_—

Multicode

text 8-bit chars

Roman Glyphs

scripting system

Fonts I

manager

16-bit chars

Pixels

Glyphs

Arabic
scripting system

Drawing manager

Japanese Glyphs

scripting system

Y

Figure 3. Handling Multicode text. Multicode text is initially received by the Multicode text manager, which directs the text to
the scripting system for the language in use. The scripting system converts the character code sequence into a glyph sequence.
It then obtains the glyphs from a font file and sends them to the drawing manager for rendering.

ferent character code than the ASCII “a.”” To render
text and handle fonts properly, | suggest the following
two alternatives for designing a scripting system.

Fonts corresponding to character sets. A font file
could correspond to a unique character set. You
would thus have different font files for the ASCII and
French character sets. Glyph codes would then have
to correspond directly to character codes. Thus, if the
character code for the French “a” is different than
that of the ASCII “a,” the glyph codes should also be
different. When switching character sets, the scripting
system would have to switch font files as well.

A one-to-one relationship between a font file and
character set simplifies the scripting system imple-
mentation. It also keeps font files small because they
need not include glyphs for characters that are not
part of a particular language’s character set. However,
this approach requires a large number of overlapping
font files, particularly for scripting systems that sup-
port multiple languages.

Unified fonts. This approach unifies all character
sets supported by a scripting system into a character
table with no duplicate characters. (The unified char-
acter table would be part of the scripting system, so
it would not be a concern to application program-
mers.) Thus, the Latin “a” would represent the ASCII
““a,” the Spanish “a,” the French “a,”” and so on. You
would define a mapping function for each character
set supported by a scripting system. This would map

acharacter in a language onto its corresponding uni-
fied character. In this case, glyph codes would have
to correspond directly to unified characters. Hence,
all character sets supported by a scripting system
could use the same font file.

This approach would decrease the number of font
files. However, each font file would be larger, and a
scripting system would have to define mapping func-
tions for each language’s character set. This would
create a smaller overhead than the previous approach.

Implementing Multicode

Implementing Multicode is modular and incre-
mental. A Multicode-based system need not support
all scripting systems simultaneously. Some scripting
systems could be added as system extensions imple-
mented in a shared library.

Figure 3 illustrates how a windowing system can
handle Multicode text. The Multicode text manager
manages all the scripting systems supported by or
added to the windowing system. It interprets Multi-
code text by directing characters to the appropriate
scripting system for the language in use. The scripting
system converts character codes into glyph codes. In
some cases, it may combine several characters into a
single glyph code or assign a character a different glyph
code based on context. It then obtains the appropriate
glyph from a font file and sends the glyph to the draw-
ing manager for rendering.

April 1997

Both
approaches
can coexist—
Multicode for
programming
ease and
Unicode

to support
unified fonts.

When the Multicode text manager does not support
a language’s scripting system, the characters still will
not be misinterpreted. When text cannot be rendered
or displayed, the Multicode text manager can display
a special glyph for every character that cannot be ren-
dered or can display nothing but reports this situation
to the user.

PROGRAMMING ISSUES

Because all Unicode characters have a uniform 16-
bit width, they can be represented in a programming
language by a single character type. In fact, the
Unicode standard suggests the type unichar to rep-
resent Unicode characters. We can define unichar as
unsigned shortoraswchar_tinCorC++. The
Java programming language® defines a 16-bit char
type to represent Unicode characters.

Because of this uniformity, it seems that program-
ming with Unicode should be simpler than pro-
gramming with Multicode. If displaying characters is
the only operation performed on characters, it would
indeed be simpler to use a single character type, an
advantage in using Unicode. However, it is very diffi-
cult to use Unicode for many other types of string
operations.

Disadvantages of Unicode

Any programming language’s character type is an
abstract data type—it represents a set of values and a
set of operations on these values. To work consistently,
the set of operations would have to be meaningful and
uniform across all values of an abstract data type. This
would be the case when a character type represents
only one language, as is the case with ASCII. However,
this would not be the case with Unicode because
Unicode’s character type is meant to represent many
languages, and character and string operations are not
meaningful and uniform across languages. Some char-
acter and string operations apply to one language but
are meaningless to others. Some character and string
operations behave differently across languages.

For example, the use of upper or lower case is mean-
ingful in languages that use the Latin alphabet but not
in many other languages. Similarly, changing the dia-
critical marks of letters is meaningful to Arabic but
not to ASCII. Meanwhile, some languages that use a
similar alphabet order the letters differently. In
Unicode, the Arabic letter “ha’ (Unicode 0647) comes
before the Arabic letter “waw’ (Unicode 0648), which
is correct in Arabic but not Farsi. Similarly, Swedish
treats “a” (letter ““a” with a dieresis, Unicode 00E4)
as an individual letter, placing it after “z” in the alpha-
bet. However, German places it either like “ae” or
after ““a.” Unicode string processing cannot handle
these problems without information about the lan-
guage in use.

Computer

Programming with Multicode

In Multicode, programs define a string of charac-
ters for each character set. This makes sense because
character and string operations are language-specific
and vary from one character set to another. Thus,
instead of having one char (or unichar) type in a
programming language, we would define a family of
character types, calling them ascii, french, ara-
bic, chinese, and so on. These character types need
not be built in or predefined by the programming lan-
guage. Instead, we can define them in a standard
library that supports the programming language.

Strings are arrays of either 8- or 16-bit characters;
we cannot mix the two. Because a program defines a
string over exactly one character set, a string should
not contain a switch character. Data types interpret
such characters as invalid values. Thus, it is not pos-
sible to mix characters of two data types in one string
in a programming language.

Character and string operations. Defining a charac-
ter data type for exactly one character set simplifies
the implementation of these operations. Each char-
acter type defines a set of operations meaningful to
the corresponding language. We can also define some
operations for more than one character type. These
operations are overloaded and may behave differently
for different character types. It is also possible to
design an algorithm for use by several data types. For
example, a string comparison algorithm designed for
the ascii character type should also work without
modification for the £rench character type, provided
the French character set is properly ordered.

Writing to a file. Writing a character or a string to
an output file is straightforward. The programming
language 1/O library introduces a switch character
every time the system encounters a character or string
that belongs to a new character set. Clearly, the write
procedure should be overloaded to handle many char-
acter types.

Reading from a file. Reading characters from a file
occurs at two levels. At the lowest level, an operating
system treats a Multicode file as a sequence of bytes,
and a read system call specifies the number of bytes
to be read. The operating system associates no mean-
ing to these bytes.

The programming-language level uses a read pro-
cedure to read characters. The read procedure is over-
loaded to handle characters of different types. The
type of the actual character parameter should match
the character set code of the read characters.
Otherwise, no character is read. The program con-
tinues reading until it encounters a switch character,
but does not read the switch character.

When this happens, the program determines the
character set code of the characters that follow. A
charset function performs this task, returning the

character set code of the next character to be read. If
the next character is a switch character, charset
skips that character and returns a new character set
code. Otherwise, it returns the current code without
changing the file position.

backs and should have considerable appeal to

programmers who work with text in a variety
of languages. Its future, however, depends on the
computer industry’s acceptance. Multicode can rep-
resent Unicode files because it reserves a character set
for Unicode. Converting Multicode to Unicode is also
straightforward (although the opposite is not).
Thus, both approaches can coexist—Multicode for
programming ease and Unicode to support unified
fonts. [J

IVI ulticode addresses many of Unicode’s draw-

References

1. ANSI X3.4: Coded Character Set—7-Bit American
National Standard Code for Information Interchange,
Am. Nat’l Standards Inst., New York, 1986.

2. 1SO 8859: Information Processing—8-Bit Single-Byte-
Coded Graphic Character Sets, Int’l Organization for
Standardization, Geneva, 1987.

3. Unicode Consortium, The Unicode Standard, Version
2.0, Addison-Wesley, Reading, Mass., 1996.

4. Unicode Consortium home page, http://www.uni-
code.org.

5. D. Flanagan, Java in a Nutshell, O’Reilly & Associates,
Sebastopol, Calif., 1996.

6. Apple Computer, Inside Macintosh: Text, Addison-
Wesley, Reading, Mass., 1993.

Muhammad F. Mudawwar is an assistant professor
in the Computer Science Department at the American
University in Cairo. His research interests include par-
allel programming language design and implementa-
tion, multilingual systems, and shared memory
multiprocessors. Mudawwar received a BS in electri-
cal engineering from the American University, Beirut,
Lebanon, and an MS and a PhD in computer engi-
neering from Syracuse University. He is a member of
the IEEE and the ACM.

Contact Mudawwar at mudawwar@acs.auc.eun.eg.

How to Reach Computer

Writers

We welcome submissions. For detailed information,
write for a Contributors’ Guide (computer
@computer.org) or visit our Web site:
http://computer.org/pubs/computer/computer.htm.

Letters to the Editor
Please provide an e-mail address or daytime phone
with your letter.
Computer Letters
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
fax (714) 821-4010
computer@computer.org

On the Web

Visit our Web site at http://computer.org for
information about joining and getting involved
with the Computer Society and Computer.

Magazine Change of Address

Send change-of-address requests for magazine
subscriptions to address.change@ieee.org.
Make sure to specify Computer.

Membership Change of Address
Send change-of-address requests for the membership
directory to directory.updates@computer.org.

Missing or Damaged Copies
If you are missing an issue or received a damaged copy,
contact membership@computer.org.

Reprints

We sell reprints of articles. For price information or to
order, send a query to computer@computer.org or a fax
to (714) 821-4010.

Reprint Permission

To obtain permission to reprint an article, contact
William Hagen, IEEE Copyrights and Trademarks
Manager, at whagen@ieee.org.

COMPUTER

Innovative technology for computer professionals

April 1997

