MII—P S

TECHNOLOGIES

MIPS32® Architecture For Programmers
Volumelll: The MIPS32® Privileged Resource
Architecture

Document Number: M D0O0090
Revision 2.50
July 1, 2005

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2001-2003,2005 M1 PS Technologies Inc. All rights reserved.

Copyright © 2001-2003,2005 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies'). Any copying,
reproducing, modifying or use of thisinformation (in wholeor in part) that isnot expressly permitted in writing by MIPS Technologies
or an authorized third party isstrictly prohibited. At aminimum, thisinformation is protected under unfair competition and copyright
laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in amodifiable form such asin FrameMaker or Microsoft Word format) is subject to
use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO
CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN
SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogiesreservesthe right to change the information contained in this document to improve function, design or otherwise.
MIPS Technologies does not assume any liability arising out of the application or use of thisinformation, or of any error or omission
in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied
warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license
agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give recipient any license
to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements
thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document, the
laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial
computer software documentation or other commercial items. If the user of thisinformation, or any related documentation of any
kind, including related technical data or manuals, is an agency, department, or other entity of the United States government
("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of thisinformation, or any related
documentation of any kind, isrestricted in accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense
Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of thisinformation by the Government isfurther
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this
information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS I, MIPSIII, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim,
MIPSpro, MIPS Technologies logo, MIPS RISC CERTIFIED POWER logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS,
4K Sc, 4KSd, M4K, 5K, 5K c, 5Kf, 20K c, 24K, 24K c, 24Kf, 24KE, 24K Ec, 24K Ef, 25K, 34K, R3000, R4000, R5000, ASMACRO,
Atlas, "At the core of the user experience.", BusBridge, CorExtend, CoreFPGA, CorelV, EC, FastMIPS, JALGO, Malta, MDMX,
MGB, PDtrace, the Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it, and YAMON are trademarks or
registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.14, Built with tags: 2B ARCH MIPS32

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1 ADOUL THIS BOOKccuiiiiiieieeeeet ettt ettt h et h e b e bt s b e e b e be s e e se et e e e e e e eneeneeaeenenbenaeebea 1
1.1 TypographiCal CONVENTIONSc.ciiitiriereeieieieeeet ettt se bt se e se e st s ae e st ebesbe s bt sbeebeseese e s e s e e et eneeseeaesbenaas 1
LA T THAHC TEXE oottt b etk h e b bt s e b bt e bbbt s e se s E ke bt e b bt s b b e b e e e b 1

I 2 = o o B I = ST Sr O SOE TSP UE TSP UTPTSTPUPTRTR 1

R X O TH 1= = SO RRSURURURUR 1

1.2 UNPREDICTABLE @nd UNDEFINEDccooiiieiiiiiiieiieiriseteeses ettt 2
L2 1 UNPREDICTABLE ..ottt ettt bbbt st b bt s bbbt 2
L22UNDEFRINED ..ottt b et b bbbt b bbb bt s bbbt e e 2
L2.BUNSTABLE ..ottt bbbt b et b bt e bbbt e bt e bbbt e 2

1.3 Special Symbolsin PSeUdOCOOE NOLEEIONcccoiiiiiiiieie ettt et sae e 3

1.4 FOr MOFE INFOMMEBLION ...ttt ettt et b e et ae e a e h e e bt e be bt sb e b e b e se e e e s e e et ebeeaeeaesbenras 5
Chapter 2 The MIPS32 Privileged ResoUrce ArChItECIUIEc.oiieirieirieirieerieest et 7
2280 I 1 1o o [UTox £ o) o SRR 7

2.2 The MIPS COProCESSOr MOGELoiuiiiiiiitiiriti ettt b et bbbt b e b e e nn e 7
2.2.1 CPO - THE SyStEM COPIOCESSON ...c.veuerreuesteeeresestesesseseesesseseseesessestssesessesesseneasesesseseaseseesessesessesessesessesessesessens 7

2.2.2 CPO REJISIEIS ..ttt b et b e e b e e b e s e b e se bt e Rt e b e Rt e h et e b et e R et e b e e e b e e e b e e e b et e b e st bt et ne e nennne 7

Chapter 3MIPS32 OPErating MOUESc.eeoveieireeeste s st s se st se e e e e e esesse s e ssesressesrestesteseessenteneeseeneesenneeseesensesnnssens 9
G300 I B 1= o 11 o 1Y/ oo = 9

K2 = 101 1Y o (= OSSP 9

BTG S U o= V7o 1Y/ oo L 9

I U S < Y oo [T 10

SN @ 1 pT= Y/ oo (=SSP 10
3.5.1 64-hit Floating Point OperatioNS ENADIEcccviiviieiesecceeeeeeee e 10
3.5.264-bit FPR ENADIEcocviiiiiic s 10

3.5.3 Coprocessor 0 ENADIE ... e 10

Chapter 4 VIrTUBl IMEBITIONY ...ttt et sttt h e e b e ae e he e b e eb e e bt e b e b e sbe se et e b e ne et e ne e e e e eneenenae e 11
4.1 Support in Release 1 and Release 2 of the ArChiteCIUIEooiieiiieiieeeee e 11
O B AT (U= 1Y = 0T O 11

N = 1 0211 oo Y 11
.21 AQUIESS SPACE ..ottt ettt h bbbt bt bt se e b e £ e se e e e R e e e e Re e R e eR e Rt bt eh e b e R e b et et et e st e e e enenas 11

4.2.2 Segment and SEJMENE SIZEvecveeiiiieie ettt e e ae et e saeesaeeeesaeesesaeetesaeentesreentenneenes 11

4.2.3 Physical AdAress SIZe (PABITS) ..ottt 11
A.3ViIrtUAl AQOrESS SPACES ...c.veieieiieieereete ettt b e bttt bt e et e b e e e e et e s e e st e aeeh e e b e sheeheeb e s bese et e bese e e e s et e e eneeneeneene 12

N o 0T o] I F=T g Tos OSSR 14

4.5 Access Control as a Function of Address and Operating MOcceciiiiiirinienene e 14

4.6 Address Trandlation and Cache Coherency Attributes for the kseg0 and ksegl Segmentsccccveeveeecivcenee. 15

4.7 Address Trandation for the kuseg Segment when StAIUSERL = 1ccooovieiiiicii et 16

4.8 Special Behavior for the kseg3 Segment when DebUgDM = 1 ..o 16

4.9 TLB-Based Virtual AddresS TranSlalionccccoceoiieiirinene ettt sresb e st be e e e e ene e 16
4.9.1 Address Space 1dentifierS (ASID) ..o ettt b e bbb e et n s 16

4.9.2 TLB OFQaniZBLIONcceeiueiieeiestiesieeteete et esteeseesteaeesteetesaeetessaestesseesseaseasseaasesseesesaeensesaeensesseentessennsensennes 17
4.9.3TLB INITBIIZAION .e.vcviiiieccee bbbttt b e e bt e b bt 17

4.9.4 AAAreSS TraNSIBHION ...ccueiuiiiiiieiee ettt ettt ettt e e e bt se e et e e b e e bt e Rt e bt ebe s b e sb et e b e se e e ene et eneenennas 19

Chapter 5 INterruptS N EXCEPLIONSc.iiiiirieierietirieie ettt sttt ettt et e bt s bt b e st sb et sbe st s b ene e b e e ebeseebeseebeseenesea 23
LI TNEEITUPDES .ottt et r R b e R RS e e e e e e e e e s e e ae e R e e R e e R e e R e R e Rt s R e e e e e e e e e aeerenns 23
B5.LLINEITUPE IMOOESeeieeiiieieitiest ettt s bbbt b e b e e e et bbbt bt b 24

5.1.2 Generation of Exception Vector Offsets for Vectored INTErTUPLScccoveereierieienenneieeeese e 31

B2 EXCEDIIONS .ottt ettt ettt bbb e b e b ek E k£ R R e R AR AR e bR R R R bR Rt e Rt Rt e e nn s 33

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

5.2.1 EXCEPLION VECLOr LOCAIIONScoueiuiruiiuiitirieriisteste sttt sttt et sae b bt e b b e et et e e e e e e e et eneebennas 33

5.2.2 General EXCEPLION PrOCESSING ccertrirterieriistestestestestesaeseeseeee e s e esesse s e saesbesaesaesbesbeseessebesseneeneeseeneenessenss 35
5.2.3 EJTAG DEDUQY EXCEDIION ...ttt ettt s be bbb bbb et et e e e e e se et ne b nnas 37
5.2, 4 RESEL EXCEPLION ...ttt ettt sttt h e bt a e e bt e b e bt s et e b e s b se et et e e e e et e st et eneebenns 37
5.2.5 SOt RESEL EXCEPLION ...ttt ettt b e bbbt b bbb et et e e e e se et e e b e enas 39
5.2.6 Non Maskable Interrupt (NMI) EXCEPLION ..o.oiuiieiiiiieeeeeee ettt et 40
5.2.7 Maching CheCk EXCEPLION ..ottt bbb ettt b s 40
5.2.8 AAAress Error EXCEPLIONoooiiiiiiiiieiene ettt s b et s b e b bbbt e e et ebennas 41
5,29 TLB REFIT EXCEPLION ...ttt bbbt et b et bbbt e et se et et ebennas 41
5,210 TLB INVAIIA EXCEPLION ...ttt sttt bbbt e bbbttt e et e et ebennas 42
5.2.11 TLB MOIfi€d EXCEPLIONcoeiiiiiiriiteiteite sttt s b e s b e b bbb e et ebe e 42
5.2.12 CaChe ErrOr EXCEPLIONoiiiiiiieiieeter ettt s b e b bbbt ebeenas 43
5.2.13 BUS EITOr EXCEPLION ..ottt ettt s h e bbb bbbt e bt et e et e e ne b enas 44
5.2.14 Integer OVErfloW EXCEPLIONcoiiiiiiiieiiiine ettt bbb et be s 44
B.2.15 TP EXCEPIION ..ttt sttt ettt h e b s a e e bt b e bt s b e e b e s b se et et e e et et ene et eneebeenas 44
5.2.16 System Call EXCEPLIONoiiieiiieeieetere sttt ettt s b bt e bbbttt e e ne e e e e neebennas 44
5.2.17 Breakpoint EXCEPLIONooiiiiiiririeieeiesie sttt st e ettt be b bt s e e b e b e et et et e e e e e e et eneebeenas 45
5.2.18 Reserved INSIrUCtION EXCEPLION ccoiiiiiiiirie ettt s sttt be s 45
5.2.19 Coprocessor UNUSADIE EXCEPLIONcoiiiiiitirierieseie ettt st ne s 46
5.2.20 Floating POINt EXCEPLION ..ottt st bbbt ebe e 46
5.2.21 COPIrOCESSOr 2 EXCEPIION ...ttt sttt sttt sttt h e be b bt s b e b e b e et et e e e e e e e e et eneebeenas 46
5.2.22 WEICH EXCEPLION ...ttt ettt b e bbb bt b e s et et e e et e e et ene b e nnas 47
5.2.23 INLEITUPE EXCEIDLION ...ttt sttt ettt e b e b bt s b e e b e s b e et et et e e e e e ne et eneebeens 47
Chapter 6 GPR ShadOW REJISIENScoeetiiiterieteriete sttt sttt sttt sttt se st b e st et se b e se bt ssebessesesbe st sbeseebeneabe e ebeneebeseebesenbesea 49
6.1 INtrodUCtion tO SNAOOW SELSuiiiiiieieeieeeee ettt et ettt ae bbbt b e besee st e et e e e e eneeneeneenennes 49
6.2 SUPPOIT INSITUCLIONS ...ttt ettt b b e bt e b s s e s s et h e b £ s e bt e e bt e eb e e bt s b e st e ebe b e ne b ene e s 50
(O 7= 010 QA O o 0 == 10 51
48 N gL T [Tex oo SRR 51
A Y] 1= 4 (S 51
T2 L EXECULION HAZAITS ...cvcuieiiiiiiisiiietee ettt bttt bbbt 51
7.2.2 INSHIUCHION HAZAIAS ..ottt ettt bbb 52
7.3 Hazard Clearing INStructionS @nd EVENES ccvoiiiiecece ettt st e enenns 53
4 50 1 ' (0 o o g T oo [T R 54
Chapter 8 COProCESSOr O REJISIEISoeiieiiieiirire ettt sttt ettt e et et s e st e st e aeeb e s bt sbe e b e s besbese e be b e ne e e ens e e eneeneenenaeene 55
8.1 Coprocessor O REJISLEN SUMIMEAYc.iieiieieieieieeeete et sttt st s ss e aese e e ae st b e s besaeebesbesbesb e bense e e e eneeneeneenennes 55
LS [- (o OSSPSR 59
B.3WHILING CPU REJISIEIS ...cuviciiieeie ettt sttt et e e te et e s aeesae s e e steeaaesteesaesbeenteateenseeseentesseensesneessesnnesrenneens 60
8.4 Index Register (CPO Register 0, SEIECE 0)eoiviiieiiiceseee ettt sttt e e b sreenaesaeesresnaesrennnens 61
8.5 Random Register (CPO Register 1, SEIECt 0) ...vviiiiiiciececc ettt s esae e s re e sre e 62
8.6 EntryL 00, EntryLol (CPO Registers 2 and 3, SEl€Ct 0)oceeiiiieie ettt 63
8.7 Context Register (CPO Register 4, SEIECE Q)ociiiiieiicicicseese ettt et s esae e e sresnaesreenne 67
8.8 PageMask Register (CPO RegISter 5, SEIECE 0)voiviiiicicieceesie et ettt et s esae e snesnaesre e 68
8.9 PageGrain Register (CPO RegISter 5, SEIECE 1) ...uviiiiciecieeceee ettt s enee 70
8.10 Wired Register (CPO Register 6, SEIECt 0)vecieiiicieciee ettt sttt s ae e ae e e sresnaesneennen 72
8.11 HWRENa Register (CPO Register 7, SEIECt 0) ...oocvieeeceeeceee ettt te sttt e e e e e sre e 73
8.12 BadVAddr Register (CPO Register 8, SEIECE 0) ..ovveiiieeieceesie et te sttt e e s e e sre e sre e 74
8.13 Count Register (CPO RegiSter 9, SEIECE 0) ...oviiiiiicececeeeere ettt et s aeesae e e sresnaesreeneens 75
8.14 Reserved for Implementations (CPO Register 9, SElectS6 and 7) ..oeovveeeeeieecenee e 75
8.15 EntryHi Register (CPO Register 10, SEIECt 0) ...uvvivieiiciceceee ettt sttt sre e 76
8.16 Compare Register (CPO Register 11, SEECE 0)coereriririerie ettt e 78
8.17 Reserved for Implementations (CPO Register 11, SEleCtS 6 aNd 7) oceoeeeeeeirereresere e 78
8.18 Status Register (CP RegiSter 12, SAIECE 0)ccvvvvveveriririeieieierisieiereres ettt sn b 79
8.19 IntCtl Register (CPO REQISLEr 12, SEIECE 1) ..o.oiviveeeiririeieeirir ettt 86
ii MIPS32® Architecture For Programmers Volume Ill, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.20 SRSCHl ReGiSter (CPO REGISIET 12, SHIECE 2) vvvvvveeeeerrerreseeeesseeeeeesessssssessesssesesesesssssssssssseseesesssssssesssessesesee 88

8.21 SRSMap Register (CPO RegiSter 12, SEIECE 3) ...oviiieiieeiereeerec e senes 91
8.22 Cause Register (CPO Register 13, SElECE 0)ociiiiiciecieie ettt ettt s ae e ae e e sresnaesneeneen 92
8.23 Exception Program Counter (CPO Register 14, SElECt 0)ooiiiiiiiiieeeeeeeeeeer e 97
8.23.1 Special Handling of the EPC Register in Processors That Implement the MIPS16e ASEcc........ 97
8.24 Processor Identification (CPO Register 15, SElECt 0)ccviieiiiiece ettt s s enne 98
8.25 EBase Register (CPO RegISter 15, SEIECL 1) ..oooiiiiiciececcceee ettt sttt s esne e s nesnaesneeneen 99
8.26 Configuration Register (CPO Register 16, SEIECt 0)vovveeieeieii et 101
8.27 Configuration Register 1 (CPO Register 16, SEIECt 1) ..ocvvevveiei et 103
8.28 Configuration Register 2 (CPO Register 16, SEIECt 2) ..o.vveiiciee et 107
8.29 Configuration Register 3 (CPO Register 16, SEIECt 3) ..ovvviiiiee e 110
8.30 Reserved for Implementations (CPO Register 16, SEleCtS 6 aNd 7) occooveeeeeerireneneee e 112
8.31 Load Linked Address (CPO Register 17, SEIECt 0) ...ocviveeiiceee ettt 113
8.32 WatchL o Register (CPO REJISIEN 18)oiiiieiieiie ettt ettt et s te s re e tesre e e sraenteeneenseeneennas 114
8.33 WatchHi Register (CPO REQISIEN 1) ...c.ciuiiiieiiieieieieete sttt st ste et sbe et sesbe s beseebesesbeseeseseesesenseneas 116
8.34 Reserved for Implementations (CPO Register 22, all SEleCt VAIUES) ... 118
8.35 Debug Register (CPO REJISLEN 23)cuceiieiiieieieisteseeteseste st s e sae e sae s tesesbe e besesbeseebeseetesesbeseeseseesesseseneas 119
8.36 DEPC RegiSter (CPO REQISIEN 2)ovcuiiieeeiieiieieieteseete sttt seetesae e sae s see s tesesbe e sbeseebeseebeseebesesbeseeseseesesseseneas 120
8.36.1 Special Handling of the DEPC Register in Processors That Implement the MIPS16e ASE 120
8.37 Performance Counter Register (CPO REJISIEN 25)ocviivieeeiee ettt 121
8.38 ErrCtl Register (CPO Register 26, SEIECE 0)ovveeiieiiee ettt st n e ene e 124
8.39 CacheErr Register (CPO Register 27, SEIECt 0) ..ooviivieieeice ettt ene e 125
8.40 TagL 0 Register (CPO Register 28, SEIECE 0, 2) ...ocviiieeiiieeierieie ettt ettt st et seeseseeseneas 126
8.41 Datal o Register (CPO Register 28, SEIECE 1, 3) .ovviiieiieeriee ettt st st st ne e s e 127
8.42 TagHi Register (CPO Register 29, SEIECL 0, 2) ...oovviiieiirieieriee ettt st st st st e esesaene e 128
8.43 DataHi Register (CPO Register 29, SEECE 1, 3) .ovviiieiieeveie ettt st st st st s neseene e 129
8.44 ErrorEPC (CPO Register 30, SEIECE 0)ooivieieiieiie ettt te s esr e e e s reebesneenesneeneas 130
8.44.1 Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16e ASE 130
8.45 DESAVE Register (CPO REGISIEN 31) ..ouiiviiiieieieieierietesesteseeteseeteseesesaeseseesestesestesestesestesesteseesesessesessesensessesensas 131
Appendix A Alternative MMU OFganiZaLIONScerveerieririeiirieierieesseessee st ss s ssese e e sssse s e s s ssesessessesenes 133
A.LFIXed MaPPING MIMU ...t bbb bbbt e bt e ettt b et et e e be b 133
A L1 FiXed AAAresSS TraNSGHONcceoeieeieeeeiee et sttt st e be s b sbesbeseese e s et e e e e eneenes 133
A.1.2 CacheaDility AIITDULESoouiieeieeeeeee ettt bbb 136
A.1.3 Changesto the CPO RegiSter INTEITACEccvieiieiiieiriereree et 137

F AN =1 Lo To: QAN (o | (== SR I = 141 = (o o SRS 137
A2 L BAT OFQANIZALIONcveueiteieteieeteseeteseetese ettt see st see sttt bt be st b e seebeseebeseebesa e bt s b e st sbe st sbe st s b e st ebe e sbeneebens 137
YN o (o | (=S N = 1015 = o PSS 138
A.2.3 Changes to the CPO RegiSter INEITACEci i 139
APPENAIX B REVISION HISLOMYviiviiiiiieiieiie i esiesieee ettt sttt st e e e e e eseeseeseeseesessesaestestesaeneanseneeneenenneeneans 141

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 4-1: Virtual AQArESS SPACEc.eeeeeeieeetieieet ettt sttt ettt ettt h e bbbt eb e s b se et e b e st e e e ne e st e aeebeebenaesaesbenbenes 12
Figure 4-2: References as a Function of Operating MOOEooiiiieriiieeiereee e e e 14
Figure 4-3: CoNtentS Of @TLB ENLIYocciiiiciicicse ettt sttt e este et e sreetesaeetesaeentesseenteeneenseennenseenns 17
Figure 5-1: Interrupt Generation for Vectored INterrupt MOTE. ..ot e 28
Figure 5-2: Interrupt Generation for External Interrupt Controller Interrupt Mode..........cocoveviiereniieicereeeee 30
Figure 8-1: INAeX REJISLEr FOMMIELccceiieiictiese et e e e st e et e sreetesaeetesaeentesseentessaensennnenreenns 61
Figure 8-2: Random REQISIEr FOMMEL...........ceoiiiiici ettt s r e e te s aeetesae e tesre e teesaeteennenreenns 62
Figure 8-3: EntryL o0, EntryLol Register Format in Release 1 of the Architecture............cccoco e 63
Figure 8-4: EntryL o0, EntryL ol Register Format in Release 2 of the Architecture............cccoco oo 64
Figure 8-5: CONteXt REGISLEr FOIMMEL.........c.eiieitieieeiieeeste e st see st e rte e e s e e e s et e eaeesteeaeesaeetesaeetesaeentesseentessaesennnenseenns 67
Figure 8-6: PageMask REQISLEr FOIMEL...........ccviieiiiieie et esee sttt e e st e e e e e st e e ae e sreetesaeestesaeetesseenteeneesennnenreenns 68
Figure 8-7: PageGrain REQISIEr FOMMELcciiieiiiiece ettt et reeste e e tesae e tesae et e enaebeennenreenns 70
Figure 8-8: Wired And Random ENtrieSIN TRE TLBociiii ettt sttt ne s 72
Figure 8-9: Wired REQISIEN FOIMELccciiiieiieiesie ettt sttt st e e e ae e s be e e e saeetesaeetesaeentesaaenseeseensennnenseenns 72
Figure 8-10: HWRENA REQISLEr FOMMIEL..........ccuiiieiiiiieiie ettt ettt este e sreestesaeesaesae e tessaenteeneeseennenseenns 73
Figure 8-11: BadV AdAr REQISIEr FOMMEL........ccueiieiie ettt sttt et e e et e s reetesaeestesse e tessaenteeseeteennenreenns 74
Figure 8-12: Count REQISIEr FOMMEL.........cceiieitieieiti et eee sttt sttt e e s e e s e e eae e te e e e saeesesaeetesseentesaeenteesaeseennenseenns 75
Figure 8-13: EntryHi REQISLEr FOIMMELcceeiieieiii ettt sttt e et e e e s te e e e saeetesaeetesaeestessaenseeseeteennenseenns 76
Figure 8-14: COMPAre REQISIEr FOMMEL..........cccoiiiiietirterie sttt sttt ettt eae b s bt bbb e et e b se e e e seese e e enesbesaesbesbenbenes 78
Figure 8-15: StatuS REQISIEr FOMMEL.........ccueiieiieieiti e eee sttt e e ae e be et e sreetesaeetesaeentesaeenteesaensennnenseenns 79
Figure 8-16: INtCtl REQISIEr FOMMEL.........ccuoiieiecieee et e st e s re e te s aeetesae e tessaenteeseenteennenseenns 86
Figure 8-17: SRSCt REQISIEN FOMMELecueeiieiieiti et cee sttt st e rte s e st e e eae e te e e e saeetesaeetesseestesseentessaentennnenseenns 88
Figure 8-18: SRSMaD REGISIEN FOIMMELc.oiiiiiiieeesere ettt st b et e st e et e et e bt s b e s aesbesbe b es 91
Figure 8-19: Calse REQISIEr FOMMEL.........cceiieitieieiti et eee sttt st et s et s et e e e s teeaeesaeetesaeetesaeetesseentessaeseenannseenns 92
Figure 8-20: EPC REQISIEr FOIMMELccceiieeiietieitecieste e ste e st e ste s e e e st e e s ae e beeaeesseeaeesaeesesaeentesseestesseensesseetennaenseenns 97
Figure 8-21: PRI REQISIEr FOMMIELccuiiieeieciicie ettt e e st e e e s reete s aeetesseetesraentesseensennnenreenns 98
Figure 8-22: EBaSe REJISIEN FOIMALcceiieitieieiti ettt sttt et e et e e e s e be et e saeetesaeetesaeentessaensesneenseennensennns 99
Figure 8-23: Config REJISLEr FOIMIELcoiiieiieieeie ettt e e st e e esbe e s e e be et e saeesesseesesneessesnnenrennnens 101
Figure 8-24: Configl REQISIEr FOMMELcceiieirieieeiecie ettt st e e s ea e te et esbe et e e se et e sreesesneesesneessesnnensennnens 103
Figure 8-25: Config2 REQISIEr FOMMELcceiieirieieeieee sttt e e s e et e st e e s e e se et e sreesesneesesaeessesnnensennnens 107
Figure 8-26: Config3 REQISIEr FOMMELcceiieirieiesieee sttt st e e e et esbe et e e be et e sreesesneensesneessesnnenrennnens 110
Figure 8-27: LLAAAr REQISIEr FOMMELcceiieitieieie ettt st te s s e e st ae e et e st e e s e e se e s e ereesesneesesaeessesnnensennnens 113
Figure 8-28: WatChL O REQISIEr FOMMELccviiiicieiece ettt ettt e reenesaeenesneesnesnnenrennnens 114
Figure 8-29: WalChHi REQISLEr FOIMIL...........cccueiiieiete ettt e et e st e e s be e s e eaeeeesneensesneessesnnessennnens 116
Figure 8-30: Performance Counter Control RegiSter FOrMEL...........ccooiiieeieiiesicie et ennens 121
Figure 8-31: Performance Counter Counter REQISLEr FOIMELcccoiviieieiieeserie ettt e e e e s e e 123
Figure 8-32: ErrOrEPC REQISIEN FOIMAL.........cccveiiieieeticte ettt este st ste s e s e s e st ae e et esbe e s e e seensesreesesaeensesseessesnnessennnens 130
Figure 8-33: Memory Mapping WHhen ERL = ..ottt st s st sbe e 135
Figure 8-34: Memory Mapping When ERL = L.........coi ettt s s b s 136
Figure 8-35: Config REGISLEr AUQITIONS.........cccuiiiieiiciece ettt be et e sreeeesneenaesaeesaesnnesrennnens 137
Figure 8-36: ContentS Of @BAT ENIYcc.ec ittt e e be et e ereeeesaeesesneessesnnenrennnens 138

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1-1: Symbols Used in Instruction Operation SEBEEMENTScccoererirereiene e r e s 3
Table 4-1: Virtual MemOry AQOrESS SPACEScciueiirtirie ettt ettt st sb et st se et besee e et e e e e e e eseeaeeaesbesbesaeebeneas 13
Table 4-2: Address Space Access as a Function of Operating MOGE............ccooiiriiiniiinene e 15
Table 4-3: Address Translation and Cache Coherency Attributes for the kseg0 and ksegl Segments..........ccoceveevennens 16
Table 4-4: PhySiCal AQAreSS GENEIGIONcc.cceeiieeieiti et ccee st eeee st e ste s este s e e s e e tesae e teeseestesasesseeneesaeeneesseensesseensesnnens 22
Tahle 5-1: INLEITUPL MOOES.......ceeeieeeieieee ettt sttt ettt b e bbbt b bt se e b e b e se e e e a e e e e e e st ebeeaeeaeebeebesaeeaeneas 24
Table 5-2: Request for Interrupt Servicein Interrupt Compatibility MOdecccoiiriiinini e 25
Table 5-3: Relative Interrupt Priority for Vectored INterrupt MOccoeiiiiiiieni i 27
Table 5-4: Exception Vector OffsetS for Vectored INTErTUPES.........cooviiririieeere e e 32
Table 5-5: Interrupt State Changes Made VisibDle Dy EHB ... 32
Table 5-6: EXCEPLion VECtOr BaSe AQUIESSES ..ottt h ettt bbb e et seea et aesbesbesae b e 34
Table 5-7: EXCEPLiON VECLOr OFfSELS......cc.iiiiiieiiterie sttt bbb e bbbt se bt e st e s sbesbesaeebeneas 34
Tabhle 5-8: EXCEPLION VECLOIS.......ueiuieiieieitieterit ettt sttt sttt ettt b e b he bt e b e bt se e b et se e e e a e et et eaeebeeaeeaeebesbenaeeaeneas 35
Table 5-9: Vaue Stored in EPC, ErrorEPC, or DEPC 0N @n EXCEPLION........cociiiiiiiri e 36
Table 6-1: Instructions SUPPOItiNG SNAOW SELSoouiriiieeeee e e b e sae e 50
Tabhle 7-1: EXECULION HAZAITScoueiiiieeteeteie ettt h et h e b b et e b e e e e s e e et e aeebe e bt ebesbesbesaeeaentas 51
Table 7-2: INSIIUCHON HAZAITSc.eeueieeieiteie ettt b e b e b b bbb se e e e e et e e e st ebe e st e bt sbesbesaeebeneas 53
Table 7-3: Hazard Clearing INSITUCHIONSccuiiieieiiesie ettt st e st te s e beese e beeaeesseenaesaeeneesaeensesaeensennnens 53
Table 8-1: Coprocessor O Registers in NUMEIiCal OFAENccooiieiiiieeeieeere et 55
Table 8-2: Read/Write Bit FIEld NOLEIIONc.oiiiiiiiie et bbb et a et sb b sae b e 59
Table 8-3: Index Register Field DESCITPLIONS........cii ittt sttt et e e e e et b e s b e s be e eae e 61
Table 8-4: Random Register Field DESCIPLIONSiitiieieerieeeee ettt sttt e be b b e b e 62
Table 8-5: EntryLo0, EntryL ol Register Field Descriptionsin Release 1 of the Architecture............cccoceeeveininccnene, 63
Table 8-6: EntryLo0, EntryL ol Register Field Descriptionsin Release 2 of the Architecture............cccoceeeeeininenene, 64
Table 8-7: EntryLo Field Widths as a FUNCtioN Of PABITS..........cci ittt st snnens 65
Table 8-8: Cache CONErenCy AITDULEScc.iiieieciee ettt et e e e et e e e e s te e e e sreenaesreeneesreentennnens 65
Table 8-9: Context Register Field DESCIIPLIONS..........ciiteriereeie ettt sttt et s e e e e e b eaesbesbe e b e 67
Table 8-10: PageMask Register Field DESCIIPLIONS..........ciiriiieieeeeeereee ettt sttt e sb e b e b e 68
Table 8-11: Values for the Mask and MaskX ! Fields of the PageMask REQISLEScccoivveeiieriecceee e e 68
Table 8-12: PageGrain Register Field DESCIPIIONS.c..oiieieieieeeeeee ettt sttt e sbe b sae b e 70
Table 8-13: Wired Register Field DESCIIPLIONS.ciiitiieieerieieee ettt bbb b sae b e 72
Table 8-14: HWRENa RegiSter Field DESCIIPLIONScoueiieieeieeereeee ettt sttt e sb b sae b e 73
Table 8-15: BadV Addr Register Field DESCIIPLIONScueiveiiiieieeeeeeeeee ettt st s sb e b sae b e 74
Table 8-16: Count Register FIeld DESCITHIONSciuiitiieriereeie ettt et s e et be e ae b s b saesae e 75
Table 8-17: EntryHi Register Field DESCIIPLIONS.cc.iiiieieieeeeeeeereee ettt st e sbe b e b e 76
Table 8-18: Compare Register FIeld DESCIPLIONSciiiieieieeieeeeeree ettt et e sbe b e b e 78
Table 8-19: Status Register FIeld DESCITLIONSciuiiirierierieie ettt st e e e bt sbesbesae b e 79
Table 8-20: INtCtl Register Field DESCITPLIONSc..eiuiitirieieeieeie ettt et s e e e bt sbesbesaeene e 86
Table 8-21: SRSCtl Register Field DESCITPLIONS.coiiereerieieiee ettt st et be st sbesbesae e e 88
Table 8-22: Sources for new SRSCtl g5 0n an EXception o INtETUPL...........ccviiiiiiiiic s 89
Table 8-23: SRSMap Register Field DESCIIPLIONS ..ottt sttt st e sbesbe e b e 91
Table 8-24: Cause Register FIeld DESCITIIONSciuiiiierierieieee ettt et st ae st ae b s be e b seas 92
Table 8-25: Cause Register EXCCOUE FTEIM..........ccviiee ettt e e e e s reeaesreeeesreetesneens 95
Table 8-26: EPC Register Field DESCIIPLIONSciuiiiiriiieieereeie ettt s be st st sbe e e e st s s sbesbesaesaennas 97
Table 8-27: PRI Register Field DESCIPIIONS.......c.ui ittt sr st st e et ae e ae b s b saeeae e 98
Table 8-28: EBase RegiSter FIeld DESCIIPLIONS.........i.iitirierierieiesie ettt sb st st et se e sbesbe e b e 99
Table 8-29: Conditions Under Which EBasel5..12 MUSE BE ZE0.......cc.eieiereeieeieeeeeiereee st 100
Table 8-30: Config Register Field DESCIIPLIONS.......c..couiiririreii sttt b b e st eae b e 101
Table 8-31: Configl Register Field DESCIIPLIONS........cciitrieiiririietisie ettt b b e b e e eae b e e 103
Table 8-32: Config2 Register Field DESCIIPLIONS........cciiririreriietese sttt bbb b se e sae b e e 107

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

vi

Table 8-33:
Table 8-34:
Table 8-35:
Table 8-36:
Table 8-37:
Table 8-38:
Table 8-39:
Table 8-40:
Table 8-41:
Table 8-42:
Table 8-43:

Config3 Register Field DESCIIPLIONS.......cccuriririiriere sttt sb e e e e e aeeae b e 110
LLAddr Register Field DESCIIPLIONS.........coiiiitirierie ettt sttt be st st e e e e ene e sae b nees 113
WatchL 0 Register Field DESCIIPLIONS.cc.eiiiiriiitirie ettt bbb e e ebe b saenne 114
WatchHi Register Field DESCIIPLIONScc.eiiiiiiiitire ettt b e s e e b b saenne 116
Example Performance Counter Usage of the PerfCnt CPO REQISIENccooiieiinine e 121
Performance Counter Control Register Field DeSCriplions.........cocceirerererene e 122
Performance Counter Counter Register Field DESCIIPLIONS.........cooerirerirenene e 123
ErrorEPC Register Field DESCIIPLIONS.c..ciiiiteieerieiee ettt st st e s e s sbe e 130
Physical Address Generation from Virtual AQOIrESSES.......c.eecvvcierieeieie et sre s 133
Config Register FIeld DESCIIPLIONS.coueeriririieiene sttt ettt e et eb e 137
N I 01 Y AN S Mo g0 01 138

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1

About This Book

The MIPS32® Architecture For Programmers Volume |11 comes as a multi-volume set.

» Volume | describes conventions used throughout the document set, and provides an introduction to the MIPS32®
Architecture

» Volume Il provides detailed descriptions of each instruction in the MIPS32® instruction set

* Volume Il describes the MIPS32® Privileged Resource Architecture which defines and governs the behavior of the
privileged resources included in a MIPS32® processor implementation

* Volume | V-a describes the MIPS16e™ A pplication-Specific Extension to the MIPS32® Architecture

* Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS32® Architecture and is not
applicable to the MIPS32® document set

* Volume IV-c describes the MIPS-3D® A pplication-Specific Extension to the MIPS32® Architecture
* Volume IV-d describes the SmartM I PS®A pplication-Specific Extension to the MIPS32® Architecture

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fontsin this book.

1.1.1 Italic Text
* isused for emphasis

* isused for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D, and PS

* isused for the memory access types, such as cached and uncached

1.1.2 Bold Text
* represents aterm that is being defined

* isused for bitsand fields that are important from a hardware perspective (for instance, register bits, which are not
programmabl e but accessible only to hardware)

* isused for ranges of humbers; the range isindicated by an ellipsis. For instance, 5..1 indicates numbers 5 through 1

* isused to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined bel ow.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 1

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

1.2 UNPREDICTABLE and UNDEFINED

Theterms UNPREDI CTABL E and UNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions
in aprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDI CTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDI CTABLE results may vary from processor implementation to implementation, instruction to instruction, or
as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDI CTABL E operations may cause aresult to be generated or not. If aresult isgenerated,
itisUNPREDICTABLE. UNPREDICTABL E operations may cause arbitrary exceptions.

UNPREDI CTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDICTABL E results must not depend on any data source (memory
or internal state) which isinaccessible in the current processor mode

* UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state whichis
inaccessible in the current processor mode. For example, UNPREDICTABL E operations executed in user mode
must not access memory or internal state that isonly accessiblein Kernel Mode or Debug Mode or in another process

» UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

» UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which thereis
no exit other than powering down the processor). The assertion of any of the reset signals must restore the processor
to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDI CTABL E values, software may depend on the fact that asampling of an UNSTABLE valueresultsin alegal
transient value that was correct at some point in time prior to the sampling.

UNSTABL E values have one implementation restriction:

» Implementations of operations generating UNSTABL E results must not depend on any data source (memory or
internal state) which isinaccessible in the current processor mode

2 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

1.3 Special Symbolsin Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1-1.

Table 1-1 Symbols Used in Instruction Operation Statements

Symboal Meaning
«— Assignment
= # Tests for equality and inequality
[Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the binary
b#n value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix is
omitted, the default base is 10.
Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
Ooxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
X Selection of bitsy through z of bit string x. Little-endian bit notation (rightmost bit is0) is used. If y isless than
y..Z z, this expression is an empty (zero length) bit string.
+ - 2's complement or floating point arithmetic: addition, subtraction
#, X 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement |ess-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwise logical XOR
and Bitwise logical AND
or Bitwiselogical OR
GPRLEN Thelength in bits (32 or 64) of the CPU general-purpose registers
GPR[X] CPU general-purpose register x. The content of GPR[0] isawayszero. In Release 2 of the Architecture, GPR[X]
is ashort-hand notation for SGPR] SRSCtlcgg, X].
SGPR[sX] ISréR;eRI ease 2 of the Architecture, multiple copies of the CPU general-purpose registers may be implemented.
[sX] refersto GPR set s, register x.
FPR[X] Floating Point operand register x
FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].
FPR[X] Floating Point (Coprocessor unit 1), genera register x

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol M eaning
CPR[zx,9] Coprocessor unit z, general register x, select s
CP2CPR[X] Coprocessor unit 2, general register x
CCR[zX] Coprocessor unit z, control register x
CP2CCR[X] Coprocessor unit 2, control register x
COC[Z Coprocessor unit z condition signal
Xlat[x] Trand ation of the MIPS16e GPR number x into the corresponding 32-bit GPR number
Endian mode as configured at chip reset (0 —Little-Endian, 1 — Big-Endian). Specifies the endianness of the
BigEndianMem memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endianness
of Kernel and Supervisor mode execution.
The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
BigEndianCPU endianness may be switched by setting the RE bit in the Satus register. Thus, BigeEndianCPU may be computed

as (BigendianMem X OR ReverseEndian).

ReverseEndian

Signal to reverse the endianness of load and store instructions. Thisfeature is available in User mode only, and
isimplemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as (SRgg and
User mode).

LLbit

Bit of virtual state used to specify operation for instructionsthat provide atomic read-modify-write. LLbit isset
when alinked load occurs and istested by the conditional store. Itiscleared, during other CPU operation, when
a store to the location would no longer be atomic. In particular, it is cleared by exception return instructions.

1+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as alabel. It indicates the instruction time
during which the pseudocode appears to “execute.” Unless otherwise indicated, al effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to atime
label of |. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, theinstruction operation iswritten in sectionslabeled
with the instruction time, relative to the current instruction I, in which the effect of that pseudocode appears to
occur. For example, an instruction may have aresult that is not available until after the next instruction. Such an
instruction has the portion of the instruction operation description that writes the result register in a section
labeled | +1.

The effect of pseudocode statements for the current instruction labelled | +1 appearsto occur “at the sametime”
asthe effect of pseudocode statements|abeled | for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for different
instructions that occur “at the sametime,” there is no defined order. Programs must not depend on a particular
order of evaluation between such sections.

The Program Counter value. During the instruction time of an instruction, thisis the address of the instruction
word. The address of the instruction that occurs during the next instruction time is determined by assigning a
value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit M1PS16e instruction)
or 4 before the next instruction time. A taken branch assigns the target address to the PC during the instruction
time of theinstruction in the branch delay dlot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor O register on an
exception. The PC value contains afull 32-bit address all of which are significant during a memory reference.

ISA Mode

In processors that implement the M1PS16e A pplication Specific Extension, the |SA Mode isasingle-bit register
that determines in which mode the processor is executing, as follows:

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MI1PS16e instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on ajump-and-link or branch-and-link
instruction, or into a Coprocessor O register on an exception.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

1.4 For More Information

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol M eaning
PABITS Thenumber of physical address bitsimplemented is represented by the symbol PABITS As such if 36 physical
address bits were implemented, the size of the physical address space would be 2BITS = 23 hytes
Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRS). In MIPS32, the FPU has 32 32-bit
FPRsin which 64-bit data types are stored in even-odd pairs of FPRs. In M1PS64, the FPU has 32 64-bit FPRs
in which 64-bit data types are stored in any FPR.
FP32RegistersMode

In MIPS32 implementations, FP32Register sM odeisalwaysa0. MIPS64 implementations have acompatibility
mode in which the processor references the FPRs asiif it were a MIPS32 implementation. In such a case
FP32Register M ode is computed from the FR bit in the Satus register. If thisbit isa0, the processor operates
asif it had 32 32-bit FPRs. If thisbit isa 1, the processor operates with 32 64-bit FPRs.

The value of FP32Register sM ode is computed from the FR bit in the Satus register.

InstructionlnBranchD

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch or
jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the valueis false

ption, argument)

elaySlot if abranch or jump occursto an instruction whose PC immediately follows a branch or jump, but which is not
executed in the delay slot of abranch or jump.
Signal Exception(exce Causes an exception to be signaled, using the exception parameter as the type of exception and the argument

parameter as an exception-specific argument). Control does not return from this pseudocode function - the
exception is signaled at the point of the call.

1.4 For More Information

Various MIPS RISC processor manualsand additional information about MIPS products can befound at the MIPSURL.:

http://www.mips.com

Comments or questions on the MIPS32® Architecture or this document should be directed to

MIPS Architecture Group
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

6 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2

The MIPS32 Privileged Resource Architecture

2.1 Introduction

The MIPS32 Privileged Resource Architecture (PRA) isaset of environments and capabilities on which the Instruction
Set Architecture operates. The effects of some components of the PRA are user-visible, for instance, the virtual memory
layout. Many other components are visible only to the operating system kernel and to systems programmers. The PRA
provides the mechanisms necessary to manage the resources of the CPU: virtual memory, caches, exceptions and user

contexts. This chapter describes these mechanisms.

2.2 The MIPS Coprocessor Model

The MIPS ISA providesfor up to 4 coprocessors. A coprocessor extends the functionality of the MIPS ISA, while
sharing theinstruction fetch and execution control logic of the CPU. Some coprocessors, such asthe system coprocessor
and the floating point unit are standard parts of the ISA, and are specified as such in the architecture documents.
Coprocessors are generally optional, with one exception: CPO, the system coprocessor, isrequired. CPO isthe ISA
interface to the Privileged Resource Architecture and provides full control of the processor state and modes.

2.2.1 CPO - The System Coprocessor

CPO provides an abstraction of the functions necessary to support an operating system: exception handling, memory
management, scheduling, and control of critical resources. Theinterface to CPO isthrough various instructions encoded
with the COPO opcode, including the ability to move datato and from the CPO registers, and specific functions that
modify CPO state. The CPO registers and the interaction with them make up much of the Privileged Resource
Architecture.

2.2.2 CPO Registers

The CPO registers provide the interface between the |SA and the PRA. The CPO registers are described in Chapter 8.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 7

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 The MIPS32 Privileged Resource Architecture

8 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 3

MIPS32 Operating Modes

The MIPS32 PRA requires two operating mode: User Mode and Kernel Mode. When operating in User Mode, the
programmer has accessto the CPU and FPU registersthat are provided by the |SA and to aflat, uniform virtual memory
address space. When operating in Kernel Mode, the system programmer has access to the full capabilities of the
processor, including the ability to change virtual memory mapping, control the system environment, and context switch
between processes.

In addition, the MIPS32 PRA supports the implementation of two additional modes: Supervisor Mode and EJTAG
Debug Mode. Refer to the EJTAG specification for a description of Debug Mode.

In Release 2 of the Architecture, support was added for 64-bit coprocessors (and, in particular, 64-bit floating point units)
with 32-bit CPUs. As such, certain floating point instructions which were previously enabled by 64-bit operationson a
MIPS64 processor are now enabled by a new 64-bit floating point operations enabled.

3.1 Debug Mode

For processorsthat implement EJTAG, the processor isoperating in Debug Modeif the DM bit in the CPO Debug register
isaone. If the processor is running in Debug Mode, it has full accessto all resources that are available to Kernel Mode
operation.

3.2 Kernel Mode

The processor is operating in Kernel Mode when the DM bit in the Debug register isazero (if the processor implements
Debug Mode), and any of the following three conditionsistrue:

e TheKSU field in the CPO Satus register contains 0b00

e The EXL hit in the Status register is one

e The ERL bit in the Satusregister isone

The processor enters Kernel Mode at power-up, or astheresult of an interrupt, exception, or error. The processor leaves

Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are false, usualy as
the result of an ERET instruction.

3.3 Supervisor Mode
The processor is operating in Supervisor Mode (if that optional mode isimplemented by the processor) when al of the
following conditions are true:
e The DM bit in the Debug register is a zero (if the processor implements Debug Mode)
e TheKSU field in the Satus register contains 0b01
e The EXL and ERL bitsin the Status register are both zero

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 9

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 MIPS32 Operating Modes

3.4 User Mode

The processor is operating in User Mode when all of the following conditions are true:

» The DM bit in the Debug register is a zero (if the processor implements Debug Mode)
» The KSU field in the Satus register contains Ob10

» The EXL and ERL bitsin the Status register are both zero

3.5 Other Modes

3.5.1 64-bit Floating Point Oper ations Enable

Instructions that are implemented by a 64-bit floating point unit are legal under any of the following conditions:

 Inanimplementation of Release 1 of the Architecture, 64-bit floating point operations are never enabled in aM|1PS32
processor.

« If animplementation of Release 2 of the Architecture, 64-bit floating point operations are enabled if the F64 bit in the
FIR register is a one. The processor must also implement the floating point data type.

3.5.2 64-bit FPR Enable

Access to 64-bit FPRs s controlled by the FR bit in the Status register. If the FR bit is one, the FPRs are interpreted as
32 64-bit registers that may contain any datatype. If the FR bit is zero, the FPRs are interpreted as 32 32-hit registers,
any of which may contain a 32-bit datatype (W, S). In this case, 64-bit data types are contained in even-odd pairs of
registers.

64-bit FPRs are supported in a M1PS64 processor in Release 1 of the Architecture, or in a 64-bit floating point unit, for
both M1PS32 and M1PS64 processors, in Release 2 of the Architecture.

The operation of the processor is UNPREDICTABL E under the following conditions:

» TheFR bitisazero, 64-bit operations are enabled, and a floating point instruction is executed whose datatypeisL or
PS.

» The FR bit isazero and an odd register is referenced by an instruction whose datatype is 64-bits

3.5.3 Coprocessor 0 Enable

Access to Coprocessor 0 registers are enabled under any of the following conditions:
» The processor is running in Kernel Mode or Debug Mode, as defined above

» The CUO hit in the Satus register is one.

10 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4

Virtual Memory

4.1 Support in Release 1 and Release 2 of the Architecture

4.1.1 Virtual Memory

In Release 1 of the Architecture, the minimum page size was 4K B, with optional support for pages as large as 256MB.
In Release 2 of the Architecture, optional support for 1KB pages was added for use in specific embedded applications
that require access to pages smaller than 4KB. Such usage is expected to be in conjunction with a default page size of

4KB and is not intended or suggested to replace the default 4KB page size but, rather, to augment it.

Support for 1KB pages involves the following changes:

 Addition of the PageGrain register. This register is aso used by the SmartMIPS™ ASE specification, but bits used
by Release 2 of the Architecture and the SmartMIPS A SE specification do not overlap.

» Modification of the EntryHi register to enable writesto, and use of, bits 12..11 (VPN2X).
» Modification of the PageMask register to enable writes to, and use of, bits 12..11 (MaskX).

» Modification of the EntryLoO and EntryLol registersto shift the PFN field to the left by 2 bits, when 1KB page
support is enabled, to create space for two lower-order physical address bits.

Support for 1KB pages is denoted by the Config3gp bit and enabled by the PageGrainggp bit.

4.2 Terminology

4.2.1 Address Space

An Address Spaceistherange of all possible addresses that can be generated. There is one 32-bit Address Spacein the
MIPS32 Architecture.

4.2.2 Segment and Segment Size

A Segment is a defined subset of an Address Space that has self-consistent reference and access behavior. Segments are
either 22° or 231 bytes in size, depending on the specific Segment.

4.2.3 Physical Address Size (PABITS)

The number of physical address bitsimplemented is represented by the symbol PABITS. Assuch, if 36 physical address
bits were implemented, the size of the physical address space would be 278! TS = 236 pytes, The format of the EntryLo0O
and EntryLo1 registersimplicitly limits the physical address size to 2% bytes. Software may determine the value of
PABITS by writing al onesto the EntryLoO or EntryLol registers and reading the value back. Bitsread as“ 1" from the
PFN field allow software to determine the boundary between the PFN and O fields to calculate the value of PABITS.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 11
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 Virtual Memory

4.3 Virtual Address Spaces

The MIPS32 virtual address space is divided into five segments as shown in Figure 4-1.

Figure 4-1 Virtual Address Space

OxFFFF FFFF
kseg3
0xEO000 0000
OxDFFF FFFF
ksseg
0xC000 0000
OxBFFF FFFF
ksegl
0xA000 0000
O0x9FFF FFFF
kseg0
0x8000 0000
O0x7FFF FFFF

usey

0x0000 0000

Kernel Mapped

Supervisor Mapped

Kernel Unmapped Uncached

Kernel Unmapped

User Mapped

Each Segment of an Address Space is classified as“Mapped” or “Unmapped”. A “Mapped” addressis onethat is
translated through the TLB or other address translation unit. An “Unmapped” addressis one which is not translated
through the TL B and which provides awindow into the lowest portion of the physical address space, starting at physical
address zero, and with a size corresponding to the size of the unmapped Segment.

Additionally, the ksegl Segment is classified as “ Uncached” . Referencesto this Segment bypass all levels of the cache
hierarchy and allow direct access to memory without any interference from the caches.

Table 4-1 lists the same information in tabular form.

12

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

4.3 Virtual Address Spaces

Table 4-1 Virtual Memory Address Spaces

Reference Actual
Segment Associated Legal from Segment
VA31 29 Name(s) AddressRange | with Mode M ode(s) Size
0XFFFF FFFF
Ob111 kseg3 through Kernel Kernel 2% bytes
0xEQ00 0000
0XDFFF FFFF ,
0b110 ksseg through Supervisor Su}?gxglsor 229 pytes
SS9 0xC000 0000
0XBFFF FFFF
0b101 ksegl through Kernel Kernel 229 pytes
0xA000 0000
0x9FFF FFFF
0b100 kseg0 through Kernel Kernel 229 pytes
0x8000 0000
useg 0x7FFF FFFF User
ObOXx susey through User Supervisor 231 pytes
kuseg 0x0000 0000 Kernel

Each Segment of an Address Space is associated with one of the three processor operating modes (User, Supervisor, or
Kernel). A Segment that is associated with a particular mode is accessible if the processor is running in that or amore
privileged mode. For example, a Segment associated with User Modeis accessible when the processor isrunning in User,
Supervisor, or Kernel Modes. A Segment is not accessible if the processor is running in aless privileged mode than that

associated with the Segment. For example, a Segment associated with Supervisor Mode is not accessible when the

processor is running in User Mode and such areference results in an Address Error Exception. The “Reference Legal

from Mode(s)” column in Table 4-2 lists the modes from which each Segment may be legally referenced.

If a Segment has more than one name, each name denotes the mode from which the Segment isreferenced. For example,
the Segment name “useg” denotes areference from user mode, while the Segment name “kuseg” denotes areference to
the same Segment from kernel mode.

Figure 4-2 shows the Address Space as seen when the processor is operating in each of the operating modes.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

13

Chapter 4 Virtual Memory

Figure 4-2 References as a Function of Operating M ode
User Mode References Supervisor Mode References Kernel Mode References
OxXFFFF FFFF OXFFFF FFFF OXFFFF FFFF
Address Error kseg3 Kernel Mapped
0xE000 0000 0xE000 0000
OxDFFF FFFF OxDFFF FFFF
sseg Supervisor Mapped ksseg Supervisor Mapped
0xC000 0000 0xC000 0000
Address Error
OxBFFF FFFF 0xBFFF FFFF
Kernel Unmapped
ksegl Uncached
0xA000 0000
Address Error
0x9FFF FFFF
kseg0 Kernel Unmapped
0x8000 0000 0x8000 0000 0x8000 0000
0x7FFF FFFF O0x7FFF FFFF 0x7FFF FFFF
u su ku
0 User Mapped = User Mapped = User Mapped
0x0000 0000 0x0000 0000 0x0000 0000

4.4 Compliance

A MIPS32 compliant processor must implement the following Segments:
* useg/kuseg

» kseg0

e ksegl

In addition, a M1PS32 compliant processor using the TLB-based address trand ation mechanism must also implement
the kseg3 Segment.

4.5 Access Control asa Function of Address and Operating Mode

Table 4-2 enumerates the action taken by the processor for each section of the 32-bit Address Space as afunction of the
operating mode of the processor. The selection of TLB Refill vector and other special-cased behavior isalso listed for
each reference.

14 MIPS32® Architecture For Programmers Volume lll, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

4.6 Address Translation and Cache Coherency Attributes for the kseg0 and ksegl Segments

Table 4-2 Address Space Access as a Function of Operating Mode

Action when Referenced from Operating

Mode
Segment Supervisor
Virtual Address Range Name(s) User Mode Mode Kernel Mode
OXFFFF FFFF Mapped
See4.8 on
through kseg3 Address Error Address Error page 16 for
special behavior
0xE000 0000 when EefugDM
OxDFFF FFFF
Sseg
through Address Error Mapped Mapped
ksseg
0xC000 0000
OxBFFF FFFF Uunrﬁﬂgcpﬁ&?’
through ksegl AddressError | Address Error
0xA000 0000 4.686%%%?15
0x9FFF FFFF Unmapped
through ksegO Address Error Address Error
See Section
0x8000 0000 4.6 onpagel5
Unmapped if
Sa[USERLzl
0x7FFF FFFF
useg .
through Suseg Mapped Mapped See Section
kuseg 4.7 on page 16
0x0000 0000
Mapped if
Sta[USERLZO

4.6 Address Trandation and Cache Coherency Attributesfor the kseg0 and ksegl Segments

The kseg0 and ksegl Unmapped Segments provide awindow into the least significant 229 bytes of physical memory,

and, as such, are not translated using the TLB or other address translation unit. The cache coherency attribute of the
kseg0 Segment is supplied by the KO field of the CPO Config register. The cache coherency attribute for the ksegl

Segment isalways Uncached. Table 4-3 describes how thistransformation isdone, and the source of the cache coherency

attributes for each Segment.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

15

Chapter 4 Virtual Memory

Table 4-3 Address Translation and Cache Coherency Attributesfor the kseg0 and ksegl Segments

Sl.ilgar?negt Virtual Address Range GeneratesPhysical Address | Cache Attribute
0xXBFFF FFFF 0x1FFF FFFF
ksegl through through Uncached
0xA000 0000 0x0000 0000
0x9FFF FFFF 0x1FFF FFFF
kseg0 through through 'ggmiggggeilgg
0x8000 0000 0x0000 0000

4.7 Address Trandlation for the kuseg Segment when Statusgg, =1

To provide support for the cache error handler, the kuseg Segment becomes an unmapped, uncached Segment, similar
to the ksegl Segment, if the ERL bit is set in the Status register. This allows the cache error exception code to operate
uncached using GPR RO as a base register to save other GPRs before use.

4.8 Special Behavior for the kseg3 Segment when Debugpy, = 1

If EJTAG isimplemented on the processor, the EJTAG block must treat the virtual addressrange 0xFF20 0000

through OxFF3F FFFF, inclusive, asaspecial memory-mapped region in Debug Mode. A MIPS32 compliant
implementation that also implements EJTAG must:

* explicitly range check the address range as given and not assume that the entire region between 0xFF20 0000 and
OxFFFF FFFF isincluded in the special memory-mapped region.

* not enable the special EJTAG mapping for this region in any mode other than in EJTAG Debug mode.
Even in Debug mode, normal memory rules may apply in some cases. Refer to the EJTAG specification for details on

this mapping.

4.9 TLB-Based Virtual Address Trangationt

This section describes the TLB-based virtual address trand ation mechanism. Note that sufficient TLB entries must be
implemented to avoid a TLB exception loop on load and store instructions.

4.9.1 Address Space ldentifiers (ASID)

The TLB-based trandl ation mechanism supports Address Space | dentifiers to uniquely identify the same virtual address
across different processes. The operating system assigns ASIDs to each process and the TLB keeps track of the ASID
when doing address tranglation. In certain circumstances, the operating system may wish to associate the same virtual

1 Refer to Section A.1, "Fixed Mapping MMU" on page 133 and Section A.2, "Block Address Translation" on page 137 for descriptions
of alternative MMU organizations

16 MIPS32® Architecture For Programmers Volume lll, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

4.9 TLB-Based Virtual Address Translation

address with all processes. To address this need, the TLB includes a global (G) bit which over-rides the ASID
comparison during translation.

4.9.2 TLB Organization

The TLB isafully-associative structure which is used to trandlate virtual addresses. Each entry contains two logical
components; a comparison section and a physical trandlation section. The comparison section includes the virtual page
number (VPN2 and, in Release 2, VPN X) (actually, the virtual page number/2 since each entry mapstwo physical pages)
of the entry, the ASID, the G(lobal) bit and a recommended mask field which provides the ability to map different page
sizeswith asingle entry. The physical translation section contains a pair of entries, each of which contains the physical
page frame number (PFN), avalid (V) bit, adirty (D) bit, and a cache coherency field (C), whose valid encodings are
given in Table 8-8 on page 65. There are two entries in the translation section for each TLB entry because each TLB
entry maps an aligned pair of virtual pages and the pair of physical trandation entries corresponds to the even and odd
pages of the pair.

Figure 4-3 shows the logical arrangement of a TLB entry, including the optional support added in Release 2 of the
Architecture for 1KB page sizes. Light grey fields denote extensions to the right that are required to support 1KB page
sizes. This extension is not present in an implementation of Release 1 of the Architecture.

Figure 4-3 Contentsof a TLB Entry

Mask MaskX

VPN2 VPN2X G ASID
PFNO CoO [DQVO
PFN1 Cl1 [DQV]

|:| Fields marked with this color are optional Release 2 features required to support 1KB pages

The fields of the TLB entry correspond exactly to the fields in the CPO PageMask, EntryHi, EntryLoO and EntryLol
registers. The even page entriesin the TLB (e.g., PFNO) come from EntryLoO. Similarly, odd page entries come from
EntryLol.

4.9.3 TLB Initialization

In many processor implementations, software must initialize the TLB during the power-up process. In processors that
detect multiple TLB matches and signal this viaamachine check assumption, software must be prepared to handle such
an exception or use a TLB initialization algorithm that minimizes or eliminates the possibility of the exception.

In Release 1 of the Architecture, processor implementations could detect and report multiple TLB matches either on a
TLB write (TLBWI or TLBWR instructions) or aTLB read (TLB accessor TLBR or TLBP instructions). In Release 2
of the Architecture, processor implentations are limited to reporting multiple TLB matches only on TLB write, and this
isalso true of most implementations of Release 1 of the Architecture.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 17
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 Virtual Memory

The following code example shows a TLB initialization routine which, on implementations of Release 2 of the
Architecture, eliminates the possibility of reporting a machine check during TLB initialization. This example has
equivalent effect on implementations of Release 1 of the Architecture which report multiple TLB exceptions only on a
TLB write, and minimizes the probability of such an exception occuring on other implementations.
/ *
* InitTLB

* Initialize the TLB to a power-up state, guaranteeing that all entries
* are unique and invalid.

*

* Arguments:

* a0 = Maximum TLB index (from MMUSize field of CO_Configl)

*

* Returns:

* No value

*

* Restrictions:

* This routine must be called in unmapped space

*

* Algorithm:

* va = kseg0_base;

* for (entry = max_TLB_index; entry >= 0, entry--) {

* while (TLB_Probe_Hit(va)) {

* va += Page_Size;

* }

* TLB_Write(entry, va, 0, 0, 0);

* }

*

* Notes:

* - The Hazard macros used in the code below expand to the appropriate
* number of SSNOPs in an implementation of Release 1 of the

* Architecture, and to an ehb in an implementation of Release 2 of
* the Architecture. See Chapter 7, “CPO Hazards,” on page 51 for
* more additional information.

*/
InitTLB:

/*

* Clear PageMask, EntryLo0 and EntryLol so that valid bits are off, PFN values
* are zero, and the default page size is used.

*/
mtcO zero, CO_EntryLo0 /* Clear out PFN and valid bits */
mtcO zero, CO_EntryLol
mtc0 zero, CO_PageMask /* Clear out mask register *
/* Start with the base address of kseg0 for the VA part of the TLB */
la t0, A_KOBASE /* A_KOBASE == 0x8000.0000 */
18 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

4.9 TLB-Based Virtual Address Translation

/*

* Write the VA candidate to EntryHi and probe the TLB to see if if is
* already there. If it is, a write to the TLB may cause a machine

* check, so just increment the VA candidate by one page and try again.

*/

10:
mtcO t0, CO_EntryHi /* Write VA candidate */
TLBP_Write_Hazard() /* Clear EntryHi hazard (ssnop/ehb in R1/2) */
tlbp /* Probe the TLB to check for a match */
TLBP_Read_Hazard() /* Clear Index hazard (ssnop/ehb in R1/2) */
mfcO tl, CO_Index /* Read back flag to check for match */
bgez tl, 10b /* Branch if about to duplicate an entry */
addiu t0, (1<<S_EntryHiVPN2) /* Add 1 to VPN index in va */

/*

* A write of the VPN candidate will be unique, so write this entry
* into the next index, decrement the index, and continue until the
* index goes negative (thereby writing all TLB entries)

*/
mtcO a0, CO_Index /* Use this as next TLB index */
TLBW _Write_Hazard() /* Clear Index hazard (ssnop/ehb in R1/2) */
tlbwi /* Write the TLB entry */
bne a0, zero, 10b /* Branch if more TLB entries to do */
addiu a0, -1 /* Decrement the TLB index
/*

* Clear Index and EntryHi simply to leave the state constant for all
* returns
*/

mtcO zero, CO_Index

mtc0 zero, CO_EntryHi

jr ra /* Return to caller */

nop

4.9.4 Address Trangation

Release 2 of the Architecture introduced support for 1KB pages. For clarity in the discussion bel ow, the following terms
should be taken in the general sense to include the new Release 2 features:

Term Used Below Release 2 Substitution Comment

Release 2 implementations
that support 1KB pages
concatenate the VPN2 and

VPN2 VPN2{| VPN2X VPN2X fieldsto form the
virtual page number for a
1KB page

Release 2 implementations
that support 1KB pages
concatenate the Mask and
Mask Mask || MaskX MaskX fields to form the
don’'t care mask for 1KB

pages

When an address trandlation is requested, the virtual page number and the current process ASID are presented to the
TLB. All entries are checked simultaneously for a match, which occurs when all of the following conditions are true:

» Thecurrent process ASID (as obtained from the EntryHi register) matchesthe ASID field in the TLB entry, or the G
bitissetinthe TLB entry.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 19

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 Virtual Memory

» The appropriate bits of the virtual page number match the corresponding bits of the VPN2 field stored within the
TLB entry. The “appropriate” number of bits is determined by the Mask fields in each entry by ignoring each bit in
the virtual page number and the TLB VPNZ2 field corresponding to those bits that are set in the Mask fields. This
allows each entry of the TLB to support adifferent page size, as determined by the PageMask register at the time that
the TLB entry was written. If the recommended PageMask register is not implemented, the TLB operationisasif the
PageMask register was written with the encoding for a4KB page.

If aTLB entry matches the address and ASID presented, the corresponding PFN, C, V, and D bits are read from the
tranglation section of the TLB entry. Which of the two PFN entriesis read is afunction of the virtual address bit
immediately to the right of the section masked with the Mask entry.

Thevalid and dirty bits determine the final success of the trandlation. If the valid bit is off, the entry is not valid and a
TLB Invalid exceptionisraised. If the dirty bit is off and the reference was a store, a TLB Modified exception israised.
If thereisan address match with avalid entry and no dirty exception, the PFN and the cache coherency bits are appended
to the offset-within-page bits of the address to form the final physical address with attributes.

For clarity, the TLB lookup processes have been separated into two sets of pseudo code:

1. Oneused by animplementation of Release 1 of the Architecture, or an implementation of Release 2 of the
Architecture which does not include 1KB page support (as denoted by Config3gp). This instance is called the
“4KB TLB Lookup”.

2. Oneused by an implementation of Release 2 of the Architecture which does include 1KB page support. This
instanceis called the“1KB TLB Lookup”.

The 4KB TLB Lookup pseudo codeis as follows:

found « 0
for i in 0...TLBEntries-1

if ((TLB[ilypyy and not (TLB[ilysgx)) = (vaszq. .13 and not (TLB[ilysek))) and
(TLB[i]lg or (TLB[ilagrp = EntryHingqrp)) then
EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry. Not all page sizes need
be implemented on all processors, so the case below uses an ‘x’ to
denote don’t-care cases. The actual implementation would select
the even-odd bit in a way that is compatible with the page sizes
actually implemented.
case TLB[1lyask

#
#
#
#
#
#

0b0000 0000 0000 0000: EvenOddBit « 12 /* 4KB page */
0b0000 0000 0000 0011l: EvenOddBit <« 14 /* 16KB page */
0b0000 0000 0000 1llxx: EvenOddBit « 16 /* 64KB page */
0b0000 0000 0011 xxxx: EvenOddBit <« 18 /* 256KB page */
0b0000 0000 1lxx xxxx: EvenOddBit « 20 /* 1MB page */
0b0000 0011 xxxx xxXxX: EvenOddBit <« 22 /* 4MB page */
0b0000 1lxx xxxx Xxxx: EvenOddBit <« 24 /* 16MB page */
0b0011 xxxx xxXxx Xxxx: EvenOddBit « 26 /* 64MB page */
Obllxx xxXX XXXX Xxxx: EvenOddBit « 28 /* 256MB page */
otherwise: UNDEFINED

endcase

if vagyenogapit = 0 then

pfn < TLBI[i]pwyo
v « TLB[ilyg
c « TLB[ilgg
d <« TLB[ilpg
else
pfn < TLB[i]pgy1
v ¢« TLB[ilyg
c « TLBIlil¢g
d « TLB[i]p;

20 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

4.9 TLB-Based Virtual Address Translation

endif

if v = 0 then
SignalException (TLBInvalid, reftype)

endif

if (d = 0) and (reftype = store) then
SignalException (TLBModified)

endif

pPfNpaprrs-1-12..0 corresponds to Papaprrs-1..12

pPa < PfNpaprrs-1-12. . Evenodasit-12 || V@Evenodamit-1..0
found « 1

break
endif
endfor
if found = 0 then
SignalException (TLBMiss, reftype)
endif

The 1KB TLB Lookup pseudo code is as follows:

found < 0
for i in 0...TLBEntries-1
if ((TLB[ilypyy and not (TLB[ilyask)) = (vazq, 13 and not (TLB[ilyagk))) and

(

(TLB[ilg or (TLB[ilagrp = EntryHi,grp)) then

EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry. Not all pages sizes need

be implemented on all processors, so the case below uses an ‘xX’ to

denote don’'t-care cases. The actual implementation would select

the even-odd bit in a way that is compatible with the page sizes

actually implemented.

case TLB[ilyssk

0b0000 0000 0000 0000 00: EvenOddBit « 10 /* 1KB page */
0b0000 0000 0000 0000 11: EvenOddBit « 12 /* 4KB page */
0b0000 0000 0000 0011 xx: EvenOddBit « 14 /* 16KB page */
0b0000 0000 0000 11lxx xx: EvenOddBit « 16 /* 64KB page */
0b0000 0000 0011 xxxx xx: EvenOddBit « 18 /* 256KB page */
0b0000 0000 1lxx xxxx xx: EvenOddBit « 20 /* 1MB page */
0b0000 0011 xxXXX XXXX XX: EvenOddBit ¢« 22 /* 4MB page */
0b0000 1lxx xXXXX XXXX XX: EvenOddBit « 24 /* 16MB page */
0b0011 xxXXX XXXX XXXX Xx: EvenOddBit « 26 /* 64MB page */
0bllxx XXXX XXXX XXXX xxX: EvenOddBit « 28 /* 256MB page */
otherwise: UNDEFINED

endcase

if VagyenoddBit 0 then

pfn < TLB[1]pgyg
v < TLB[ily
c « TLB[il¢g
d ¢« TLB[ilpg
else
pfn « TLB[1i]pgy
v < TLB[ilyg
c « TLBI[il¢g
d « TLB[ilp
endif
if v = 0 then
SignalException (TLBInvalid, reftype)
endif
if (d = 0) and (reftype = store) then
SignalException (TLBModified)
endif
PfNpaprrs-1-10..0 corresponds to Papaprrs-1..10
pa ¢« PfNpaprrs 1-10..EvenoddBit-10 || V@EvenoddBit-1..0

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 21
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 Virtual Memory

found « 1
break
endif
endfor
if found = 0 then
SignalException (TLBMiss, reftype)
endif

Table 4-4 demonstrates how the physical addressisgenerated asafunction of the page size of the TLB entry that matches
the virtual address. The “Even/Odd Select” column of Table 4-4 indicates which virtual address bit is used to select
between the even (EntryL 00) or odd (EntryL o1) entry inthe matching TLB entry. The“PA pag)Ts.1).0 Generated From”
columns specify how the physical address is generated from the selected PFN and the offset-in-page bits in the virtual
address. In this column, PFN is the physical page number as loaded into the TLB from the EntryLoO or EntryLol
registers, and has one of two bit ranges:

PFN Range PA Range Comment
PEN P Release 1 implementation, or Release 2
(PABITS1)-12..0 PABITS1..12 implementation without support for 1KB pages
Release 2 implementation with support for 1KB
PEN (paBITS 1)-10.0 PAPABITS1.10 pages enab,eﬁ PP

Table 4-4 Physical Address Generation

PA(PaBITS 1).0 Generated From:
Even/Odd Release 1 or Release 2 with Release 2 with 1K B Page
Page Size Select 1K B Page Support Disabled Support Enabled
1K Bytes VA1 Not Applicable PFN(pABWSl)_lO._O [l VAg o
4K Bytes VA PFNPaBITS1)-12.0 | VA11.0 PFNPaBITS1)-10.2 | VA11.0
16K Bytes VA4 PFN(pagiTS 1)-12.2 Il VA13.0 PFN(paBITS 1)-10.4 | VA13 0
64K Bytes VA1e PFN(paBITS 1)-12.4 Il vA15.0 PFN(paBITS1)-10.6 I vA15.0
256K Bytes VA1g PFN(pagiTs1)-12.6 | VA17.0 PFN(pagiTs1)-10.8 | VA17.0
1M Bytes VA2 PFN(pagITS 1)-12.8 | VA19.0 FN(pagiTs 1)-10.10 | VA19.0
4M Bytes VA2 PEN(PaBITS 1)-12.10 | VA21.0 PEN(paBITS 1)-10.12 | VA21 0
16M Bytes VA24 PFN(pagITS 1)-12.12 [l VA23.0 PFN(paBITS 1)-10.14 [l VA23.0
64MBytes VA2 PFN(pagITS 1)-12..14 l| VA25.0 PFN(pagITS 1)-10.16 Il VA25.0
256MBytes VAog PFN(paBITS 1)-12.16 | VA27 0 PFN(paBITS1)-10.18 || VA27 0

22

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 5

Interrupts and Exceptions

Release 2 of the Architecture added the following features related to the processing of Exceptions and I nterrupts:

» The addition of the Coprocessor 0 EBase register, which allows the exception vector base address to be modified for
exceptions that occur when Statusggy, equals 0. The EBase register is required.

» The extension of the Release 1 interrupt control mechanism to include two optional interrupt modes:

 Vectored Interrupt (V1) mode, in which the various sources of interrupts are prioritized by the processor and each
interrupt is vectored directly to a dedicated handler. When combined with GPR shadow registers, introduced in
the next chapter, this mode significantly reduces the number of cycles required to process an interrupt.

 External Interrupt Controller (EIC) mode, in which the definition of the coprocessor 0 register fields associated
with interrupts changes to support an external interrupt controller. This can support many more prioritized
interrupts, while still providing the ability to vector an interrupt directly to a dedicated handler and take
advantage of the GPR shadow registers.

» The ability to stop the Count register for highly power-sensitive applications in which the Count register is not used,
or for reduced power mode. This change is required.

» Theaddition of the DI and El instructions which provide the ability to atomically disable or enable interrupts. Both
instructions are required.

» Theaddition of the Tl and PCI bitsin the Cause register to denote pending timer and performance counter interrupts.
This changeis required.

» Theaddition of an execution hazard sequence which can be used to clear hazards introduced when software writesto
a coprocessor 0 register which affects the interrupt system state.

5.1 Interrupts

Release 1 of the Architecture included support for two software interrupts, six hardware interrupts, and two
special-purposeinterrupts: timer and performance counter. Thetimer and performance counter interruptswere combined
with hardware interrupt 5 in an implementati on-dependent manner. Interrupts were handled either through the general
exception vector (offset 0x180) or the special interrupt vector (0x200), based on the value of Cause,. Software was
required to prioritize interrupts as a function of the Causep bitsin the interrupt handler prologue.

Release 2 of the Architecture adds an upward-compatible extension to the Release 1 interrupt architecture that supports
vectored interrupts. In addition, Release 2 adds a new interrupt mode that supports the use of an external interrupt
controller by changing the interrupt architecture.

Although a Non-Maskable Interrupt (NMI) includes “interrupt” in its name, it is more correctly described as an NMI
exception because it does not affect, nor isit controlled by the processor interrupt system.

An interrupt is only taken when all of the following are true:

* A specific request for interrupt service is made, as afunction of the interrupt mode, described below.

» ThelE bit in the Satus register isaone.

» The DM bit in the Debug register is a zero (for processors implementing EJTAG)

» The EXL and ERL bitsin the Status register are both zero.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 23

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

Logically, the request for interrupt service is ANDed with the | E bit of the Satus register. The final interrupt request is
then asserted only if both the EXL and ERL bits in the Status register are zero, and the DM hit in the Debug register is
zero, corresponding to a non-exception, non-error, non-debug processing mode, respectively.

5.1.1 Interrupt Modes
An implementation of Release 1 of the Architecture only implements interrupt compatibility mode.

An implementation of Release 2 of the Architecture may implement up to three interrupt modes:

* Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Architecture.
This mode s required.

 Vectored Interrupt (V1) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to that
interrupt, and to assign a GPR shadow set for use during interrupt processing. Thismodeis optional and its presence
is denoted by the Vint bit in the Config3 register.

 External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide full
support for an external interrupt controller handling prioritization and vectoring of interrupts. This mode is optional
and its presence is denoted by the VEIC bit in the Config3 register.

A compatible implementation of Release 2 of the Architecture must implement interrupt compatibility mode, and may
optionally implement one or both vectored interrupt modes. Inclusion of the optional modes may be done selectively in
theimplementation of the processor, or they may always beincul cated and be dynamically enabl ed based on coprocessor
0 control hits. Thereset state of the processor isto interrupt compatibility mode such that an implementation of Release
2 of the Architecture is fully compatible with implementations of Release 1 of the Architecture.

Table 5-1 shows the current interrupt mode of the processor as a function of the coprocessor 0 register fields that can
affect the mode.

Table 5-1 Interrupt Modes

Statusggy
Causgy
IntCtlyg

Config3ynt
Config3yec

Interrupt Mode

Compatibly

[EEY
x
x
x
x

0| x | x| x| Compatibility

X | x | =0]| x | x | Compatibility

0|1]|=0]| 1| 0| Vectored Interrupt

0|21]| =0]| x| 1| External Interrupt Controller

Can't happen - IntCtly, g can not be non-zero if neither
0|1] =0]| 0| O] Vectored Interrupt nor External Interrupt Controller
mode is implemented.

“x" denotes don’t care

5.1.1.1 Interrupt Compatibility Mode
Thisisthe only interrupt mode for a Release 1 processor and the default interrupt mode for a Release 2 processor. This

mode is entered when a Reset exception occurs. In this mode, interrupts are non-vectored and dispatched though

24 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

5.1 Interrupts

exception vector offset 0x180 (if Cause;, = 0) or vector offset 0x200 (if Cause;y, = 1). Thismodeisin effect if any of
the following conditions are true:

» Causgy =0

d StaIUSBEV =1

* IntCtly,g = 0, which would be the case if vectored interrupts are not implemented, or have been disabled.

The current interrupt requests are visible viathe I P field in the Cause register on any read of the register (not just after
an interrupt exception has occurred). Note that an interrupt request may be deasserted between the time the processor
starts the interrupt exception and the time that the software interrupt handler runs. The software interrupt handler must

be prepared to handle this condition by simply returning from the interrupt viaERET. A request for interrupt serviceis
generated as shown in Table 5-2.

Table 5-2 Request for Interrupt Servicein Interrupt Compatibility Mode

Interrupt Interrupt Request
Interrupt Type Source Calculated From
Hardware Interrupt, Timer Interrupt,
or Performance Counter Interrupt HW5 Causeypy and Statusyy 7
HW4 Cause pg and Status)yg
HW3 Cause ps and Status)ys
Hardware Interrupt HW2 Cause pg and Status;pa
HW1 Causg pz and Status)y 3
HWO Causg pp and Status)y»
Swi Causgp; and Status;y 1
Software Interrupt

SWO0 Cause pg and Status)yo

A typical software handler for interrupt compatibility mode might look as follows:

/ *
* Assumptions:
* - Causery = 1 (if it were zero, the interrupt exception would have to
* be isolated from the general exception vector before getting
* here)
* - GPRs k0 and k1l are available (no shadow register switches invoked in
* compatibility mode)
* - The software priority is IP7..IP0 (HW5..HWO, SWl..SWO0)
*
* Location: Offset 0x200 from exception base
*/
IVexception:
mfcO k0, CO_Cause /* Read Cause register for IP bits */
mfcO k1, CO_Status /* and Status register for IM bits */
andi k0, kO, M_CauseIM /* Keep only IP bits from Cause */
and k0, kO, k1 /* and mask with IM bits */
beqg k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, kO /* Find first bit set, IP7..IP0; kO = 16..23 */
xori k0, kO, 0x17 /* 16..23 => 7..0 */
sll kO, k0, VS /* Shift to emulate software IntCtlyg */
la kl, VectorBase /* Get base of 8 interrupt vectors */
addu kO, kO, kil /* Compute target from base and offset */
jr kO /* Jump to specific exception routine */
MIPS32® Architecture For Programmers Volume lll, Revision 2.50 25

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

26

/*

L T

*

nop

Each interrupt processing routine processes a specific interrupt, analogous

to those reached in VI or EIC interrupt mode. Since each processing routine

is dedicated to a particular interrupt line, it has the context to know

which line was asserted. Each processing routine may need to look further

to determine the actual source of the interrupt if multiple interrupt requests
are ORed together on a single IP line. Once that task is performed, the
interrupt may be processed in one of two ways:

- Completely at interrupt level (e.g., a simply UART interrupt). The

* SimpleInterrupt routine below is an example of this type.
* - By saving sufficient state and re-enabling other interrupts. In this
* case the software model determines which interrupts are disabled during
* the processing of this interrupt. Typically, this is either the single
* StatusIM bit that corresponds to the interrupt being processed, or some
* collection of other Statuspy bits so that “lower” priority interrupts are
* also disabled. The NestedInterrupt routine below is an example of this type.
*/
SimpleInterrupt:
/*

*

* % %

*/

Nes
/*
*
*

*

Process the device interrupt here and clear the interupt request
at the device. In order to do this, some registers may need to be
saved and restored. The coprocessor 0 state is such that an ERET
will simply return to the interrupted code.

eret /* Return to interrupted code */
tedException:

Nested exceptions typically require saving the EPC and Status registers,
any GPRs that may be modified by the nested exception routine, disabling
the appropriate IM bits in Status to prevent an interrupt loop, putting
the processor in kernel mode, and re-enabling interrupts. The sample code
below can not cover all nuances of this processing and is intended only
to demonstrate the concepts.

/* Save GPRs here, and setup software context */

mfcO k0, CO_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfcO kO, CO_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
1i kl, ~IMbitsToClear /* Get Im bits to clear for this interrupt */
/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */
and kO, kO, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in k0 */
mtcO k0, CO_Status /* Modify mask, switch to kernel mode, */
/* re-enable interrupts */
/*

* Process interrupt here, including clearing device interrupt.

* In some environments this may be done with a thread running in

* kernel or user mode. Such an environment is well beyond the scope of
* this example.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

5.1 Interrupts

*/

/*
* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/
di /* Disable interrupts - may not be required */
1w k0O, StatusSave /* Get saved Status (including EXL set) */
1w k1, EPCSave /* and EPC */
mtcO k0, CO_Status /* Restore the original value */
mtcO k1, CO_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

5.1.1.2 Vectored Interrupt Mode

Vectored Interrupt mode builds on the interrupt compatibility mode by adding a priority encoder to prioritize pending
interrupts and to generate a vector with which each interrupt can be directed to a dedicated handler routine. This mode
also allows each interrupt to be mapped to a GPR shadow set for use by the interrupt handler. Vectored Interrupt mode
isin effect if all of the following conditions are true:

» Config3y s =1

o Confi ggVElC =0
|nta|vs;ﬁ 0

* Causgy =1
» Statusggy =0

In VI interrupt mode, the six hardware interrupts areinterpreted asindividual hardware interrupt requests. Thetimer and
performance counter interrupts are combined in an implementation-dependent way with the hardware interrupts (with
the interrupt with which they are combined indicated by IntCtl; 5t and IntCtl,pp¢, respectively) to provide the
appropriate relative priority of these interrupts with that of the hardware interrupts. The processor interrupt logic ANDs
each of the Causep bits with the corresponding Status, bits. If any of these valuesis 1, and if interrupts are enabled
(Statusig = 1, Statusey = 0, and Statusgr, = 0), an interrupt is signaled and a priority encoder scansthe valuesin the
order shown in Table 5-3.

Table 5-3 Relative Interrupt Priority for Vectored Interrupt Mode

Vector Number
Relative Interrupt | Interrupt Interrupt Request Generated by
Priority Type Source Calculated From Priority Encoder
Highest Priority HW5 Causg py and Status;;7 7
HW4 Cause pg and Status)g 6
HW3 Cause ps and Status)ys 5
Hardware
HW2 CaU$| P4 and StatUS| M4 4
HW1 Causg pz and Status) 3 3
HWO Causep, and Status)y 2 2
Swi Causg p; and Status;y 1
Software
Lowest Priority SWO0 Cause pg and Status;yio 0
MIPS32® Architecture For Programmers Volume lll, Revision 2.50 27

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

28

The priority order places arelative priority on each hardware interrupt and places the software interrupts at a priority
lower than all hardware interrupts. When the priority encoder finds the highest priority pending interrupt, it outputs an
encoded vector number that is used in the calculation of the handler for that interrupt, as described below. Thisis shown
pictorialy in Figure 5-1.

Figure5-1 Interrupt Generation for Vectored Interrupt Mode

Latch Mask Encode Generate

p- [NtCll ppcy
|ntct||p‘r|
HWS5 {17 IM7T—> éggueﬂ et
U
HW4 . | IP6 | IM6——B StatusEj ————
HW3 5 »| IP5-—~(IM5—® 3| IntClys
HW2 § »| P4 > iMa— 5 ;
HW1 I 7= B T VT N - Exception
S | Vector S | Vector Offset
HWO [IP2 plIM2——pr & |Number p;;tg ‘ >
IP1 - IM1] > ‘o‘g
IPO M >
Causer, | SRSVIZp |
Causepg Shadow Set

Number -

Notethat aninterrupt request may be deasserted between the time the processor detectstheinterrupt request and thetime
that the software interrupt handler runs. The software interrupt handler must be prepared to handle this condition by
simply returning from the interrupt via ERET.

A typical software handler for vectored interrupt mode bypasses the entire sequence of code following the | Vexception
label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dispatching
directly to the interrupt processing routine. Unlike the compatibility mode examples, a vectored interrupt handler may
take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the Simplelnterrupt code shown
above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. Such a routine might look
asfollows:

NestedException:
/*
* Nested exceptions typically require saving the EPC, Status and SRSCtl registers,
setting up the appropriate GPR shadow set for the routine, disabling
the appropriate IM bits in Status to prevent an interrupt loop, putting
the processor in kernel mode, and re-enabling interrupts. The sample code
below can not cover all nuances of this processing and is intended only
to demonstrate the concepts.

* ok K ok ok X

/* Use the current GPR shadow set, and setup software context */
mfcO k0, CO_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

5.1 Interrupts

mfcO k0, CO_Status /* Get Status value */

sSw k0O, StatusSave /* Save in memory */

mfcO k0O, CO_SRSCtl /* Save SRSCtl if changing shadow sets */

sw k0, SRSCtlSave

1i kl, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */
and k0, k0, kil /* Clear bits in copy of Status */
/* If switching shadow sets, write new value to SRSCtlpgg here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, CO_Status /* Modify mask, switch to kernel mode, */
/* re-enable interrupts */
/*
* If switching shadow sets, clear only KSU above, write target
* address to EPC, and do execute an eret to clear EXL, switch
* shadow sets, and jump to routine
*/

/* Process interrupt here, including clearing device interrupt */
/*

* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/
di /* Disable interrupts - may not be required */
1w k0, StatusSave /* Get saved Status (including EXL set) */
1w k1, EPCSave /* and EPC */
mtcO k0, CO_Status /* Restore the original value */
1w k0O, SRSCtlSave /* Get saved SRSCtl */
mtc0 k1, CO_EPC /* and EPC */
mtcO k0O, CO_SRSCtl /* Restore shadow sets */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

5.1.1.3 External Interrupt Controller Mode

External Interrupt Controller Mode redefines the way that the processor interrupt logic is configured to provide support
for an external interrupt controller. The interrupt controller isresponsible for prioritizing al interrupts, including
hardware, software, timer, and performance counter interrupts, and directly supplying to the processor the vector number
of the highest priority interrupt. EIC interrupt modeisin effect if all of the following conditions are true:

o Confi g3VE|C =1
|ntctlvs¢ 0

» Causgy =1

» Statusggy =0

In EIC interrupt mode, the processor sends the state of the software interrupt requests (Cause;p;_pg), the timer interrupt
request (Causer,), and the performance counter interrupt request (Causepc) to the external interrupt controller, where
it prioritizes these interrupts in a system-dependent way with other hardware interrupts. The interrupt controller can be

ahard-wired logic block, or it can be configurable based on control and status registers. This allows the interrupt
controller to be more specific or more general as afunction of the system environment and needs.

The external interrupt controller prioritizesitsinterrupt requests and produces the vector number of the highest priority
interrupt to be serviced. The vector number, called the Requested Interrupt Priority Level (RIPL), isa 6-bit encoded

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 29

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

30

valuein the range 0..63, inclusive. A value of 0 indicates that no interrupt requests are pending. The values 1..63
represent the lowest (1) to highest (63) RIPL for the interrupt to be serviced. The interrupt controller passes this value
on the 6 hardware interrupt line, which are treated as an encoded value in EIC interrupt mode.

Status;p; (which overlays Status)y7 v2) iSinterpreted as the Interrupt Priority Level (IPL) at which the processor is
currently operating (with avalue of zero indicating that no interrupt is currently being serviced). When the interrupt
controller requests service for an interrupt, the processor compares RIPL with Status;p; to determine if the requested
interrupt has higher priority than the current IPL. If RIPL is strictly greater than Statusp; , and interrupts are enabled
(Status;g = 1, Statusgy = 0, and Statusgr, = 0) aninterrupt request is signaled to the pipeline. When the processor starts
the interrupt exception, it loads RIPL into Causerp, (Which overlays Causep; |pp) and signals the external interrupt
controller to notify it that the request is being serviced. Theinterrupt exception usesthe value of Causegp, asthe vector
number. Because Causer,p, is only loaded by the processor when an interrupt exception is signaled, it is available to
software during interrupt processing.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set number to
use when servicing theinterrupt. As such, the SRSMap register is not used in this mode, and the mapping of the vectored
interrupt to a GPR shadow set isdone by programming (or designing) theinterrupt controller to provide the correct GPR
shadow set number when an interrupt is requested. When the processor |oads an interrupt request into Causeg,p, , it also
loads the GPR shadow set number into SRSCtlgcss, Which is copied to SRSCtl g5 when the interrupt is serviced.

The operation of EIC interrupt mode is shown pictorially in Figure 5-2.

A typical software handler for EIC interrupt mode bypasses the entire sequence of code following the 1Vexception

| Figure5-2 Interrupt Generation for External Interrupt Controller Interrupt Mode

Encode Latch Compare Generate
Any
E‘ﬁj‘,‘ﬁp; 2 RIPC Request :?ntefrUDt
Causapy g - |p>L? Status E«Di — e
Causepg o

—

Exception
& |Interrupt Service
B | Started
L g B Load IntCtIVS ﬁ
9 Fields
Q M .
S |Requested T Vector . | Exception
g) g IPL f Number, % % Vector Offset
3 —» | 2 > 52 -
g — % 5 — © O
g 5 5; £ @ Shadow Set
- s O ow
= % & g = Number
o = 8 >
= %

label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dispatching
directly to the interrupt processing routine. Unlike the compatibility mode examples, an EIC interrupt handler may take
advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the Simplelnterrupt code shown above
need not save the GPRs.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

5.1 Interrupts

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. It also need only copy

Causer p_ to Status,p to prevent lower priority interrupts from interrupting the handler. Such aroutine might look as
follows:

NestedException:

/*
* Nested exceptions typically require saving the EPC, Status,and SRSCtl registers,
* setting up the appropriate GPR shadow set for the routine, disabling

the appropriate IM bits in Status to prevent an interrupt loop, putting

* the processor in kernel mode, and re-enabling interrupts. The sample code

* below can not cover all nuances of this processing and is intended only

* to demonstrate the concepts.

/* Use the current GPR shadow set, and setup software context */

mfcO k1, CO_Cause /* Read Cause to get RIPL value */

mfcO k0, CO_EPC /* Get restart address */

srl k1, k1, S_CauseRIPL /* Right justify RIPL field */

sw k0, EPCSave /* Save in memory */

mfcO k0, CO_Status /* Get Status value */

sw k0, StatusSave /* Save in memory */

ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
mfc0 k1, CO_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k1, SRSCtlsave

/* If switching shadow sets, write new value to SRSCtlpgg here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in kO */
mtc0 k0, CO_Status /* Modify IPL, switch to kernel mode, */
/* re-enable interrupts */
/*
* If switching shadow sets, clear only KSU above, write target
* address to EPC, and do execute an eret to clear EXL, switch
* shadow sets, and jump to routine
*/

/* Process interrupt here, including clearing device interrupt */

/*
* The interrupt completion code is identical to that shown for VI mode above.
*/

5.1.2 Generation of Exception Vector Offsetsfor Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control logic.
This number is combined with IntCtly, 5 to create the interrupt offset, which is added to 0x200 to create the exception
vector offset. For VI interrupt mode, the vector number isin therange0..7, inclusive. For EIC interrupt mode, the vector
number isin therange 1..63, inclusive (0 being the encoding for “no interrupt”). The IntCtly, 5 field specifies the spacing
between vector locations. If thisvalueis zero (the default reset state), the vector spacing is zero and the processor reverts
to Interrupt Compatibility Mode. A non-zero value enables vectored interrupts, and Table 5-4 shows the exception
vector offset for a representative subset of the vector numbers and values of the IntCtly, g field.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 31

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

32

Table 5-4 Exception Vector Offsetsfor Vectored Interrupts

Value of IntCtly,gField
Vector Number 0b00001 | Ob00010 | 0b00100 | Ob01000 | 0b10000
0 0x0200 0x0200 0x0200 0x0200 0x0200
1 0x0220 0x0240 0x0280 0x0300 0x0400
2 0x0240 0x0280 0x0300 0x0400 0x0600
3 0x0260 0x02CO0 0x0380 0x0500 0x0800
4 0x0280 0x0300 0x0400 0x0600 O0xOA00
5 0x02A0 0x0340 0x0480 0x0700 0x0CO00
6 0x02C0 0x0380 0x0500 0x0800 0xOEO0
7 0x02E0 0x03CO0 0x0580 0x0900 0x1000

61 0x09A0 0x1140 0x2080 0x3F00 0x7C00
62 0x09C0 0x1180 0x2100 0x4000 0x7EOO
63 O0x09EOQ 0x11CO 0x2180 0x4100 0x8000

The general equation for the exception vector offset for a vectored interrupt is:

vectorOffset <« 0x200 + (vectorNumber X (IntCtlyg || 0b00000))

5.1.2.1 Software Hazardsand thelnterrupt System

Software writesto certain coprocessor O register fields may change the conditions under which an interrupt istaken. This
creates a coprocessor 0 (CPO) hazard, as described in Chapter 7, “ CPO Hazards,” on page 51. In Release 1 of the
Architecture, there was no architecturally-defined method for bounding the number of instructions which would be
executed after the instruction which caused the interrupt state change and before the change to the interrupt state was
seen. In Release 2 of the Architecture, the EHB instruction was added, and this instruction can be used by software to
clear the hazard.

Table 5-5 lists the CPO register fields which can cause a change to the interrupt state (either enabling interrupts which
were previously disabled or disabling interrupts which were previously enabled).

Table 5-5 Interrupt State Changes Made Visible by EHB

CPORegister Field(s)
Instruction(s) CPO Register Written M odified
MTCO Status IM, IPL, ERL, EXL, IE
El, DI Status IE
MTCO Cause IP; o
MTCO PerfCnt Control IE

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

Table 5-5 Interrupt State Changes Made Visible by EHB

CPORegister Field(s)
Instruction(s) CPO Register Written Modified

MTCO PerfCnt Counter Event Count

An EHB, executed after one of these fieldsis modified by the listed instruction, makes the change to the interrupt state
visible no later than the instruction following the EHB.

In the following example, a change to the CauselM field is made visable by an EHB:

mfcO k0, CO_Status

ins k0, zero, S_StatusIM4, 1 /* Clear bit 4 of the IM field */
mtcO k0O, CO_Status /* Re-write the register */
ehb /* Clear the hazard */

/* Change to the interrupt state is seen no later than this instruction */

Similarly, the effects of an DI instruction are made visible by an EHB:

di /* Disable interrupts */
ehb /* Clear the hazard */
/* Change to the interrupt state is seen no later than this instruction */

5.2 Exceptions

Normal execution of instructions may be interrupted when an exception occurs. Such events can be generated asa
by-product of instruction execution (e.g., an integer overflow caused by an add instruction or a TLB miss caused by a
load instruction), or by an event not directly related to instruction execution (e.g., an external interrupt). When an
exception occurs, the processor stops processing instructions, saves sufficient state to resume the interrupted instruction
stream, enters Kernel Mode, and starts a software exception handler. The saved state and the address of the software
exception handler are afunction of both the type of exception, and the current state of the processor.

5.2.1 Exception Vector L ocations

The Reset, Soft Reset, and NM| exceptions are always vectored to location 0xBFCO0 . 0000. EJTAG Debug exceptions
are vectored to location 0xBFCO0 . 0480, or tolocation 0xFF20.0200 if the ProbTrap bit is zero or one, respectively,
in the EJTAG_Control_register.

Addresses for all other exceptions are a combination of a vector offset and a vector base address. In Release 1 of the
architecture, the vector base address was fixed. In Release 2 of the architecture, software isallowed to specify the vector
base address via the EBase register for exceptions that occur when Statusggy, equals 0. Table 5-6 gives the vector base
address as a function of the exception and whether the BEV hit is set in the Satus register. Table 5-7 gives the offsets
from the vector base address as a function of the exception. Note that the IV bit in the Cause register causes Interrupts
to use a dedicated exception vector offset, rather than the general exception vector. For implementations of Release 2 of
the Architecture, Table 5-4 gives the offset from the base address in the case where Statusggy, = 0 and Causeyy, = 1. For
implementations of Release 1 of the architecture in which Cause)y, = 1, the vector offset isasif IntCtly, g were 0.

Table 5-8 combines these two tablesinto onethat contains all possible vector addresses as afunction of the state that can
affect the vector selection. To avoid complexity in the table, the vector address val ue assumes that the EBase register, as
implemented in Release 2 devices, is not changed from its reset state and that IntCtly,5isO.

In Release 2 of the Architecture, software must guarantee that EBase;5_1, contains zerosin all bit positions|ess than or
equal to the most significant bit in the vector offset. Thissituation can only occur when avector offset greater than OXFFF

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 33

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

34

is generated when an interrupt occurs with VI or EIC interrupt mode enabled. The operation of the processor is
UNDEFINED if this condition is not met.

Table 5-6 Exception Vector Base Addresses

Statusggy

Exception 0 1

Reset, Soft Reset, NM| 0xBFC0.0000

EJTAG Debug (with ProbEn=0in

the EJTAG_Control_register) 0xBFCO0.0480

EJTAG Debug (with ProbEn=11in

the EJTAG_Control_register) 0xFF20.0200

For Release 1 of the architecture:
0xA000.0000

For Release 2 of the architecture:
Cache Error 0xBFC0.0300
EBasez; 30 || 1 ||
EBaSezgulz || 0x000

Note that EBasey; 3o have the
fixed value 0b10

For Release 1 of the architecture:
0x8000.0000

Other For Release 2 of the architecture: 0xBFCO . 0200

EBase31”12 || 0x000

Note that EBasey; 3o have the
fixed value 0b10

Table 5-7 Exception Vector Offsets

Exception Vector Offset
TLB Refill, EXL =0 0x000
Cache error 0x100
General Exception 0x180

0x200 (In Release 2
implementations, thisis the base of
the vectored interrupt table when
Statusgey = 0)

Interrupt, Causeyy, = 1

Reset, Soft Reset, NM| None (Uses Reset Base Address)

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

Table 5-8 Exception Vectors

Vector

For Release 2

Implementations, assumes

EJTAG | that EBaseretainsitsreset

Exception Statusggy | Statusgy, | Causgy | ProbEn | stateand that IntCtly,g=0
Reset, Soft Reset, NM| X X X X 0xBFC0.0000
EJTAG Debug X X X 0 0xBFC0.0480
EJTAG Debug X X X 1 0xFF20.0200
TLB Refill 0 0 X X 0x8000.0000
TLB Refill 0 1 X X 0x8000.0180
TLB Réfill 1 0 X X 0xBFC0.0200
TLB Réfill 1 1 X X 0xBFC0.0380
Cache Error 0 X X X 0xA000.0100
Cache Error 1 X X X 0xBFC0.0300
Interrupt 0 0 0 X 0x8000.0180
Interrupt 0 0 1 X 0x8000.0200
Interrupt 1 0 0 X 0xBFC0.0380
Interrupt 1 0 1 X 0xBFC0.0400
All others 0 X X X 0x8000.0180
All others 1 X X X 0xBFCO0.0380

‘X’ denotes don’t care

5.2.2 General Exception Processing

With the exception of Reset, Soft Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own special

processing as described below, exceptions have the same basic processing flow:

« If the EXL bit in the Satus register is zero, the EPC register isloaded with the PC at which execution will be
restarted and the BD bit is set appropriately in the Cause register (see Table 8-24 on page 92). The value loaded into
the EPC register is dependent on whether the processor implements the MIPS16 ASE, and whether the instruction is
in the delay slot of a branch or jump which has delay slots. Table 5-9 shows the value stored in each of the CPO PC
registers, including EPC. For implementations of Release 2 of the Architecture if Statusggy, = 0, the CSSfield in the

SRCtI register is copied to the PSS field, and the CSS value isloaded from the appropriate source.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the Cause
register. For implementations of Release 2 of the Architecture, the SRSCtl register is not changed.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

35

Chapter 5 Interrupts and Exceptions

Table 5-9 Value Stored in EPC, Error EPC, or DEPC on an Exception

MIPS16 In Branch/Jump
Implemented? Delay Slot? Value stored in EPC/Error EPC/DEPC
No No Address of the instruction
No Yes Address of the branch or jump instruction (PC-4)
Yes No Upper 31 bits of the address of the instruction, combined

with the |SA Mode bit

Upper 31 bits of the branch or jump instruction (PC-2 in
Yes Yes the MIPS16 ISA Mode and PC-4 in the 32-bit ISA
Mode), combined with the ISA Mode bit

» The CE, and ExcCode fields of the Cause registers are loaded with the val ues appropriate to the exception. The CE
field isloaded, but not defined, for any exception type other than a coprocessor unusable exception.

e The EXL hit is set in the Satus register.

» The processor is started at the exception vector.

Thevalueloaded into EPC representsthe restart address for the exception and need not be modified by exception handler
software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to identify the
address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. Thisisnoted in the description
of each exception type below.

Operation:

/* If Statusgy; is 1, all exceptions go through the general exception vector */
/* and neither EPC nor Causepp nor SRSCtl are modified */
if Statusgy;, = 1 then
vectorOffset <« 0x180
else
if InstructionInBranchDelaySlot then
EPC ¢« restartPC/* PC of branch/jump */
Causepp ¢« 1

else
EPC <« restartPC /* PC of instruction */
Causegp < 0

endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet ¢« SRSCtlggg /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then
vectorOffset <« 0x000
elseif (ExceptionType = Interrupt) then
if (Causery = 0) then
vectorOffset « 0x180
else
if (Statusggy = 1) or (IntCtlyg = 0) then
vectorOffset <« 0x200
else
if Config3ygre = 1 then
VecNum ¢ Causegypr,
NewShadowSet ¢« SRSCtlgicgg
else
VecNum ¢« VIntPriorityEncoder ()

36 MIPS32® Architecture For Programmers Volume lll, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

NewShadowSet <« SRSMapiprX4:3..1p1.54
endif
vectorOffset <« 0x200 + (VecNum X (IntCtlyg || 0b00000))
endif /* if (Statusggy = 1) or (IntCtlyg = 0) then */
endif /* if (Causeyy = 0) then */
endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */
/* Release 2 of the architecture */
if (ArchitectureRevision 2 2) and (SRSCtlyqg > 0) and (Statusggy = 0) then
SRSCtlpgg ¢ SRSCtlegg
SRSCtlygg ¢ NewShadowSet
endif
endif /* if Statusgy;, = 1 then */

Causeqg ¢ FaultingCoprocessorNumber
Causegyccoge ¢ ExceptionType
Statusgy;, < 1

/* Calculate the vector base address */
if Statusggy = 1 then
vectorBase <« 0xBFC0.0200
else
if ArchitectureRevision 2= 2 then
/* The fixed value of EBasej3; 37 forces the base to be in kseg0 or ksegl */
vectorBase ¢« EBase3; 15 || 0x000
else
vectorBase <« 0x8000.0000
endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset. Vector */
/* offsets > OxXFFF (vectored or EIC interrupts only), require */
/* that EBase s 1, have zeros in each bit position less than or */
/* equal to the most significant bit position of the vector offset */
PC « vectorBases; 3q | (vectorBase,q o + vectorOffset,qg)

/* No carry between bits 29 and 30 */

5.2.3 EJTAG Debug Exception

An EJTAG Debug Exception occurs when one of anumber of EJTAG-related conditions is met. Refer to the EJTAG
Specification for details of this exception.

Entry Vector Used

0xBFCO 04380 if the ProbTrap bit is zero in the EJTAG_Control_register; 0OxFF20 0200 if the ProbTrap bit is
one.

5.2.4 Reset Exception

A Reset Exception occurswhen the Cold Reset signal is asserted to the processor. This exception is not maskable. When
a Reset Exception occurs, the processor performs afull reset initialization, including aborting state machines,
establishing critical state, and generally placing the processor in a state in which it can execute instructions from
uncached, unmapped address space. On a Reset Exception, only the following registers have defined state:

» The Randomregister isinitialized to the number of TLB entries- 1.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 37

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

38

The Wired register isinitialized to zero.

The Config, Configl, Config2, and Config3 registers are initialized with their boot state.
TheRP, BEV, TS, SR, NMI, and ERL fields of the Status register areinitialized to a specified state.

Watch register enables and Performance Counter register interrupt enables are cleared.

The ErrorEPC register isloaded with the restart PC, as described in Table 5-9. Note that this value may or may not
be predictableif the Reset Exception was taken as the result of power being applied to the processor because PC may
not have avalid value in that case. In some implementations, the value loaded into ErrorEPC register may not be
predictable on either a Reset or Soft Reset Exception.

PC isloaded with 0xBFCO 0000.

Cause Register ExcCode Value
None

Additional State Saved
None

Entry Vector Used
Reset (0xBFC0 0000)

Operation

Random ¢ TLBEntries - 1
PageMasky,gxx ¢ 0 #
PageGrainggp ¢« 0 #
Wired « O

HWREna< 0

EntryHiypyax ¢ O #
Statusgp < O

Statuspggy ¢« 1

Statuspg < 0

Statusgg < O

Statusyyr < O

Statusggp, < 1

IntCtlyg < O

1KB page support implemented
1KB page support implemented

1KB page support implemented

SRSCtlygg ¢ HighestImplementedShadowSet

SRSCtlpgg ¢ O
SRSCtlpgg ¢«
SRSCtlepgg ¢
SRSMap « 0

Causepc < 0

0
0

EBaseExceptionBase « 0
Config « ConfigurationState

Configgg « 2 #
Configl « ConfigurationState
Config2 <« ConfigurationState
Config3 ¢« ConfigurationState
WatchLo[n]; < 0 #
WatchLo[n]g < 0 #
WatchLo[n]y < 0 #
PerfCnt.Control[n]igy < O #
if InstructionInBranchDelaySlot

Suggested - see Config register description

all
all
all
all

implemented Watch registers
implemented Watch registers
implemented Watch registers
implemented PerfCnt registers

For
For
For
For
then

ErrorEPC « restartPC # PC of branch/jump

else

ErrorEPC ¢« restartPC # PC of instruction

endif
PC « O0xBFCO 0000

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

5.2.5 Soft Reset Exception

A Soft Reset Exception occurs when the Reset signal is asserted to the processor. This exception is not maskable. When

a Soft Reset Exception occurs, the processor performs a subset of the full reset initialization. Although a Soft Reset
Exception does not unnecessarily change the state of the processor, it may be forced to do so in order to place the

processor in a state in which it can execute instructions from uncached, unmapped address space. Since bus, cache, or

other operations may be interrupted, portions of the cache, memory, or other processor state may be inconsistent.

The primary difference between the Reset and Soft Reset Exceptionsisin actual use. The Reset Exception istypicaly

used to initialize the processor on power-up, while the Soft Reset Exception is typically used to recover from a

non-responsive (hung) processor. The semantic differenceis provided to allow boot softwareto save critical coprocessor

0 or other register state to assist in debugging the potential problem. As such, the processor may reset the same state
when either reset signal is asserted, but the interpretation of any state saved by software may be very different.

In addition to any hardware initialization required, the following state is established on a Soft Reset Exception:

» TheRP, BEV, TS, SR, NMI, and ERL fields of the Status register areinitialized to a specified state.

» Watch register enables and Performance Counter register interrupt enables are cleared.

» The ErrorEPC register isloaded with the restart PC, as described in Table 5-9.

» PCisloaded with 0xBFCO 0000.

Cause Register ExcCode Value
None

Additional State Saved
None

Entry Vector Used
Reset (0xBFCO 0000)

Operation

PageMaskysrx ¢ O
PageGrainggp ¢« 0
EntryHiypyyx ¢ O
Configgg ¢« 2
Statusgp < O
Statusppy < 1
Statuspg < 0
Statusgg ¢« 1
Statusyyr < 0
Statusggp < 1
WatchLo[n]; < O
WatchLo[n]g < O
WatchLo[n]y < 0
PerfCnt.Control[n]l;z < O

HH FHF H H*

#
#
#
#

if InstructionInBranchDelaySlot
ErrorEPC « restartPC # PC of branch/jump

else

1KB page support implemented
1KB page support implemented
1KB page support implemented
Suggested - see Config register description

For all
For all
For all
For all
then

implemented Watch registers
implemented Watch registers
implemented Watch registers
implemented PerfCnt registers

ErrorEPC ¢« restartPC # PC of instruction

endif
PC « O0xBFCO 0000

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

39

Chapter 5 Interrupts and Exceptions

5.2.6 Non Maskable Interrupt (NMI) Exception
A non maskable interrupt exception occurs when the NMI signal is asserted to the processor.

Although described as an interrupt, it is more correctly described as an exception because it is not maskable. An NMI
occurs only at instruction boundaries, so does not do any reset or other hardware initialization. The state of the cache,
memory, and other processor state is consistent and all registers are preserved, with the following exceptions:

» TheBEV, TS, SR, NMI, and ERL fields of the Status register areinitialized to a specified state.
» The ErrorEPC register isloaded with restart PC, as described in Table 5-9.
» PCisloaded with 0xBFCO 0000.

Cause Register ExcCode Value

None

Additional State Saved
None

Entry Vector Used
Reset (0xBFCO 0000)

Operation

Statusgpy < 1

Statuspg ¢« 0

Statusgg < 0

Statusyyr < 1

Statusggp < 1

if InstructionInBranchDelaySlot then
ErrorEPC ¢« restartPC # PC of branch/jump

else
ErrorEPC ¢« restartPC # PC of instruction

endif
PC ¢ O0xBFCO 0000
5.2.7 Machine Check Exception

A machine check exception occurs when the processor detects an internal inconsistency.

The following conditions cause a machine check exception:

* Detection of multiple matching entriesin the TLB in a TLB-based MMU.

Cause Register ExcCode Value
MCheck (See Table 8-25 on page 95)

Additional State Saved
Depends on the condition that caused the exception. See the descriptions above.

Entry Vector Used
General exception vector (offset 0x180)

40 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

5.2.8 AddressError Exception

An address error exception occurs under the following circumstances:

» Aninstruction is fetched from an address that is not aligned on aword boundary.

» A load or store word instruction is executed in which the address is not aligned on aword boundary.

» A load or store halfword instruction is executed in which the address is not aligned on a halfword boundary.
A reference is made to a kernel address space from User Mode or Supervisor Mode.

A reference is made to a supervisor address space from User Mode.

Notethat in the case of an instruction fetch that is not aligned on aword boundary, the PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point at the unaligned instruction address.

Cause Register ExcCode Value

AdEL: Reference was aload or an instruction fetch
AdES: Reference was a store

See Table 8-25 on page 95.

Additional State Saved

Register State Value
BadVAddr failing address
Contexty pr UNPREDICTABLE
EntryHiypno UNPREDICTABLE
EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used
General exception vector (offset 0x180)

5.2.9 TLB Réfill Exception

A TLB Refill exception occursinaTLB-based MMU when no TL B entry matches areference to amapped address space
and the EXL hit is zero in the Satus register. Note that thisis distinct from the case in which an entry matches but has
the valid bit off, in which case a TLB Invalid exception occurs.

Cause Register ExcCode Value

TLBL: Reference was aload or an instruction fetch

TLBS: Reference was a store

See Table 8-25 on page 95.

Additional State Saved

Register State Value
BadVAddr failing address
Context The BadVPN2 field contains VA3, 13 of the failing address
MIPS32® Architecture For Programmers Volume lll, Revision 2.50 41

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

42

Register State Value
The VPN2 field contains VA3, 13 0f thefailing address; the

EntryHi ASID field containsthe ASID of the reference that missed.
EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used
* TLB Réfill vector (offset 0x000) if Statusgy, = O at the time of exception.
*» General exception vector (offset 0x180) if Statusgy = 1 at the time of exception

5.2.10 TLB Invalid Exception

A TLB invalid exception occurswhen aTL B entry matches areference to amapped address space, but the matched entry
has the valid bit off.

Note that the condition in which no TLB entry matches areference to a mapped address space and the EXL bitisonein
the Status register isindistinguishable from a TLB Invalid Exception in the sense that both use the general exception
vector and supply an ExcCode value of TLBL or TLBS. The only way to distinguish these two casesis by probing the
TLB for amatching entry (using TLBP).

Cause Register ExcCode Value

TLBL: Reference was aload or an instruction fetch

TLBS: Reference was astore

See Table 8-24 on page 92.

Additional State Saved

Register State Value
BadVAddr failing address
Context The BadVPN2 field contains VA3, 13 of the failing address
EriryH ASID feld contans he ASIELa the refrence et micced.
EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used
General exception vector (offset 0x180)

5.2.11 TLB Maodified Exception

A TLB modified exception occurs on a store reference to a mapped address when the matching TLB entry isvalid, but
the entry’s D bit is zero, indicating that the page is not writable.

Cause Register ExcCode Value
Mod (See Table 8-24 on page 92)

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

Additional State Saved

Register State Value
BadVAddr failing address
Context The BadVPN2 field contains VA3, 13 of the failing address

The VPN2 field contains VA3, 13 0f the failing address; the

EntryHi ASID field contains the ASID of the reference that missed.
EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used
General exception vector (offset 0x180)

5.2.12 CacheError Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or dataerror, or aparity or ECC
error is detected on the system bus when a cache miss occurs. This exception is not maskable. Because the error wasin
a cache, the exception vector is to an unmapped, uncached address.

Cause Register ExcCode Value

N/A
Additional State Saved
Register State Value

CacheErr Error state
ErrorEPC Restart PC

Entry Vector Used
Cache error vector (offset 0x100)

Operation

CacheErr <« ErrorState
Statusgg, ¢« 1
if InstructionInBranchDelaySlot then
ErrorEPC « restartPC # PC of branch/jump
else
ErrorEPC ¢« restartPC # PC of instruction
endif
if Statusggy = 1 then
PC « O0xBFCO 0200 + 0x100
else
if ArchitectureRevision 2 2 then
/* The fixed value of EBasej3; 39 and bit 29 forced to a 1 puts the */
/* vector in ksegl */
PC ¢« EBases; 3q ||1||EBasejzg. 15 || 0x100

else
PC < 0xA000 0000 + 0x100
endif
endif
MIPS32® Architecture For Programmers Volume lll, Revision 2.50 43

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

5.2.13 BusError Exception

A bus error occurs when an instruction, data, or prefetch access makes a bus request (due to a cache missor an
uncacheable reference) and that request isterminated in an error. Note that parity errors detected during bus transactions
are reported as cache error exceptions, not bus error exceptions.

Cause Register ExcCode Value

IBE: Error on an instruction reference
DBE: Error on adatareference

See Table 8-25 on page 95.

Additional State Saved
None

Entry Vector Used
General exception vector (offset 0x180)

5.2.14 Integer Overflow Exception

An integer overflow exception occurs when selected integer instructions result in a2's complement overflow.

Cause Register ExcCode Value
Ov (See Table 8-25 on page 95)

Additional State Saved
None

Entry Vector Used
General exception vector (offset 0x180)

5.2.15 Trap Exception

A trap exception occurs when atrap instruction resultsin a TRUE value.

Cause Register ExcCode Value
Tr (See Table 8-25 on page 95)

Additional State Saved
None

Entry Vector Used
General exception vector (offset 0x180)

5.2.16 System Call Exception

A system call exception occurs when a SY SCALL instruction is executed.

Cause Register ExcCode Value
Sys (See Table 8-24 on page 92)

44 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

Additional State Saved
None

Entry Vector Used
General exception vector (offset 0x180)

5.2.17 Breakpoint Exception

A breakpoint exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value
Bp (See Table 8-25 on page 95)

Additional State Saved
None

Entry Vector Used
General exception vector (offset 0x180)

5.2.18 Reserved Instruction Exception

A Reserved Instruction Exception occursif any of the following conditionsistrue:

» Aninstruction was executed that specifies an encoding of the opcode field that is flagged with “*” (reserved), “B”
(higher-order 1SA), or an unimplemented “&” (ASE).

» Aninstruction was executed that specifies a SPECIAL opcode encoding of the function field that is flagged with “ ="
(reserved), or “B” (higher-order ISA).

» Aninstruction was executed that specifies a REGIMM opcode encoding of thert field that is flagged with “ ="
(reserved).

» Aninstruction was executed that specifies an unimplemented SPECIAL?2 opcode encoding of the function field that
is flagged with an unimplemented “0” (partner available), or an unimplemented “c” (EJTAG).

An instruction was executed that specifies a COPz opcode encoding of thersfield that is flagged with “=” (reserved),
“B” (higher-order 1SA), or an unimplemented “&” (ASE), assuming that access to the coprocessor is allowed. If
access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead. For the COP1 opcode,
some implementations of previous | SAs reported this case as a Floating Point Exception, setting the Unimplemented
Operation bit in the Cause field of the FCSR register.

An instruction was executed that specifies an unimplemented COPO opcode encoding of the function field when rsis
CO that isflagged with “ =" (reserved), or an unimplemented “c” (EJTAG), assuming that access to coprocessor 0 is
alowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead.

An instruction was executed that specifies a COP1 opcode encoding of the function field that is flagged with “ ="
(reserved), “B” (higher-order 1SA), or an unimplemented “&” (ASE), assuming that access to coprocessor 1 is
alowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead. Some
implementations of previous | SAs reported this case as a Floating Point Exception, setting the Unimplemented
Operation bit in the Cause field of the FCSR register.

Cause Register ExcCode Value

RI (See Table 8-25 on page 95)

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 45

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

Additional State Saved

None

Entry Vector Used
General exception vector (offset 0x180)

5.2.19 Coprocessor Unusable Exception

A coprocessor unusable exception occurs if any of the following conditions is true:

» A COPO or Cache instruction was executed while the processor was running in a mode other than Debug Mode or
Kernel Mode, and the CUO bit in the Satus register was a zero

» A COP1, LWC1, SWCL1, LDC1, SDC1 or MOVCI (Specia opcode function field encoding) instruction was executed
and the CU1 bit in the Status register was a zero.

* A COP2, LWC2, SWC2, LDC2, or SDC2 instruction was executed, and the CU2 bit in the Status register was a zero.

» A COP3 instruction was executed, and the CU3 bit in the Status register was a zero.

Cause Register ExcCode Value
CpU (See Table 8-24 on page 92)

Additional State Saved

Register State Value
Causecg unit number of the coprocessor being referenced

Entry Vector Used
General exception vector (offset 0x180)

5.2.20 Floating Point Exception
A floating point exception isinitiated by the floating point coprocessor to signal afloating point exception.

Register ExcCode Value
FPE (See Table 8-24 on page 92)

Additional State Saved

Register State Value
FCSR indicates the cause of the floating point exception

Entry Vector Used
General exception vector (offset 0x180)

5.2.21 Coprocessor 2 Exception

A coprocessor 2 exception isinitiated by coprocessor 2 to signal a precise coprocessor 2 exception.

46 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

Register ExcCode Value
C2E (See Table 8-24 on page 92)

Additional State Saved
Defined by the coprocessor

Entry Vector Used
General exception vector (offset 0x180)

5.2.22 Watch Exception

The watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data
reference matches the address information stored in the WatchHi and WatchLo registers. A watch exception is taken
immediately if the EXL and ERL bits of the Status register are both zero. If either bit is a one at the time that awatch
exception would normally be taken, the WP bit in the Cause register is set, and the exception is deferred until both the
EXL and ERL bitsin the Status register are zero. Software may use the WP bit in the Cause register to determineif the
EPC register points at the instruction that caused the watch exception, or if the exception actually occurred whilein
kernel mode.

If the EXL or ERL bitsare onein the Satus register and a singleinstruction generates both awatch exception (whichis
deferred by the state of the EXL and ERL bits) and a lower-priority exception, the lower priority exception is taken.

Watch exceptions are never taken if the processor is executing in Debug Mode. Should awatch register match while the
processor isin Debug Mode, the exception isinhibited and the WP hit is not changed.

It isimplementation dependent whether a data watch exception istriggered by a prefetch or cache instruction whose
address matches the Watch register address match conditions. A watch triggered by a SC instruction does so even if the
store would not complete because the LLbit is zero.

Register ExcCode Value
WATCH (See Table 8-24 on page 92)

Additional State Saved

Register State Value

indicates that the watch exception was deferred until after
both Statusgy and Statusgg, were zero. This bit directly

Causeyp causes awatch exception, so software must clear this bit as
part of the exception handler to prevent a watch exception
loop at the end of the current handler execution.

Entry Vector Used
General exception vector (offset 0x180)

5.2.23 Interrupt Exception

Theinterrupt exception occurs when an enabled request for interrupt service is made. See Section 5.1 on page 23 for
more information.

Register ExcCode Value
Int (See Table 8-25 on page 95)

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 47

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

Additional State Saved

Register State Value
Cause p indicates the interrupts that are pending.

Entry Vector Used
General exception vector (offset 0x180) if the IV bit in the Cause register is zero.
Interrupt vector (offset 0x200) if the IV bit in the Cause register is one.

48 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 6

GPR Shadow Registers

The capability in this chapter istargeted at removing the need to save and restore GPRs on entry to high priority
interrupts or exceptions, and to provide specified processor modes with the same capability. Thisisdone by introducing
multiple copies of the GPRs, called shadow sets, and allowing privileged software to associate a shadow set with entry
to Kernel Mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero.

The number of GPR shadow sets is implementation dependent and may range from one (the normal GPRS) to an
architectural maximum of 16. The highest number actually implemented is indicated by the SRSCtl s field, and all
shadow sets between 0 and SRSCtl g, inclusive must be implemented. If thisfield is zero, only the normal GPRs are
implemented.

6.1 Introduction to Shadow Sets

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to Kernel Mode viaan
interrupt or exception. Once a shadow set is bound to a Kernel Mode entry condition, reference to GPRs work exactly
as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may
need to reference all GPRsin theregister file, even specific shadow registersthat are not visiblein the current mode. The
RDPGPR and WRPGPR instructions are used for this purpose. The CSSfield of the SRSCtI register provides the number
of the current shadow register set, and the PSS field of the SRSCtI register provides the number of the previous shadow
register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to
the SRSMap register. If the processor isoperating in EIC interrupt mode, the binding of the interrupt to a specific shadow
set is provided by the external interrupt controller, and is configured in an implementation-dependent way. Binding of
an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCHI register. When
an exception or interrupt occurs, the value of SRSCtl-gg is copied to SRSCtl pgs, and SRSCtl 55 is st to the value taken
from the appropriate source. On an ERET, the value of SRSCtlpggis copied back into SRSCtl s to restore the shadow
set of the mode to which control returns. More precisely, the rules for updating the fields in the SRSCtl register on an
interrupt or exception are as follows:

1. Nofieldinthe SRSCtl register is updated if any of the following conditionsistrue. In this case, steps2 and 3 are
skipped.

» The exception is one that sets Statusgg : NMI or cache error.
» The exception causes entry into EJTAG Debug Mode
» Statusgpy =1
» Statusey =1
2. SRSCtlcggiscopied to SRSCtlpsg
3. SRSCtlcggis updated from one of the following sources:

» The appropriate field of the SRSMap register, based on IPL, if the exception is an interrupt, Cause}y, = 1,
Config3y g c = 0, and Config3y,+ = 1. These are the conditions for a vectored interrupt.

» The EICSSfield of the SRSCHl register if the exception is an interrupt, Cause)y, = 1 and Config3ygc = 1. These
are the conditions for a vectored EIC interrupt.

» The ESSfield of the SRSCtl register in any other case. Thisisthe condition for a non-interrupt exception, or a
non-vectored interrupt.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 49

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 GPR Shadow Registers

Similarly, the rules for updating the fields in the SRSCtl register at the end of an exception or interrupt are as follows:
1. Nofieldinthe SRSCtl register is updated if any of the following conditionsistrue. In this case, step 2 is skipped.
* A DERET is executed
* An ERET isexecuted with Statusgr, = 1 or Statusggy = 1
2. SRSCtlpggiscopied to SRSCtlgg

Theseruleshavethe effect of preserving the SRSCtI register in any case of anested exception or one which occursbefore
the processor has been fully initialize (Statusggy = 1).

Privileged software may switch the current shadow set by writing anew value into SRSCtl psg, |oading EPC with atarget
address, and doing an ERET.

6.2 Support Instructions

Table 6-1 Instructions Supporting Shadow Sets

Mnemonic Function MIPS64 Only?
RDPGPR Read GPR From Previous Shadow Set No
WRPGPR | Write GPR to Shadow Set No
50 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 7

CPO Hazards

7.1 Introduction

Because resources controlled via Coprocessor 0 affect the operation of various pipeline stages of a MIPS32 processor,
mani pul ation of these resources may produce results that are not detectabl e by subsequent instructions for some number
of execution cycles. When no hardware interlock exists between one instruction that causes an effect that isvisibleto a
second instruction, a CPO hazard exists.

In Release 1 of the MIPS32® Architecture, CPO hazards were rel egated to implementation-dependent cycle-based
solutions, primarily based on the SSNOP instruction. Since that time, it has become clear that thisis an insufficient and
error-prone practice that must be addressed with a firm compact between hardware and software. As such, new
instructions have been added to Release 2 of the architecture which act as explicit barriersthat eliminate hazards. To the
extent that it was possible to do so, the new instructions have been added in such away that they are
backward-compatible with existing MIPS processors.

7.2 Typesof Hazards

In privileged software, there are two different types of hazards: execution hazards and instruction hazards. Both are
defined below. In Table 7-1 and Table 7-2 below, thefinal column liststhe “typical” spacing required inimplementations
of Release 1 of the Architectureto alow the consumer to eliminate the hazard. The “typical” value shown in these tables
represent spacing that isin common use by operating systemstoday. Animplementation of Release 1 of the Architecture
which requires less spacing to clear the hazard (including one which has full hardware interlocking) should operate
correctly with an operating system which uses this hazard table. An implementation of Release 1 of the Architecture
which requires more spacing to clear the hazard incurs the burden of validating kernel code against the new hazard
requirements.

Note that, for superscalar MIPSimplementations, the number of instructionsissued per cycle may be greater than one,
and thus that the duration of the hazard in instructions may be greater than the duration in cycles. It isfor thisreason
that MIPS32 Release 1 defines the SSNOP instruction to convert instruction issuesto cyclesin a superscalar design.

7.2.1 Execution Hazards

Execution hazards are those created by the execution of oneinstruction, and seen by the execution of another instruction.
Table 7-1 lists execution hazards.

Table 7-1 Execution Hazards

“ TypiCa]"
Spacing
Producer - Consumer Hazard On (Cycles)
Hazards Related to the TLB
TLBR,
MTCO - TLBWI, EntryHi 2
TLBWR
MIPS32® Architecture For Programmers Volume lll, Revision 2.50 51

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 7 CP0O Hazards

Table 7-1 Execution Hazards

“ Typl Ca_l n
Spacing
Producer - Consumer Hazard On (Cycles)
EntryLo0,
MTCO > IEwk EntryLol, 2
Index
TLBPR, .
MTCO - Load or Store Instruction EntryHiasip 3
EntryHiagip,
MTCO - Load/store affected by new state WatchHi, 3
WatchLo
TLBP - MFCO Index 2
EntryHi,
EntryL o0,
TLBR - MFCO EntryLol. 3
PageMask
TLBP,
TEEWR - TLBR TLB entry 3
Load/store using new TLB entry
Hazards Related to Exceptions or Interrupts
Coprocessor instruction execution depends on
MTCO - the new value of Statusgyy Statusey 4
DEPC,
EPC,
MTCO - ERET ErrorEPC, 3
Status
Causeip
Compare,
PerfCnt
MTCO - Interrupted Instruction ngrtfrgr']{f’ 3
Counter,
Statu5| E
Status;
. Status,
El, DI N Interrupted Instruction E N/A
P StaIUS| M
Other Hazards
LL - MFCO LLAddr 2
MTCO - CACHE PageGrain 2

7.2.2 Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another
instruction. Table 7-2 listsinstruction hazards.

52 MIPS32® Architecture For Programmers Volume lll, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

7.3 Hazard Clearing Instructions and Events

Table 7-2 Instruction Hazards

“ Typi Caj ”
Spacing
Producer - Consumer Hazard On (Cycles)
Hazards Related to the TLB
EntryHiAS| D,
MTCO - Instruction fetch seeing the new value WatchHi, 5
WatchLo

Instruction fetch seeing the new value
MTCO - (including a change to ERL followed by an Status 5
instruction fetch from the useg segment)

%Ew:? - Instruction fetch using new TLB entry TLB entry 5

Hazards Related to Writing the Instruction Sream or Modifying an Instruction Cache Entry

Unbounded
(but
i eliminated
Instructionstream N Instruction fetch seeing the new instruction Cache entries | in Release 2
writes stream
by the
SYNCI
instruction)
CACHE N :Isrt15tructi on fetch seeing the new instruction Cache entries 5
ream
Other Hazards
RDPGPR 1
MTCO - WRPGPR SRSCtlpsg N/A

1. Thisisnot precisely ahazard on the instruction fetch. Rather it is a hazard on amodification to the previous GPR context field,
followed by a previous-context reference to the GPRs. It is considered an instruction hazard rather than an execution hazard
because some implementation may require that the previous GPR context be established early in the pipeline, and execution
hazards are not meant to cover this case.

7.3 Hazard Clearing Instructions and Events

Table 7-3 lists the instructions designed to eliminate hazards.

Table 7-3 Hazard Clearing I nstructions

Mnemonic Function

DERET Clear both execution and instruction hazards

EHB Clear execution hazard

ERET Clear both execution and instruction hazards

JALR.HB Clear both execution and instruction hazards

JR.HB Clear both execution and instruction hazards

SSNOP Superscalar No Operation

syNci? Synchronize caches after instruction stream write

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 53
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 7 CP0O Hazards

54

1. SYNCI synchronizes caches after an instruction stream write, and before execution
of that instruction stream. Assuch, it is not precisely a coprocessor 0 hazard, but
isincluded here for completeness.

DERET, ERET, and SSNOP are available in Release 1 of the Architecture; EHB, JALR.HB, JR.HB, and SYNCI were
added in Release 2 of the Architecture. In both Release 1 and Release 2 of the Architecture, DERET and ERET clear
both execution and instruction hazards and they are the only timing-independent instructions which will do thisin both
releases of the architecture.

Even though DERET and ERET clear hazards between the execution of theinstruction and the target instruction stream,
an execution hazard may still be created between awrite of the DEPC, EPC, ErrorEPC, or Satus registers and the
DERET or ERET instruction.

In addition, an exception or interrupt also clears both execution and instruction hazards between the instruction that
created the hazard and the first instruction of the exception or interrupt handler. Said another way, no hazards remain
visible by thefirst instruction of an exception or interrupt handler.

7.3.1 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for
compatibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with
both Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions. These
encodings were chosen for compatibility with existing M1PS implementations, including many which pre-date the
MIPS32 architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or JR.HB
instructions can be included in existing software for backward and forward compatibility. Seethe JALR.HB and JR.HB
instructions for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen because
it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software running on
processors that don’'t implement Release 2 can emulate the function using the CACHE instruction.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 8

Coprocessor O Registers

The Coprocessor 0 (CPO) registers provide the interface between the | SA and the PRA. Each register is discussed below,

with the registers presented in numerical order, first by register number, then by select field number.

8.1 Coprocessor 0 Register Summary

Table 8-1 lists the CPO registersin numerical order. The individual registers are described later in this document. If the
compliancelevel isqualified (e.g., “Required (TLB MMU)"), it appliesonly if the qualifying condition istrue. The Sel
column indicates the value to be used in the field of the same name in the MFCO and MTCO instructions.

Table 8-1 Coprocessor 0 Registersin Numerical Order

Register Register Compliance
Number Selt Name Function Reference Level
Required
: Section 8.4 on (TLB MMU);
0 0 Index Index into the TLB array page 61 Optional
(others)
0 1 MV PControl Per-processor register containing global MIPS®MTASE Reﬁ/lljlrregs(gl PS
MIPS® MT configuration data Specification Optional (OtHers)
0 2 MV PConfO Per-processor multi-V PE dynamic MIPS®BMTASE Reﬂ/Ll'-'l-re/gé%I PS
configuration information Specification Optional (Otﬁers)
Per-processor multi-V PE dynamic MIPS®BMTASE .
0 3 MVPConf1 configuration information Specification Optiondl
Required
: : Section 8.5 on (TLB MMU);
1 0 Random Randomly generated index into the TLB array page 62 Optional
(others)
1 1 VPEControl Per-V PE register containing relatively volatile | MIPSBMTASE Reﬂx—'l-regégl PS
thread configuration data Specification Optional (Otﬁers)
Per-V/PE multi-thread configuration MIPSBMTASE | Required (MIPS
1 2 VPEConf0 ; f A MT ASE);
information Specification Optional (Others)
Per-V PE multi-thread configuration MIPS®BMTASE .
1 3 VPEConf1 information Specification Optiondl
Per-V PE register defining which YIELD Required (MIPS
1 4 Y QMask qualifier bits may be used without generating Mlsgﬁf'i\ggtﬁ;ﬁiz MT ASE);
an exception Optiona (Others)
Per-V PE register to manage scheduling of a MIPS®BMTASE ;
1 5 VPESchedule V PE within a processor Specification Optiond
Per-V PE register to provide scheduling MIPS®BMTASE :
1 6 VPEScheFBack feedback to software Specification Optiond

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

55

Chapter 8 Coprocessor 0 Registers

Table 8-1 Coprocessor 0 Registersin Numerical Order

Register Register Compliance
Number Selt Name Function Reference Level
Per-V PE register to provide control over
1 7 VPEOpt optional features, such as cache partitioning Méﬁgc?f'ivcl;ﬁ)ﬁE Optional
control
Required
> 0 EntrvL o0 Low-order portion of the TLB entry for Section 8.6 on (TLB MMU);
y even-numbered virtual pages page 63 Optional
(others)
Per-TC status information, including copies of Required (MIPS
2 1 TCStatus thread-specific bits of Status and EntryHi Méﬁgc?fli\g-artﬁ)ﬁE MT ASE);
registers. Optiona (Others)
. Per-TC information about TC ID and VPE MIPSBMTASE | Required (MIPS
2 2 TCBind bindin Specification MT ASE);
9 Optiona (Others)
2 3 TCRestart Per-TC vaue of restart instruction addressfor | MIPSBMTASE Re(':\1/L||_||_reAc\iS(‘I;/;I PS
the associated thread of execution Specification Optional (Others)
Required (MIPS
2 4 TCHalt Per-TC register controlling Halt state of TC Mgff?ﬁ;ﬁ)ﬁE MT ASE):
Optiona (Others)
Per-TC read/write storagefor operating system | MIPS®BMTASE Reguired (M I PS
2 5 TCContext use Specification MT ASE);
Optiona (Others)
2 6 TCSchedule Per-TC register to manage scheduling of aTC Mg;gc?f'i\g;ﬁ)ﬁE Optiona
Per-TC register to provide scheduling feedback | MIPSBMTASE :
2 7 TCScheFBack to software Specification Optional
3 0 EntryLol Low-order portion of the TLB entry for Section 8.6 on Req,tj,: mj()ﬂ‘ B
odd-numbered virtual pages page 63 Optional (others)
Required
. . Section 8.7 on (TLB MMU);
4 0 Context Pointer to page table entry in memory page 67 Optional
(others)
SmartMIPS Required
4 1 ContextConfig Context and X Context register configuration ASE (SmartMIPSASE
Specification Only)
Required
: o . Section 8.8 on (TLB MMU);
5 0 PageMask Control for variable page sizein TLB entries page 68 Optional
(others)
Section 8.9 on .
| poeond | Betred
5 1 PageGrain Control for small page support SmartMIPS ASE); Optional
2, S
Specification (Release 2)
Required
6 0 Wired Controls the number of fixed (“wired”) TLB Section8.10 on (TLB MMU);
entries page 72 Optional
(others)
56 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.1 Coprocessor 0 Register Summary

Table 8-1 Coprocessor 0 Registersin Numerical Order

Register Register Compliance
Number Selt Name Function Reference Level
6 1 SRSConfo Per-V PE register indicating and optionally MIPS®MTASE Reﬁ/llj-'l-regs(gl PS
controlling shadow register set configuration Specification Optional (Others)
Per-V PE register indicating and optionally MIPS®RMTASE .
6 2 SRSConf1 controlling shadow register set configuration Specification Optiondl
Per-V PE register indicating and optionally MIPS®BMTASE ;
6 3 SRSConf2 controlling shadow register set configuration Specification Optiond
Per-V PE register indicating and optionally MIPS®RMTASE :
6 4 SRSConf3 controlling shadow register set configuration Specification Optiond
Per-V PE register indicating and optionally MIPS®RMTASE .
6 5 SRSConf4 controlling shadow register set configuration Specification Optional
7 0 HWREna Enables access viathe RDHWR instructionto | Section8.11 on Required
selected hardware registers page 73 (Release 2)
7 1-7 Reserved for future extensions Reserved
Reports the address for the most recent Section8.12 on .
8 0 BadVAddr address-related exception page 74 Required
. Section8.13 on .
9 0 Count Processor cycle count page 75 Required
. . . Section8.14 on Implementation
9 6-7 Available for implementation dependent user page 75 Dependent
Required
: . . Section8.15 on (TLB MMU);
10 0 EntryHi High-order portion of the TLB entry page 76 Optional
(others)
) . Section8.16 on ;
11 0 Compare Timer interrupt control page 78 Required
. : . Section8.17 on Implementation
11 6-7 Available for implementation dependent user page 78 Dependent
Section8.18 .
12 0 Status Processor status and control Ipag e79 on Required
Section8.19 on Required
12 1 IntCtl Interrupt system status and control page 86 (Release 2)
: Section8.20 on Required
12 2 SRSCtl Shadow register set status and control page 88 (Release 2)
Required
. Section8.21 on (Release 2 and
12 3 SRSMap Shadow set |PL mapping page 91 shadow sets
implemented)
13 0 Cause Cause of last general exception Section8.22 on Required
page 92
14 0 EPC Program counter at last exception Section8.23 on Required
page 97
15 0 PRId Processor identification and revision Sedg)aréigg on Required

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

57

Chapter 8 Coprocessor 0 Registers

Table 8-1 Coprocessor 0 Registersin Numerical Order

Register Register Compliance
Number Selt Name Function Reference Level
15 1 EBase Exception vector base register Sectg)aréggg on (quelgsreeg)
16 0 Config Configuration register Sectg)ggé& 12(?1 on Required
16 1 Configl Configuration register 1 SectFi)gSeS 12073 on Required
16 2 Config2 Configuration register 2 Sectg)%ffg? on Optional
16 3 Config3 Configuration register 3 Sectrl)ggg.lzfo on Optiona
16 6-7 Available for implementation dependent user SectFi)gSeB 13:92 on Imlglgrr)ner;endtgiton
17 0 LLAddr L oad linked address Sw;%‘gflls on Optional
18 0-n WatchLo Watchpoint address Sedggggfla on Optional
19 0-n WatchHi Watchpoint control SectFi)gSer% on Optional
20 0 XContext in 64-bit implementations Reserved
21 all Reserved for future extensions Reserved
22 al Available for implementation dependent use Sectggg?f& on Imlgléerr)ner;endtgiton
23 0 Debug EJTAG Debug register SpeEc‘EﬁaCt;l on Optional
. PDtrace ;
23 1 TraceControl PDtrace control register Specification Optional
23 2 TraceControl2 PDtrace control register szglflr (;ae(l:t(ieon Optional
23 3 UserTraceData | PDtrace control register Spggg (?gt?on Optional
23 4 TraceBPC PDtrace control register PDrace Optional
€ Specification P
Program counter at last EJTAG debug EJTAG :
24 0 DERC exception Specification Optiond
25 0-n PerfCnt Performance counter interface Swg%‘g 13271 on Recommended
26 0 ErrCtl Parity/ECC error control and status Sedggggfza on Optional
27 0-3 CacheErr Cache parity error control and status SectFi)gSeS.l3295 on Optional
28 even selects | TagLo Low-order portion of cache tag interface Sect;)ggffé)(s on Required (Cache)
58 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.2 Notation

Table 8-1 Coprocessor 0 Registersin Numerical Order

Register Register Compliance
Number Selt Name Function Reference Level

28 odd selects | DataLo Low-order portion of cache datainterface Sectri)ggg.lég? on Optional

29 even selects | TagHi High-order portion of cache tag interface SectFi)gSészzs on Required (Cache)

29 odd selects | DataHi High-order portion of cache data interface SectFi)gSeB ‘fz?’g on Optional

Section8.44 on .
30 0 ErrorEPC Program counter at last error page 130 Required
31 0 DESAVE EJTAG debug exception save register EJTAG Optional
9 excep € Specification P

1. Any select (Sel) value not explicitly noted as available for implementation-dependent use is reserved for future use by the Architecture.

8.2 Notation

For each register described below, field descriptions include the read/write properties of the field, and the reset state of
the field. For the read/write properties of the field, the following notation is used:

Table 8-2 Read/Write Bit Field Notation

Read/Write
Notation

Hardware I nterpretation

Software I nterpretation

A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of thisfield are visible by software read. Software updates of thisfield are

visible by hardware read.

If the Reset State of thisfield is“Undefined”, either software or hardware must initialize the value
before the first read will return a predictable value. This should not be confused with the formal

definition of UNDEFINED behavior.

A field which iseither static or isupdated only
by hardware.

If the Reset State of thisfield is either “0”,
“Preset”, or “Externally Set”, hardware
initializesthisfield to zero or to the appropriate
state, respectively, on powerup. The term
“Preset” is used to suggest that the processor
establishes the appropriate state, whereas the
term*“Externally Set” isused to suggest that the
state is established viaan external source (e.g.,
personality pins or initialization bit stream).
These terms are suggestions only, and are not
intended to act as a requirement on the
implementation.

If the Reset State of thisfield is“Undefined”,
hardware updates this field only under those
conditions specified in the description of the
field.

A field to which the value written by software
isignored by hardware. Software may write
any value to this field without affecting
hardware behavior. Software reads of thisfield
return the last value updated by hardware.

If the Reset State of thisfield is“Undefined”,
software reads of thisfield result in an
UNPREDICTABLE value except after a
hardware update done under the conditions
specified in the description of the field.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

59

Chapter 8 Coprocessor 0 Registers

Table 8-2 Read/Write Bit Field Notation

Read/Write
Notation Hardware I nterpretation Software | nterpretation

A field to which the value written by software

must be zero. Software writes of non-zero

valuesto thisfield may resultin UNDEFINED

behavior of the hardware. Software reads of

0 A field which hardware does not update, and thisfield return zero aslong as al previous
for which hardware can assume a zero value. software writes are zero.

If the Reset State of thisfield is“Undefined”,
software must write this field with zero before
it is guaranteed to read as zero.

8.3 Writing CPU Registers

With certain restrictions, software may assumethat it can validly write the value read from a coprocessor O register back
to that register without having unintended side effects. This rule means that software can read a register, modify one
field, and write the value back to the register without having to consider the impact of writes to other fields. Processor
designers should take this into consideration when using coprocessor O register fields that are reserved for
implementations and make sure that the use of these bitsis consistent with software assumptions.

Themost significant exception to thisruleisasituation in which the processor modifiesthe register between the software
read and write, such as might occur if an exception or interrupt occurs between the read and write. Software must
guarantee that such an event does not occur.

60 MIPS32® Architecture For Programmers Volume lll, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.4 Index Register (CPO Register 0, Select 0)

8.4 Index Register (CPO Register 0, Select 0)
Compliance L evel: Required for TLB-based MM Us; Optional otherwise.

The Index register isa32-bit read/write register which contains the index used to accessthe TLB for TLBP, TLBR, and
TLBWI instructions. The width of the index field isimplementation-dependent as a function of the number of TLB
entries that are implemented. The minimum value for TLB-based MMUsiis Ceiling(Log2(TLBEntries)). For example,
Six bits are required for a TLB with 48 entries).

The operation of the processor isSUNDEFINED if avalue greater than or equal to the number of TLB entriesiswritten
to the Index register.

Figure 8-1 shows the format of the Index register; Table 8-3 describes the Index register fields.

Figure 8-1 Index Register Format
31 n nl 0
| P] 0 Index

Table 8-3 Index Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

Probe Failure, Hardware writes this bit during
execution of the TLBP instruction to indicate whether
aTLB match occurred:

Encoding M eaning . .
P 31 - R Undefined Required
0 A match occurred, and the Index field

contains the index of the matching entry

No match occurred and the Index field is
UNPREDICTABLE

0 30..n Must be written as zero; returns zero on read. 0 0 Reserved

TLB index. Software writes this field to provide the
index to the TLB entry referenced by the TLBR and
TLBWI instructions.

Index n-1..0 R/W Undefined Required

Hardware writes this field with the index of the
matching TLB entry during execution of the TLBP
instruction. If the TLBP fails to find a match, the
contents of thisfield are UNPREDICTABLE.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 61
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.5 Random Register (CPO Register 1, Select 0)

Compliance L evel: Required for TLB-based MM Us; Optional otherwise.

The Random register is aread-only register whose value is used to index the TLB during a TLBWR instruction. The
width of the Random field is calculated in the same manner as that described for the Index register above.

The value of the register varies between an upper and lower bound as follow:

» A lower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the contents
of the Wired register). The entry indexed by the Wired register is the first entry available to be written by aTLB
Write Random operation.

* An upper bound is set by the total number of TLB entries minus 1.

Within the required constraints of the upper and lower bounds, the manner in which the processor selects values for the
Random register is implementation-dependent.

The processor initializes the Random register to the upper bound on a Reset Exception, and when the Wired register is

written.

Figure 8-2 shows the format of the Random register; Table 8-4 describes the Random register fields.

Figure 8-2 Random Register Format

31 n nl 0
0 Random
Table 8-4 Random Register Field Descriptions
Fields
Read/
Name Bits Description Write Reset State | Compliance

0 31..n Must be written as zero; returns zero on read. 0 0 Reserved

Random n-1..0 TLB Random Index R TLB Entries- 1 Required

62

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.6 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)

8.6 EntryL o0, EntryL ol (CPO Registers2 and 3, Select 0)

Compliance L evel: EntryLo0 is Required for a TLB-based MMU; Optional otherwise.
Compliance Level: EntryLol is Required for a TLB-based MMU; Optional otherwise.

The pair of EntryLo registers act as the interface between the TLB and the TLBP, TLBR, TLBWI, and TLBWR
instructions. EntryLoO holds the entries for even pages and EntryLol holds the entries for odd pages.

Software may determine the value of PABITS by writing al onesto the EntryLoO or EntryLol registers and reading the
value back. Bitsread as“1” from the PFN field allow software to determine the boundary between the PFNand Fill fields
to calculate the value of PABITS.

The contents of the EntryL.o0 and EntryLol registers are not defined after an address error exception and some fields
may be modified by hardware during the address error exception sequence. Software writes of the EntryHi register (via
MTCO) do not cause the implicit update of address-related fields in the BadVAddr or Context registers.

For Release 1 of the Architecture, Figure 8-3 shows the format of the EntryLoO and EntryLol registers; Table 8-5
describes the EntryLoO and EntryLol register fields. For Release 2 of the Architecture, Figure 8-4 shows the format of
the EntryLoO and EntryL ol registers; Table 8-6 describes the EntryLoO and EntryLol register fields.

Figure 8-3 EntryL o0, EntryL ol Register Format in Release 1 of the Architecture

31 30 29 6 5 3 210

\Fill\ PFN \ C \D\V\G\

Table 8-5 EntryL o0, EntryL ol Register Field Descriptionsin Release 1 of the Architecture

Fields

Read/
Name Bits Description Write | Reset State | Compliance

These bitsareignored on write and return zero on read.
Fill 31..30 The boundaries of thisfield change as afunction of the R 0 Required
value of PABITS. See Table 8-7 for more information.

Page Frame Number. Correspondsto bitsPABITS 1..12
of the physical address, where PABITSis the width of
PFN 29..6 the physical addressin bits. The boundariesof thisfield R/W Undefined Required
change as afunction of the value of PABITS. See Table
8-7 for more information.

C 5.3 Coherency attribute of the page. See Table 8-8 below. R/W Undefined Required

“Dirty” bit, indicating that the page iswritable. If this
bit is a one, stores to the page are permitted. If this bit
isazero, stores to the page cause a TLB Modified
exception.

Kernel software may use this bit to implement paging
algorithmsthat require knowing which pages have been
written. If thishitisalwayszero when apageisinitially
mapped, the TLB Modified exception that results on
any store to the page can be used to update kernel data
structures that indicate that the page was actually
written.

R/W Undefined Required

Valid bit, indicating that the TLB entry, and thus the
virtual page mapping are valid. If thisbitisaone, -

v 1 accesses to the page are permitted. If thisbit is a zero, RIW Undefined

accesses to the page cause a TLB Invalid exception.

Required

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 63

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 8-5 EntryL o0, EntryL ol Register Field Descriptionsin Release 1 of the Architecture

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

Global bit. OnaTLB write, thelogical AND of the G
bits from both EntryL o0 and EntryL ol becomesthe G
bitin the TLB entry. If the TLB entry G bitisaone,
ASID comparisons are ignored during TLB matches.
On aread from a TLB entry, the G bits of both
EntryL o0 and EntryL o1 reflect the state of the TLB G
bit.

Undefined

Required
(TLB MMU)

31 30 29

Figure 8-4 EntryL 00, EntryL ol Register Format in Release 2 of the Architecture

6 5

3 210

\ Fill \

PFN

\ C

o] v]e]

Table 8-6 EntryLo0, EntryL ol Register Field Descriptionsin Release 2 of the Architecture

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

Fill

31..30

Thesebitsareignored on write and return zero on read.
The boundaries of thisfield change asafunction of the
value of PABITS. See Table 8-7 for more information.

Required

PFN

29..6

Page Frame Number. Thisfield contains the physical
page number corresponding to the virtual page.

If the processor is enabled to support 1KB pages
(Config3gp = 1 and PageGraingsp = 1), the PFN field
corresponds to bits 33..10 of the physical address (the
field is shifted left by 2 bitsrelative to the Release 1
definition to make room for PA11 1¢).

If the processor is not enabled to support 1KB pages
(Config3gp = 0 or PageGraingsp = 0), the PFN field
corresponds to bits 35..12 of |tEhe physical address.

The boundaries of thisfield change asafunction of the
value of PABITS. See Table 8-7 for more information.

Undefined

Required

5.3

The definition of thisfield is unchanged from Release
1. See Table 8-5 above and Table 8-8 below.

Undefined

Required

The definition of thisfield is unchanged from Release
1. See Table 8-5 above.

Undefined

Required

The definition of thisfield is unchanged from Release
1. See Table 8-5 above.

Undefined

Required

G

The definition of thisfield is unchanged from Release
1. See Table 8-5 above.

R/W

Undefined

Required
(TLB MMU)

64

Table 8-7 shows the movement of the Fill and PFN fields as a function of 1KB page support enabled, and the value of

PABITS. Note that in implementations of Release 1 of the Architecture, there is no support for 1KB pages, so only the

first row of the table appliesto Release 1.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.6 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)

Table 8-7 EntryL o Field Widthsasa Function of PABITS

Corresponding EntryL o Field Bit

1K B Page Ranges
Support Release 2
Enabled? | PABITSValue Fill Field PFN Field Required?

(29-(36-PABITS)..6
31..(30-(36-PABITY)
Example:

No 36> PABITS> 12 Example: 29..6 if PABITS= 36 No
31..30if PABITS=36 6..6if PABITS= 13
31..7if PABITS= 13
EntryL0oog 6 = PAzs 10

(29-(34-PABITY))..6
31..(30-(34-PABITS))
Example:

Yes 34>PABITS>10 Example: 29..6if PABITS=34 Yes
31..30if PABITS=34 6..6if PABITS=11
31.7if PABITS=11

EntryL0oyg 6 = PAz3.10

Programming Note:

In implementations of Release 2 of the Architecture, the PFN field of both the EntryLo0O and EntryLol registers must
be written with zero and the TLB must be flushed before each instance in which the value of the PageGrain register is
changed. This operation must be carried out while running in an unmapped address space. The operation of the pro-
cessor is UNDEFINED if this sequenceis not done.

Table 8-8 liststhe encoding of the C field of the EntryLo0 and EntryLol registers and the KO field of the Config register.
An implementation may choose to implement a subset of the cache coherency attributes shown, but must implement at
least encodings 2 and 3 such that software can always depend on these encodings working appropriately. In other cases,
the operation of the processor is UNDEFINED if software specifies an unimplemented encoding.

Table 8-8 lists the required and optional encodings for the coherency attributes.
Table 8-8 Cache Coherency Attributes

Cache Coherency Attributes
C(5:3) value With Historical Usage Compliance

Available for implementation dependent use
0 Optional

Available for implementation dependent use

1 Optional
Uncached

2 Required
Cacheable

3 Required

Available for implementation dependent use
4 Optional

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 65
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

66

Table 8-8 Cache Coherency Attributes

Cache Coherency Attributes

C(5:3) Value With Historical Usage Compliance
Available for implementation dependent use
5 Optional
Available for implementation dependent use
6 Optional
Available for implementation dependent use
7 Optional

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.7 Context Register (CPO Register 4, Select 0)

8.7 Context Register (CPO Register 4, Select 0)

Compliance L evel: Required for TLB-based MM Us; Optional otherwise.

The Context register is aread/write register containing a pointer to an entry in the page table entry (PTE) array. This
array isan operating system data structure that stores virtual-to-physical transations. During a TLB miss, the operating
system loads the TLB with the missing translation from the PTE array. The Context register duplicates some of the
information provided in the BadVAddr register, but is organized in such away that the operating system can directly
reference a 16-byte structure in memory that describes the mapping.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA3, 13 of the virtual address to be written
into the BadVPN2 field of the Context register. The PTEBase field is written and used by the operating system.

The BadVPN2 field of the Context register is not defined after an address error exception and this field may be modified
by hardware during the address error exception sequence.

Figure 8-5 shows the format of the Context Register; Table 8-9 describes the Context register fields.

Figure 8-5 Context Register Format
31 23 22 4 3 0
PTEBase BadVPN2 0

Table 8-9 Context Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance

Thisfield isfor use by the operating system and is
normally written with a value that allows the s !

PTEBase 31.23 operating system to use the Context Register asa RIW Undefined Reguired
pointer into the current PTE array in memory.
Thisfield iswritten by hardwareonaTLB

BadVPN2 22.4 exception. It contains bits VA3, 13 of the virtual R Undefined Required
address that caused the exception.

0 3.0 Must be written as zero; returns zero on read. 0 0 Reserved
MIPS32® Architecture For Programmers Volume lll, Revision 2.50 67

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.8 PageMask Register (CPO Register 5, Select 0)
Compliance L evel: Required for TLB-based MM Us; Optional otherwise.

The PageMask register is aread/write register used for reading from and writing to the TLB. It holds acomparison mask
that setsthe variable page sizefor each TLB entry, asshown in Table 8-11. Figure 8-6 showsthe format of the PageMask
register; Table 8-10 describes the PageMask register fields.

Figure 8-6 PageM ask Register Format
31 29 28 13 12 11 0
o | Mask | Maskx| 0

Table 8-10 PageM ask Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

TheMask fieldisabit mask inwhicha“1” bit indicates
Mask 28..13 | that the corresponding bit of the virtual address should R/W Undefined Required
not participate in the TLB match.

In Release 2 of the Architecture, the MaskX fieldisan
extension to the Mask field to support 1KB pages with
definition and action analogous to that of the Mask
field, defined above.

If 1KB pages are enabled (Config3sp = 1 and
PageGrainggp = 1), these bitsarewritable and readable,
and their values are copied to and from the TLB entry 0
MaskX 12.11 | onaTLB write or read, respectivly. RIW (See (quui reg)
If 1KB pages are not enabled (Config3gp = 0 or Description)

PageGrainggp = 0), these bits are not writable, return
zero onread, and the effect on the TLB entry on awrite
isasif they were written with the value Ob11.

In Release 1 of the Architecture, these bits must be
written as zero, return zero on read, and have no effect
on the virtual address trandation.

0 311628 * | Ignored on write; returns zero on read. R 0 Required

Table 8-11 Values for the Mask and MaskX! Fields of the PageM ask Register

Bit
Page Size 28| 27|26| 25|24 | 23|22 |21|20|19|18|17| 16| 15| 14| 13| 12| 111
1KByte ojlo|jofo|lO|J]O|j]O|lO|O|]O|]O|O|]O|]OJ|]O|O 0 0
4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
16 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
64 KBytes ojojofo|lO0O]J]OjOfjO|JO]J]O]O|O]|]1T]12]|1]|1 1 1
256 KBytes ofofojo|j]oOo|loO|j]O]j]O|]O|O|]2]|]1|1f1]1]1 1 1
1 MByte 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
4 MByte 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
68 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.8 PageMask Register (CPO Register 5, Select 0)

Table 8-11 Values for the Mask and MaskX! Fields of the PageM ask Register

Bit

Page Size 28 (27| 26| 25|24 |23 22|21|20|19|18| 17| 16| 15| 14| 13| 12! | 12!

16 MByte 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

64 MByte 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

256 MByte 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1. PageMaski, 17 = PaskMaskya4x €xists only on implementations of Release 2 of the architecture and are treated as if they had the value Ob11 if 1K
pages are not enabled (Config3gp = 0 or PageGrainggp = 0).

It is implementation dependent how many of the encodings described in Table 8-11 are implemented. All processors
must implement the 4KB page size. If aparticular page size encoding is not implemented by a processor, aread of the
PageMask register must return zeros in all bits that correspond to encodings that are not implemented, thereby poten-
tially returning a value different than that written by software.

Software may determine which page sizes are supported by writing al ones to the PageMask register, then reading
the value back. If apair of bits reads back as ones, the processor implements that page size. The operation of the pro-
cessor is UNDEFINED if software loads the Mask field with a value other than one of those listed in Table 8-11,
even if the hardware returns a different value on read. Hardware may depend on this requirement in implementing
hardware structures

Programming Note:

In implementations of Release 2 of the Architecture, the MaskX field of the PageMask register must be written with
Ob11 and the TLB must be flushed before each instance in which the value of the PageGrain register is changed. This
operation must be carried out while running in an unmapped address space. The operation of the processor is UNDE-
FINED if this sequenceis not done.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 69

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.9 PageGrain Register (CPO Register 5, Select 1)

Compliance Level: Required for implementations of Release 2 of the Architecture that include TL B-based MMUs and
support 1KB pages; Optional otherwise.

The PageGrain register is aread/write register used for enabling 1KB page support. The PageGrain register is present
in both the SmartMIPS™ ASE, and in Release 2 of the Architecture, although there are no bits in common between the
two uses of thisregister. Assuch, the description below only describesthefieldsrel evant to Release 2 of the Architecture.
In implementations of both Release 2 of the Architecture and the SmartMIPS™ ASE, the ASE definitions take
precedence and none of the Release 2 fiel ds described below are present. Figure 8-7 shows the format of the PageGrain
register; Table 8-12 describes the PageGrain register fields.

Figure 8-7 PageGrain Register Format
31 30 29 28 27 13 12 8 7 0
| AsE |ELPAESH 0 ASE 0

Table 8-12 PageGrain Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

These fields are control features of the SmartMIPS™
ASE 31..30, | ASEandarenot used inimplementations of Release 2 0

12.8 of the Architecture unless such an implementation also
implements the SmartMIPS™ ASE.

0 Required

Used to enable support for large physical addressesin
ELPA 29 MIPS64 processors; not used by MI1PS32 processors. R 0 Required
This bit isignored on write and returns zero on read.

Enables support for 1KB pages.

Encoding Meaning

0 1K B page support is not enabled

1 1KB page support is enabled

If thishitisa 1, the following changes occur to
coprocessor O registers:
» The PFN field of the EntryLoO and EntryLol

registers holds the physical address down to bit 10

(thefield is shifted | eft by 2 bits from the Release 1

ESP 28 definition) R/W 0 Required

» The MaskX field of the PageMask register is
writable and is concatenated to the right of the Mask
field to form the “don’t care” mask for the TLB
entry.

e TheVPN2X field of the EntryHi register iswritable
and bits 12..11 of the virtual address.

» Thevirtual addresstranslation algorithmismodified
to reflect the smaller page size.

If Config3gp = 0, 1KB pages are not implemented, and
this bit isignored on write and returns zero on read.

0 7 0 Must be written as zero; returns zero on read. 0 0 Reserved

70 MIPS32® Architecture For Programmers Volume lll, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.9 PageGrain Register (CPO Register 5, Select 1)

Programming Note:

In implementations of Release 2 of the Architecture, the following fields must be written with the specified values,
and the TLB must be flushed before each instance in which the value of the PageGrain register is changed. This oper-
ation must be carried out while running in an unmapped address space. The operation of the processor is UNDE-
FINED if this sequenceis not done.

Field Required Value
EntryL oOpgy, EntryLolpey 0
EntryL 00pgnx, EntryLolpenx 0
PageM askp ascx Ob11
EntryHiypnox 0

Note also that if PageGrain is changed, a hazard may be created between the instruction that writes PageGrain and a
subsequent CACHE instruction. This hazard must be cleared using the EHB instruction.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 71
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.10 Wired Register (CPO Register 6, Select 0)

72

Compliance L evel: Required for TLB-based MM Us; Optional otherwise.

The Wired register is aread/write register that specifies the boundary between the wired and random entriesinthe TLB
as shown in Figure 8-8.

Figure 8-8 Wired And Random Entriesin The TLB

»
»

Entry TLBSize-1

Random

Wired Register — Entry 10

Wired

Entry O

The width of the Wired field is calculated in the same manner as that described for the Index register. Wired entries are
fixed, non-replaceable entries which are not overwritten by a TLBWR instruction.Wired entries can be overwritten by
aTLBWI instruction.

The Wired register is set to zero by a Reset Exception. Writing the Wired register causes the Random register to reset to
its upper bound.

The operation of the processor isSUNDEFINED if avalue greater than or equal to the number of TLB entriesiswritten
to the Wired register.

Figure 8-8 shows the format of the Wired register; Table 8-13 describes the Wired register fields.

Figure 8-9 Wired Register Format
31 n nl 0

0 Wired

Table 8-13 Wired Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
0 31.n Must be written as zero; returns zero on read. 0 0 Reserved
Wired n-1..0 TLB wired boundary R/W 0 Required

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.11 HWREna Register (CPO Register 7, Select 0)

8.11 HWREna Register (CPO Register 7, Select 0)

Compliance Level: Required (Release 2).

The HWRENa register contains a bit mask that determines which hardware registers are accessible viathe RDHWR
instruction.

Figure 8-10 shows the format of the HWREna Register; Table 8-14 describes the HWREna register fields.

Figure 8-10 HWREna Register Format
31 30 29 4 3 0

0
tmpl 00 0000 0000 0000 0000 0000 0000 Mask

Table 8-14 HWREnNa Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State Compliance
0 29.4 Must be written with zero; returns zero on read 0 0 Reserved

These bits enable access to the
implementation-dependent hardware registers 31
and 30.

31.30 Impl If aregister is not implemented, the corresponding RIW 0 R(g;\?gglf;)r

bit returns a zero and isignored on write. Implementations
If aregister isimplemented, accessto that register is
enabled if the corresponding bit in thisfield isa 1
and disabled if the corresponding bitisa0.

Each bit in thisfield enables access by the RDHWR

instruction to a particular hardware register (which

may not be an actual register). If bit ‘n’ in thisfield
isal, accessisenabled to hardware register ‘n’. If

Mask 3.0 | bit'W of thisfield isa0, accessis disabled. RIW 0

See the RDHWR instruction for alist of valid
hardware registers.

Required

Using the HWREnNa register, privileged software may select which of the hardware registers are accessible viathe
RDHWR instruction. In doing so, aregister may be virtualized at the cost of handling a Reserved Instruction Exception,
interpreting the instruction, and returning the virtualized value. For example, if itisnot desirable to provide direct access
to the Count register, access to that register may be individually disabled and the return value can be virtualized by the
operating system.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 73

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.12 BadVAddr Register (CPO Register 8, Select 0)

Compliance Level: Required.

The BadVAddr register is aread-only register that captures the most recent virtual address that caused one of the
following exceptions:

» Address error (AdEL or AdES)

e TLB Réfill

TLB Invaid (TLBL, TLBS)

TLB Modified

The BadVAddr register does not capture addressinformation for cache or buserrors, or for Watch exceptions, since none
is an addressing error.

Figure 8-11 shows the format of the BadVAddr register; Table 8-15 describes the BadVAddr register fields.

Figure 8-11 BadVAddr Register Format
31 0
BadVAddr

Table 8-15 BadVAddr Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
BadVAddr 31.0 Bad virtual address R Undefined Required
74 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.13 Count Register (CPO Register 9, Select 0)

8.13 Count Register (CPO Register 9, Select 0)

Compliance Level: Required.

The Count register acts as atimer, incrementing at a constant rate, whether or not an instruction is executed, retired, or
any forward progress is made through the pipeline. The rate at which the counter increments is implementation
dependent, and is afunction of the pipeline clock of the processor, not the issue width of the processor.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize processors.

Figure 8-12 shows the format of the Count register; Table 8-16 describes the Count register fields.

Figure 8-12 Count Register For mat

31 0
Count
Table 8-16 Count Register Field Descriptions
Fields
Read/
Name Bits Description Write | Reset State | Compliance
Count 31.0 Interval counter R/W Undefined Required

8.14 Reserved for Implementations (CPO Register 9, Selects6 and 7)

Compliance Level: Optional: Implementation Dependent.

CPO register 9, Selects 6 and 7 are reserved for implementation dependent use and are not defined by the architecture.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

75

8.15 EntryHi Register (CPO Register 10, Select 0)

76

Compliance L evel: Required for TLB-based MMU; Optional otherwise.
The EntryHi register contains the virtual address match information used for TLB read, write, and access operations.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA3, 13 of the virtual address to be written
into the VPN2 field of the EntryHi register. An implementation of Release 2 of the Architecture which supports 1KB
pages also writes VA 15 11 into the VPN2X field of the EntryHi register. A TLBR instruction writes the EntryHi register
with the corresponding fieldsfrom the selected TL B entry. The ASID field iswritten by softwarewith the current address
space identifier value and is used during the TLB comparison process to determine TLB match.

Because the ASID field is overwritten by a TLBR instruction, software must save and restore the value of ASID around
use of the TLBR. Thisis especialy important in TLB Invalid and TLB Modified exceptions, and in other memory
management software.

The VPNX2 and VPN2 fields of the EntryHi register are not defined after an address error exception and these fields
may be modified by hardware during the address error exception sequence.Software writes of the EntryHi register (via
MTCO) do not cause the implicit write of address-related fields in the BadvVAddr,Context registers.

Figure 8-13 shows the format of the EntryHi register; Table 8-17 describes the EntryHi register fields.

Figure 8-13 EntryHi Register Format

31 13 12 11 10 8 7 0
VPN2 venx 0 | ASID
Table 8-17 EntryHi Register Field Descriptions
Fields
Read/ Reset

Name Bits Description Write State Compliance
VA3, 130f thevirtual address (virtual page number / 2).
Thisfield iswritten by hardware on a TLB exception or : .

VPN2 31.13 onaTLB read, and iswritten by software beforea TLB RIW Undefined Required
write.
In Release 2 of the Architecture, the VPN2X field isan
extension to the VPN2 field to support 1K B pages. These
bits are not writable by either hardware or software
unless Config3gp = 1 and PageGrainggp = 1. If enabled ;
for write, thisfield contains VA, 11 of the virtual (nggggfgnd

VPN2X 12..11 | address and iswritten by hardware on a TLB exception R/W 0 1KB Page
oronaTLB read, and isby software beforea TLB write. Support)
If writes are not enabled, and in implementations of
Release 1 of the Architecture, this field must be written
with zero and returns zeros on read.
0 10..8 | Must be written as zero; returns zero on read. 0 0 Reserved

Address space identifier. Thisfield iswritten by
hardware on a TLB read and by software to establish the . Required

ASID 7.0 current ASID value for TLB write and against which RIW Undefined (TLB MMU)
TLB references match each entry’s TLB ASID field.

Programming Note:

In implementations of Release 2 of the Architecture, the VPN2X field of the EntryHi register must be written with
zero and the TLB must be flushed before each instance in which the value of the PageGrain register is changed. This
operation must be carried out while running in an unmapped address space. The operation of the processor is UNDE-

MIPS32® Architecture For Programmers Volume lll, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.15 EntryHi Register (CPO Register 10, Select 0)

FINED if this sequenceis not done.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 77
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.16 Compare Register (CPO Register 11, Select 0)

Compliance Level: Required.

The Compare register actsin conjunction with the Count register to implement atimer and timer interrupt function. The
Compare register maintains a stable value and does not change on its own.

When the value of the Count register equals the value of the Compare register, an interrupt request is made. In Release
1 of the architecture, this request is combined in an implementation-dependent way with hardware interrupt 5 to set
interrupt bit 1P(7) in the Cause register. In Release 2 of the Architecture, the presence of the interrupt isvisibleto
software viathe Causer; bit and iscombined in animplementati on-dependent way with ahardware or softwareinterrupt.
For Vectored Interrupt Mode, the interrupt is at the level specified by the IntCtl|pr, field.

For diagnostic purposes, the Compare register is aread/write register. In normal use however, the Compare register is
write-only. Writing a value to the Compare register, as aside effect, clears the timer interrupt. Figure 8-14 shows the
format of the Compare register; Table 8-18 describes the Compare register fields.

Figure 8-14 Compare Register Format
31 0
Compare

Table 8-18 Compare Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
Compare 31.0 Interval count compare value R/W Undefined Required

Programming Note:
In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the

Compare register iswritten. See Section 5.1.2.1, " Software Hazards and the Interrupt System” on page 32.
8.17 Reserved for Implementations (CPO Register 11, Selects6 and 7)

Compliance L evel: Optional: Implementation Dependent.

CPO register 11, Selects 6 and 7 are reserved for implementation dependent use and are not defined by the architecture.

78 MIPS32® Architecture For Programmers Volume lll, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.18 Status Register (CP Register 12, Select 0)

8.18 Status Register (CP Register 12, Select 0)

Compliance Level: Required.

The Satusregister is aread/write register that contains the operating mode, interrupt enabling, and the diagnostic states
of the processor. Fields of thisregister combineto create operating modesfor the processor. Refer to Chapter 3, “MI1PS32
Operating Modes,” on page 9 for a discussion of operating modes, and Section Section 5.1, "Interrupts' on page 23 for
adiscussion of interrupt modes.

Figure 8-15 shows the format of the Status register; Table 8-19 describes the Status register fields.

Figure 8-15 Status Register For mat
31 282726 25 24 23 22 21 20 19 18 17 16 15

10 9

8 7 6 5 4 3 2 1 0

CU3..CU0|RPFR| RE| M | PX |BEV| TS| SR|NMI| 0| Impl

IM7..IM2

IMl..IMO(KX‘SX‘UX

UM‘RO ERL‘EXL‘ IE‘

IPL

Table 8-19 Status Register Field Descriptions

KSU

Fields

Name

Bits

Description

Read/Writ
e

Reset State

Compliance

cu
(CU3..
Cu0)

31..28

Controls access to coprocessors 3, 2, 1, and 0,
respectively:

Encoding Meaning

0 Access not allowed
1 Access allowed

Coprocessor 0 is aways usable when the processor is
running in Kernel Mode or Debug Mode, independent of
the state of the CUq bit.

In Release 2 of the Architecture, and for 64-bit
implementations of Release 1 of the Architecture,
execution of all floating point instructions, including those
encoded with the COP1X opcode, is controlled by the
CU1 enable. CU3 isno longer used and is reserved for
future use by the Architecture.

If thereis no provision for connecting a coprocessor, the
corresponding CU bit must be ignored on write and read
as zero.

Undefined

Required for
al

implemented
COprocessors

RP

27

Enables reduced power mode on some implementations.
The specific operation of this bit isimplementation
dependent.

If thisbit is not implemented, it must be ignored on write
and read as zero. If thisbit isimplemented, the reset state
must be zero so that the processor starts at full
performance.

Optional

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

79

Table 8-19 Status Register Field Descriptions

Fields

Name

Bits

Description

Read/Writ
e

Reset State

Compliance

FR

26

In Release 1 of the Architecture, only MI1PS64 processors
could implement a 64-bit floating point unit. In Release 2
of the Architecture, both MIPS32 and M| PS64 processors
can implement a 64-bit floating point unit. Thishit isused
to control the floating point register mode for 64-bit
floating point units:

Encoding Meaning

Floating point registers can contain any
0 32-hit datatype. 64-hit datatypes are stored
in even-odd pairs of registers.

Floating point registers can contain any
datatype

This bit must be ignored on write and read as zero under
the following conditions:

« No floating point unit isimplemented

¢ InaMIPS32 implementation of Release 1 of the
Architecture

* Inanimplementation of Release 2 of the Architecture
inwhich a 64-bit floating point unit is not implemented

Certain combinations of the FR bit and other state or
operations can cause UNPREDICTABL E behavior. See
Section Section 3.5.2, "64-bit FPR Enable" on page 10 for
adiscussion of these combinations.

Undefined

Required

RE

25

Used to enable reverse-endian memory references while
the processor is running in user mode:

Encoding Meaning

0 User mode uses configured endianness

1 User mode uses reversed endianness

Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.

If thisbit is not implemented, it must be ignored on write
and read as zero.

Undefined

Optional

MX

24

Enables accessto MDMX™ and MIPS® DSP resources
on processors implementing one of these ASES. If neither
the MDMX nor the MIPS DSP ASE isimplemented, this
bit must be ignored on write and read as zero.

Rif the
processor
implements
neither the
MDMX nor
the MIPS
DSP ASEs;
otherwise
R/W

0if the
processor
implements
neither the
MDMX nor
the MIPS
DSP ASEs;
otherwise
Undefined

Optional

PX

23

Enables access to 64-bit operations on M1PS64
processors. Not used by M1PS32 processors. Thisbit must
be ignored on write and read as zero.

Required

80

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.18 Status Register (CP Register 12, Select 0)

Table 8-19 Status Register Field Descriptions

Fields

Name

Bits

Description

Read/Writ
e

Reset State

Compliance

BEV

22

Controls the location of exception vectors:

Encoding
0 Normal
1 Bootstrap

Meaning

See Section Section 5.2.1, "Exception Vector Locations'
on page 33 for details.

Required

TSt

21

Indicates that the TLB has detected a match on multiple
entries. It isimplementation dependent whether this
detection occursat all, on awriteto the TLB, or an access
tothe TLB. In Release 2 of the Architecture, multiple
TLB matches may only bereported onaTLB write.
When such a detection occurs, the processor initiates a
machine check exception and sets this bit. It is
implementation dependent whether this condition can be
corrected by software. If the condition can be corrected,
this bit should be cleared by software before resuming
normal operation.

See Section 4.9.3 on page 17 for adiscussion of software
TLB initialization used to avoid a machine check
exception during processor initialization.

If thisbit is not implemented, it must beignored on write
and read as zero.

Software should not write a 1 to this bit when itsvalueis
a0, thereby causing a0-to-1 transition. If such atransition
is caused by software, it is UNPREDICTABL E whether
hardware ignores the write, accepts the write with no side
effects, or accepts the write and initiates a machine check
exception.

Required if
the processor
detects and
reports a
match on
multiple TLB
entries

SR

20

Indicates that the entry through the reset exception vector
was due to a Soft Reset:

Encoding
0 Not Soft Reset (NMI or Reset)
1 Soft Reset

Meaning

If thisbit is not implemented, it must be ignored on write
and read as zero.

Software should not write a 1 to thisbit when itsvalueis
a0, thereby causing a0-to-1 transition. If such atransition
is caused by software, it is UNPREDICTABL E whether
hardware ignores or accepts the write.

1 for Soft
Reset; 0
otherwise

Required if
Soft Reset is
implemented

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 8-19 Status Register Field Descriptions

Fields

Name

Bits

Description

Read/Writ
e

Reset State

Compliance

NMI

19

Indicates that the entry through the reset exception vector
was due to an NMI exception:

Encoding
0 Not NMI (Soft Reset or Reset)
1 NMI

Meaning

If thisbit is not implemented, it must be ignored on write
and read as zero.

Software should not write a 1 to thisbit when itsvalueis
a0, thereby causing a0-to-1 transition. If such atransition
is caused by software, it is UNPREDICTABL E whether
hardware ignores or accepts the write.

1for NMI; 0
otherwise

Required if
NMlI is
implemented

18

Must be written as zero; returns zero on read.

Reserved

Impl

17..16

These bits are implementation dependent and are not
defined by the architecture. If they are not implemented,
they must be ignored on write and read as zero.

Undefined

Optional

IM7..IM2

15..10

Interrupt Mask: Controls the enabling of each of the
hardware interrupts. Refer to Section Section 5.1,
"Interrupts’ on page 23 for a complete discussion of
enabled interrupts.

Encoding
0 Interrupt request disabled
1 Interrupt request enabled

Meaning

In implementations of Release 2 of the Architecturein
which EIC interrupt mode is enabled (Config3y g c = 1),
these bits take on a different meaning and are interpreted
asthe IPL field, described below.

Undefined

Required

IPL

15..10

Interrupt Priority Level.

In implementations of Release 2 of the Architecturein
which EIC interrupt mode is enabled (Config3y g ,c = 1),
thisfield is the encoded (0..63) value of the current IPL.
An interrupt will be signaled only if the requested IPL is
higher than this value.

If EIC interrupt mode is not enabled (Config3y g c = 0),
these bits take on a different meaning and are interpreted
asthe IM7..IM2 hits, described above.

Undefined

Optional
(Release2and
EIC interrupt
mode only)

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.18 Status Register (CP Register 12, Select 0)

Table 8-19 Status Register Field Descriptions

Fields

Read/Writ
Name Bits Description e Reset State | Compliance

Interrupt Mask: Controls the enabling of each of the
software interrupts. Refer to Section Section 5.1,
"Interrupts’ on page 23 for a complete discussion of
enabled interrupts.

Encoding Meaning

IM1.IMO | 9.8 0 [Interrupt request disabled RIW Undefined Required
1 Interrupt request enabled

In implementations of Release 2 of the Architecturein
which EIC interrupt mode is enabled (Config3y gc = 1),
these bits are writable, but have no effect on the interrupt
system.

Enables access to 64-bit kernel address space on 64-bit
MIPS processors. Not used by MIPS32 processors. This
KX 7 bit must be ignored on write and read as zero. R 0 Reserved

Enables access to 64-bit supervisor address space on
64-bit MIPS processors. Not used by MIPS32 processors.
SX 6 This bit must be ignored on write and read as zero. R 0 Reserved

Enables access to 64-bit user address space on 64-bit
MIPS processors Not used by M1PS32 processors. This
UXx 5 bit must be ignored on write and read as zero. R 0 Reserved

If Supervisor Mode isimplemented, the encoding of this
field denotes the base operating mode of the processor.
See Chapter 3, “MIPS32 Operating Modes,” on page 9 for
afull discussion of operating modes. The encoding of this
fidis:

Encoding Meaning Required if

0b00 |Base modeis Kernel Mode Supervisor

KSU 4.3 0b01 |Base modeis Supervisor Mode RIW Undefined i mm gggr']f o
0bl0 [Base modeisUser Mode Optional
otherwise

Reserved. The operation of the processor is
Ob1l |UNDEFINED if thisvalueiswritten to the
KSU field

Note: Thisfield overlapsthe UM and RO fields, described
below.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 83

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 8-19 Status Register Field Descriptions

Fields

Name

Bits

Description

Read/Writ
e

Reset State

Compliance

UM

If Supervisor Mode is not implemented, this bit denotes
the base operating mode of the processor. See Chapter 3,
“MIPS32 Operating Modes,” on page 9 for afull

discussion of operating modes. The encoding of thishitis:

Encoding Meaning

0 Base mode is Kernel Mode

1 Base mode is User Mode

Note: This bit overlapsthe KSU field, described above.

Undefined

Required

RO

If Supervisor Mode is not implemented, this bit is
reserved. This bit must be ignored on write and read as
zero.

Note: This bit overlapsthe KSU field, described above.

Reserved

ERL

Error Level; Set by the processor when a Reset, Soft
Reset, NM| or Cache Error exception are taken.

Encoding

Meaning

0

Normal level

1

Error level

When ERL is set:
* The processor is running in kernel mode

¢ Hardware and software interrupts are disabled

¢ The ERET instruction will use the return address held
in ErrorEPC instead of EPC

« Thelower 2%° bytes of kuseg are treated as an

unmapped and uncached region. See Section 4.7,
"Address Tranglation for the kuseg Segment when
StatusERL = 1" on page 16. This allows main memory
to be accessed in the presence of cache errors. The
operation of the processor isUNDEFINED if the ERL
bit is set while the processor is executing instructions
from kuseg.

Required

84

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.18 Status Register (CP Register 12, Select 0)

Table 8-19 Status Register Field Descriptions

Fields)
Read/Writ

Name Bits Description e Reset State | Compliance

Exception Level; Set by the processor when any exception
other than Reset, Soft Reset, NMI or Cache Error
exception are taken.

Encoding Meaning
0 Normal level
1 Exception level

EXL 1 When EXL is set- R/W Undefined Required

e The processor is running in Kernel Mode
» Hardware and software interrupts are disabled.

« TLB Réfill exceptions use the general exception vector
instead of the TLB Refill vector.

» EPC, Causegp and SRSCtI (implementations of
Release 2 of the Architecture only) will not be updated
if another exception istaken

Interrupt Enable: Acts as the master enable for software
and hardware interrupts:

Encoding Meaning

IE 0 0 Interrupts are disabled R/W Undefined Required
1 Interrupts are enabled

In Release 2 of the Architecture, thisbit may be modified
separately viathe DI and El instructions.

1. TheTShit originally indicated a“ TLB Shutdown” condition in which circuits detected multiple TL B matches and shutdown the TLB to prevent physical
damage. In newer designs, multiple TLB matches do not cause physical damage to the TLB structure, so the TS bit retainsits name, but issimply an
indicator to the machine check exception handler that multiple TLB matches were detected and reported by the processor.

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the
IM, IPL, ERL, EXL, or IE fields of the Status register are written. See Section 5.1.2.1, "Software Hazards and the
Interrupt System" on page 32.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 85

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.19 IntCtl Register (CPO Register 12, Select 1)

86

Compliance Level: Required (Release 2).

TheIntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including vectored
interrupts and support for an external interrupt controller. This register does not exist in implementations of Release 1
of the Architecture.

Figure 8-16 shows the format of the IntCtl register; Table 8-20 describes the IntCtl register fields.

Figure 8-16 IntCtl Register Format
31 29 28 26 25 10 9 5 4 0

0
IPTI IPPCI 00 0000 0000 0000 00 Ve °

Table 8-20 IntCtl Register Field Descriptions

Fields
Read/ Reset

Name Bits Description Write State Compliance

For Interrupt Compatibility and Vectored Interrupt
modes, thisfield specifiesthe |P number to which the
Timer Interrupt request is merged, and allows
software to determine whether to consider Causer,
for apotential interrupt.

Encoding| |P bit Hardware
Interrupt Source

HWO
HW1 Preset or

R Externaly Required
HW2 Set

IPTI 31..29

HW3
HW4
HWS

N|lo|lo|lbh|lw|N
N|[flojloa]lh~|lw|N

The value of thisfieldis UNPREDICTABLE if
External Interrupt Controller Mode is both
implemented and enabled. The external interrupt
controller is expected to provide thisinformation for

that interrupt mode.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.19 IntCtl Register (CP0O Register 12, Select 1)

Table 8-20 IntCtl Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset
State

Compliance

IPPCI

28..26

For Interrupt Compatibility and Vectored Interrupt
modes, thisfield specifiesthe |P number to which the
Performance Counter Interrupt request is merged,
and allows softwareto determine whether to consider
Causepc for apotential interrupt.

IP bit Hardware

Interrupt Source
HWO
HW1
HW2
HW3
HwWA4
HW5

Encoding

N|lo|lo|lbh|lw|N
N|[fojloa|lh~|lw|N

The value of thisfieldis UNPREDICTABLE if
External Interrupt Controller Mode is both
implemented and enabled. The external interrupt
controller is expected to provide thisinformation for
that interrupt mode.

If performance counters are not implemented
(Configlpc = 0), thisfield returns zero on read.

Preset or
Externaly
Set

Optional
(Performance
Counters
Implemented)

25.10

Must be written as zero; returns zero on read.

Reserved

VS

9.5

Vector Spacing. If vectored interrupts are
implemented (as denoted by Config3,, O
Config3y g c), this field specifies the spacing
between vectored interrupts.

Encoding| Spacing Between

Vectors (hex)

Spacing Between
Vector s (decimal)

0x00 0x000 0

0x01 0x020 32
0x02 0x040 64
0x04 0x080 128
0x08 0x100 256
0x10 0x200 512

All other values are reserved. The operation of the
processor is UNDEFINED if areserved value is
written to thisfield.

If neither EIC interrupt mode nor VI mode are
implemented (Config3y g ¢ = 0 and Config3ynT =
0), thisfield isignored on write and reads as zero.

RIW

Optional

4.0

Must be written as zero; returns zero on read.

Reserved

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

87

8.20 SRSCtl Register (CPO Register 12, Select 2)

88

Compliance Level: Required (Release 2).

The SRSCtl register controls the operation of GPR shadow setsin the processor. This register does not exist in
implementations of the architecture prior to Release 2.

Figure 8-17 shows the format of the SRSCtI register; Table 8-21 describes the SRSCtI register fields.

31 30 29

26 25

Figure 8-17 SRSCtl Register Format

22 21 18 17 16 15

12 11 10 9

6 5 4 3

0
00

HSS

0 ESS

EICSS 00

0000

0
00

PSS

CSS

Table 8-21 SRSCt| Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset
State

Compliance

31..30

Must be written as zeros; returns zero on read.

0

Reserved

HSS

29..26

Highest Shadow Set. Thisfield contains the highest
shadow set number that isimplemented by this
processor. A value of zero in thisfield indicates that
only the normal GPRs are implemented. A non-zero
valuein thisfield indicates that the implemented
shadow sets are numbered 0..n, where n is the value
of thefield.

The valuein thisfield al so represents the highest
valuethat can bewrittento the ESS, EICSS, PSS, and
CSSfieldsof thisregister, or to any of thefieldsof the
SRSMap register. The operation of the processor is
UNDEFINED if avalue larger than the onein this
field iswritten to any of these other values.

Preset

Required

25.22

Must be written as zeros; returns zero on read.

Reserved

EICSS

21..18

EIC interrupt mode shadow set. If Config3ygcisl
(EIC interrupt mode is enabled), thisfield is'?oaded
from the external interrupt controller for each
interrupt request and is used in place of the SRSMap
register to select the current shadow set for the
interrupt.

See Section 5.1.1.3, "External Interrupt Controller
Mode" on page 29 for adiscussion of EIC interrupt
mode. If Config3y/ g cisO, thisfield must be written
as zero, and returns zero on read.

Undefined

Required
(EICinterrupt
mode only)

17..16

Must be written as zeros; returns zero on read.

Reserved

ESS

15.12

Exception Shadow Set. This field specifies the
shadow set to use on entry to Kernel M ode caused by
any exception other than a vectored interrupt.

The operation of the processor is UNDEFINED if
software writes avalue into this field that is greater
than the value in the HSS field.

RIW

Required

11..10

Must be written as zeros; returns zero on read.

Reserved

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.20 SRSCtl Register (CPO Register 12, Select 2)

Table 8-21 SRSCt| Register Field Descriptions

Fields
Read/

Write

Reset
State

Name Bits Description Compliance

Previous Shadow Set. If GPR shadow registers are
implemented, and with the exclusions noted in the
next paragraph, thisfield iscopied from the CSSfield
when an exception or interrupt occurs. An ERET
instruction copies this value back into the CSSfield
if SthSBEV =0.

PSS 9..6 Thisfield is not updated on any exception which sets
Statusgg, to 1(i.e., NMI or cacheerror), anentry into
EJTAG Debug mode, or any exception or interrupt
that occurs with Statusgy = 1, or Statusggy = 1.

Required

The operation of the processor is UNDEFINED if
software writes avalue into thisfield that is greater
than the value in the HSS field.

Must be written as zeros; returns zero on read. 0 0 Reserved

Current Shadow Set. If GPR shadow registers are
implemented, thisfield is the number of the current
GPR set. With the exclusions noted in the next
paragraph, thisfield is updated with a new value on
any interrupt or exception, and restored from the PSS
field on an ERET. Table 8-22 describes the various
sources from which the CSSfield is updated on an
exception or interrupt.

Thisfield is not updated on any exception which sets
Statusgr, to1(i.e., NMI or cacheerror), anentry into R 0
EJTAG Debug mode, or any exception or interrupt
that occurs with Statusgy = 1, or Statusggy = 1.
Neither isit updated on an ERET with Statusgg, =1
or Statusggy = 1.

CSS 3.0 Required

The value of CSS can be changed directly by
software only by writing the PSS field and executing
an ERET instruction.

Table 8-22 Sourcesfor new SRSCtl-g50n an Exception or Interrupt

Exception Type Condition SRSCtl g5 Source Comment

Exception All SRSCltlgsg

Non-Vectored

Interrupt Treat as exception

Cause|v =0 SRSCitl ESS

Causey =1 and

Vectored | nterrupt

Config3y g c = 0and
Config3y |t =1

SRSMa&Pyectnum
X4+3 . .VectNum x4

Source isinternal map
register

Vectored EIC
Interrupt

Causey = 1 and
COnﬁg3VE|C =1

SRSCllg css

Source is external
interrupt controller.

Programming Note:

A software change to the PSS field creates an instruction hazard between the write of the SRSCtl register and the use
of a RDPGPR or WRPGPR instruction. This hazard must be cleared with a JR.HB or JALR.HB instruction as
described in Section 7.3, "Hazard Clearing Instructions and Events' on page 53. A hardware change to the PSS field

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 89
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

90

as the result of interrupt or exception entry is automatically cleared for the execution of the first instruction in the
interrupt or exception handler.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.21 SRSMap Register (CPO Register 12, Select 3)

8.21 SRSMap Register

(CPO Register 12, Select 3)

Compliance Level: Required in Release 2 of the Architecture if Additional Shadow Sets and Vectored I nterrupt Mode

are Implemented

The SRSMap register contains 8 4-hit fields that provide the mapping from an vector number to the shadow set number

to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception, or a
non-vectored interrupt (Cause;y, = 0 or IntCtly,5 = 0). In such cases, the shadow set number comes from SRSCtlggs.

If SRSCtlss iS zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if avalueiswritten to any field in thisregister that is greater than the

value of SRSCtlyss.

The SRSMap register contains the shadow register set numbers for vector numbers 7..0. The same shadow set number

can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single shadow

register set number.

Figure 8-18 shows the format of the SRSMap register; Table 8-23 describes the SRSMap register fields.

Figure 8-18 SRSMap Register Format

31 28 27 24 23 20 19 16 15 12 11 8 7 3 0
Ssv7 SSV6 SSV5 Ssv4 SSv3 Ssv2 Ssvi1 SSVO
Table 8-23 SRSMap Register Field Descriptions
Fields
Read/

Name Bits Description Write | Reset State | Compliance
SSv7 31..28 | Shadow register set number for Vector Number 7 R/W 0 Required
SSvV6 27..24 | Shadow register set number for Vector Number 6 R/W 0 Required
SSv5 23.20 | Shadow register set number for Vector Number 5 R/W 0 Required
Ssv4 19..16 | Shadow register set number for Vector Number 4 R/W 0 Required
Ssv3 15..12 | Shadow register set number for Vector Number 3 R/W 0 Required
SSv2 11..8 Shadow register set number for Vector Number 2 R/W 0 Required
SSvi 7.4 Shadow register set number for Vector Number 1 R/W 0 Required
SSvVo 3.0 Shadow register set number for Vector Number O R/W 0 Required

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

91

8.22 Cause Register (CPO Register 13, Select 0)

Compliance Level: Required.

The Cause register primarily describes the cause of the most recent exception. In addition, fields also control software
interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP; o, DC, IV, and
WP fields, al fieldsin the Cause register are read-only. Release 2 of the Architecture added optional support for an
External Interrupt Controller (EIC) interrupt mode, in which IP; , are interpreted as the Requested Interrupt Priority
Level (RIPL).

Figure 8-19 shows the format of the Cause register; Table 8-24 describes the Cause register fields.

Figure 8-19 Cause Register Format
3130 29 2827 26 25 24 23 22 21 16 15 10 9 8 7 6 2 1 0

PC
I

BD Tl CE |DC 0 V| WP 0 IP7..1P2 IP1..IPO O Exc Code 0

RIPL

Table 8-24 Cause Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
Indicateswhether thelast exception taken occurredin
abranch delay slot:
Encoding Meaning
BD 31 O |Notindday slot R Undefined Required
1 In delay slot
The processor updates BD only if Statusgy waszero
when the exception occurred.
Timer Interrupt. In animplementation of Release 2 of
the Architecture, this bit denotes whether atimer
interrupt is pending (analogousto the I P bitsfor other
interrupt types):
Encoding Meaning)
] Required
Tl 30 0 No timer interrupt is pending R Undefined (qu ease 2)
1 Timer interrupt is pending
In an implementation of Release 1 of the
Architecture, this bit must be written as zero and
returns zero on read.
Coprocessor unit number referenced when a
Coprocessor Unusable exception istaken. Thisfield
CE 29..28 | isloaded by hardware on every exception, but is R Undefined Required
UNPREDICTABLE for all exceptions except for
Coprocessor Unusable.

92 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.22 Cause Register (CPO Register 13, Select 0)

Table 8-24 Cause Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

Disable Count register. In some power-sensitive
applications, the Count register is not used but may
still be the source of some noticeable power
dissipation. This bit allows the Count register to be
stopped in such situations.

Encoding Meaning

Required
bC 27 0 Enable counting of Count register RIW 0 (Release 2)

1 Disable counting of Count register

In an implementation of Release 1 of the
Architecture, this bit must be written as zero, and
returns zero on read.

Performance Counter Interrupt. In an

implementation of Release 2 of the Architecture, this
bit denotes whether a performance counter interrupt
ispending (analogousto thel P bitsfor other interrupt

types):

Encoding Meaning Required

- - (Release2and

PCI 26 0 No performance counter interrupt Is R Undefined performance
pending counters

1 Performance counter interrupt is pending implemented)

In an implementation of Release 1 of the
Architecture, or if performance counters are not
implemented (Configlpc = 0), this bit must be
written as zero and returns zero on read.

Indicates whether an interrupt exception uses the
general exception vector or aspecial interrupt vector:

Encoding Meaning

0 Use the general exception vector (0x180)
v 23 1 Use the specia interrupt vector (0x200) R/W Undefined Required

In implementations of Release 2 of the architecture,
if the Causeyy is 1 and Statusggy iSO, the special
interrupt vector represents the base of the vectored
interrupt table.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 93
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

94

Table 8-24 Cause Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

WP

22

Indicates that a watch exception was deferred
because Statusgy| or Statusgg, Were aone at the
time the watch exception was detected. This bit both
indicates that the watch exception was deferred, and
causes the exception to be initiated once Statusgy
and Statusggr, are both zero. As such, software must
clear thishit as part of the watch exception handler to
prevent awatch exception loop.

Software should not write a 1 to this bit when its
valueisao, thereby causing a 0-to-1 transition. If
such atransition is caused by software, it is
UNPREDICTABL E whether hardware ignores the
write, accepts the write with no side effects, or
acceptsthe write and initiates awatch exception once
Statusgy | and Statusgr, are both zero.

If watch registers are not implemented, this bit must
be ignored on write and read as zero.

RIW

Undefined

Required if
watch
registers are
implemented

IP7..1P2

15..10

Indicates an interrupt is pending:

Bit Name
15 1P7
14 1P6
13 IP5
12 P4
11 1P3
10 1P2

Meaning

Hardware interrupt 5

Hardware interrupt 4

Hardware interrupt 3

Hardware interrupt 2

Hardware interrupt 1

Hardware interrupt O

In implementations of Release 1 of the Architecture,
timer and performance counter interrupts are
combined in an implementation-dependent way with
hardware interrupt 5.

In implementations of Release 2 of the Architecture
in which EIC interrupt mode is not enabled
(Config3y/g c = 0), timer and performance counter
interrupts are combined in an
implementation-dependent way with any hardware
interrupt. If EIC interrupt mode is enabled
(Config3y g c = 1), these bits take on a different
meaning andC areinterpreted asthe RIPL field,
described bel ow.

Undefined

Required

RIPL

15..10

Requested Interrupt Priority Level.

In implementations of Release 2 of the Architecture
inwhich EICinterrupt modeisenabled (Config3y g c
= 1), thisfield isthe encoded (0..63) value of the
requested interrupt. A value of zero indicates that no
interrupt is requested.

If EIC interrupt modeis not enabled (Config3y g c =
0), these bits take on a different meaning and are
interpreted as the 1P7..I1P2 bits, described above.

Undefined

Optional
(Release2and
EIC interrupt
mode only)

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.22 Cause Register (CPO Register 13, Select 0)

Table 8-24 Cause Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
Controls the request for software interrupts:
Bit Name Meaning
9 IP1 |Request software interrupt 1
IPL..IPO 9.8 8 | 'PO |Request software interrupt O RIW Undefined Required
An implementation of Release 2 of the Architecture
which a so implements EIC interrupt mode exports
these bits to the external interrupt controller for
prioritization with other interrupt sources.
ExcCode 6..2 Exception code - see Table 8-25 R Undefined Required
25..24,
0 21..16, Must be written as zero; returns zero on read. 0 0 Reserved
7,1.0
Table 8-25 Cause Register ExcCode Field
Exception Code Value
Decimal Hexadecimal | Mnemonic Description
0 0x00 Int Interrupt
1 0x01 Mod TLB modification exception
2 0x02 TLBL TLB exception (load or instruction fetch)
3 0x03 TLBS TLB exception (store)
4 0x04 AdEL Address error exception (load or instruction fetch)
5 0x05 AdES Address error exception (store)
6 0x06 IBE Bus error exception (instruction fetch)
7 0x07 DBE Bus error exception (data reference: load or store)
8 0x08 Sys Syscall exception
Breakpoint exception. If EJTAG isimplemented and an SDBBP
9 Ox09 B instruction is executed while the processor is running in EJTAG
P Debug Mode, this value is written to the Debugpgyccoge fild to
denote an SDBBP in Debug Mode.
10 Ox0a RI Reserved instruction exception
11 0x0b CpuU Coprocessor Unusable exception
12 0x0c Ov Arithmetic Overflow exception
13 oxod Tr Trap exception
14 0x0e - Reserved
15 OxOf FPE Floating point exception

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

95

Table 8-25 Cause Register ExcCode Field

Exception Code Value

Decimal Hexadecimal | Mnemonic Description

16-17 0x10-0x11 - Available for implementation dependent use
18 0x12 C2E Reserved for precise Coprocessor 2 exceptions

19-21 0x13-0x15 - Reserved
22 0x16 MDMX MDMX Unusable Exception (MDMX ASE)
23 0x17 WATCH Reference to WatchHi/WatchL o address
24 0x18 M Check Machine check
5 ox19 Thread Thread Allocation, Deallocation, or Scheduling Exceptions

(MIPS® MT ASE)

26-29 0x20-0x1d - Reserved

Cache error. In normal mode, a cache error exception has a
dedicated vector and the Cause register is not updated. If EJITAG is
30 Oxle CacheErr implemented and a cache error occurs while in Debug Mode, this
code is writen to the Debugpeyccode field to indicate that re-entry
to Debug Mode was caused by a cache error.

31 OxAf - Reserved

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the
IP; ofield of the Cause register iswritten. See Section 5.1.2.1, " Software Hazards and the Interrupt System” on page

32.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.23 Exception Program Counter (CPO Register 14, Select 0)

8.23 Exception Program Counter (CPO Register 14, Select 0)
Compliance Level: Required.

The Exception Program Counter (EPC) is aread/write register that contains the address at which processing resumes
after an exception has been serviced. All bits of the EPC register are significant and must be writable.
Unlessthe EXL bit inthe Statusregister isalready a 1, the processor writes the EPC register when an exception occurs.
» For synchronous (precise) exceptions, EPC contains either:

* thevirtual address of the instruction that was the direct cause of the exception, or

* thevirtual address of the immediately preceding branch or jump instruction, when the exception causing
instruction isin a branch delay slot, and the Branch Delay bit in the Cause register is set.

» For asynchronous (imprecise) exceptions, EPC contains the address of the instruction at which to resume execution.
The processor reads the EPC register as the result of execution of the ERET instruction.

Software may write the EPC register to change the processor resume address and read the EPC register to determine at
what address the processor will resume.

Figure 8-20 shows the format of the EPC register; Table 8-26 describes the EPC register fields.

Figure 8-20 EPC Register Format
31 0
EPC

Table 8-26 EPC Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
EPC 31.0 Exception Program Counter R/W Undefined Required

8.23.1 Special Handling of the EPC Register in Processors That | mplement the M1PS16e ASE
In processors that implement the MIPS16e ASE, the EPC register requires special handling.

When the processor writes the EPC register, it combines the address at which processing resumes with the value of the
| SA Mode register:

EPC ¢« resumePCy; ; || ISAMode,
“resumePC” isthe address at which processing resumes, as described above.

When the processor reads the EPC register, it distributes the bits to the PC and | SAMode registers:

PC < EPC3; 1 || ©
ISAMode <« EPCj,

Software reads of the EPC register simply return to a GPR the last value written with no interpretation. Software writes
to the EPC register store a new value which is interpreted by the processor as described above.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 97

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.24 Processor Identification (CPO Register 15, Select 0)

98

Compliance Level: Required.

The Processor |dentification (PRId) register isa 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification and revision level of the processor. Figure 8-21 showsthe

format of the PRId register; Table 8-27 describes the PRId register fields.

Figure 8-21 PRId Register Format

24 23 16 15

Company Options

Company ID Processor ID

Revision

Table 8-27 PRId Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

Company
Options

31.24

Available to the designer or manufacturer of the
processor for company-dependent options. The
valueinthisfield isnot specified by the architecture.
If thisfield is not implemented, it must read as zero.

Preset

Optional

Company
1D

23..16

Identifies the company that designed or
manufactured the processor.

Software can distinguish aMIPS32 or MIPS64
processor from one implementing an earlier MIPS
ISA by checking thisfield for zero. If it is non-zero
the processor implements the MIPS32 or MIPS64
Architecture.

Company |Ds are assigned by MIPS Technologies
when aMIPS32 or MIPS64 license is acquired. The
encodingsin thisfield are:

Encoding M eaning
0 Not aMIPS32 or MI1PS64 processor
1 MIPS Technologies, Inc.

Contact MIPS Technologies, Inc. for thelist
of Company ID assignments

2-255

Preset

Required

Processor
ID

15..8

Identifies the type of processor. Thisfield allows
software to distinguish between various processor
implementations within a single company, and is
qualified by the CompanyID field, described above.
The combination of the CompanyID and

Processor| D fiel ds creates a uni que number assigned
to each processor implementation.

Preset

Required

Revision

7.0

Specifies the revision number of the processor. This
field allows software to distinguish between one
revision and another of the same processor type. If
thisfield is not implemented, it must read as zero.

Preset

Optional

Software should not use the fields of this register to infer configuration information about the processor. Rather, the
configuration registers should be used to determine the capabilities of the processor. Programmers who identify cases
in which the configuration registers are not sufficient, requiring them to revert to check on the PRId register value,
should send email to architecture@mips . com, reporting the specific case.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.25 EBase Register (CP0O Register 15, Select 1)

8.25 EBase Register (CPO Register 15, Select 1)
Compliance Level: Required (Release 2).

The EBase register is aread/write register containing the base address of the exception vectors used when Statusggy,
equals 0, and aread-only CPU number value that may be used by software to distinguish different processorsin a
multi-processor system.

The EBase register provides the ahility for software to identify the specific processor within a multi-processor system,
and allows the exception vectors for each processor to be different, especially in systems composed of heterogeneous
processors. Bits 31..12 of the EBase register are concatenated with zeros to form the base of the exception vectors when
Statusggy is 0. The exception vector base address comes from the fixed defaults (see Section 5.2.1, "Exception Vector
Locations' on page 33) when Statusggy is 1, or for any EJTAG Debug exception. The reset state of bits 31..12 of the
EBase register initialize the exception base register to 0x8000 . 0000, providing backward compatibility with Release
1 implementations.

Bits 31..30 of the EBase Register are fixed with the value 0b1 0, and the addition of the base address and the exception
offset is done inhibiting a carry between bit 29 and bit 30 of the final exception address. The combination of these two
restrictions forces the final exception address to be in the ksegO or ksegl unmapped virtual address segments. For cache
error exceptions, bit 29 isforced to a1 in the ultimate exception base address so that this exception always runsin the
ksegl unmapped, uncached virtual address segment.

If the value of the exception base register is to be changed, this must be done with Statusggy, equal 1. The operation of
the processor is UNDEFINED if the Exception Base field is written with a different value when Statusggy iSO.

Figure 8-22 shows the format of the EBase Register; Table 8-28 describes the EBase register fields.

Figure 8-22 EBase Register For mat
31 30 29 12 11 10 9 0
(1] o] Exception Base | oo | CPUNum

Table 8-28 EBase Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
1 31 Thishbit isignored on write and returns one on read. R 1 Required
0 30 Thishitisignored on write and returns zero on read. R 0 Required

Excention In conjunction with bits 31..30, thisfield specifies
Bzge 29.12 the base address of the exception vectors when R/W 0 Required
Statusggy IS zero.

0 11..10 Must be written as zero; returns zero on read. 0 0 Reserved

This field specifies the number of the CPU ina
multi-processor system and can be used by software

to distinguish aparticular processor from the others. Preset or
CPUNum 9.0 Thevauein thisfield is set by inputs to the R Externaly Required
processor hardware when the processor is Set

implemented in the system environment. Inasingle
processor system, this value should be set to zero.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 99

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Programming Note:

Software must set EBase;5 1, to zero in all bit positions less than or equal to the most significant bit in the vector offset.
This situation can only occur when a vector offset greater than OxFFF is generated when an interrupt occurs with VI or
EIC interrupt mode enabled. The operation of the processor is UNDEFINED if this condition is not met. Table 8-29
shows the conditions under which each EBase bit must be set to zero. VN represents the interrupt vector number as
described in Table 5-4 on page 32 and the bit must be set to zero if any of the relationshipsin the row aretrue. No EBase
bits must be set to zero if the interrupt vector spacing is 32 (or zero) bytes.

Table 8-29 Conditions Under Which EBasel5..12 Must Be Zero

Interrupt Vector Spacing in Bytes (I ntCtlvsl)
EBase bit 32 64 128 256 512
15 None None None VN =63
14 None Nove VN =62 VN =31
None
13 Nove VN 260 VN =30 VN > 15
12 VN = 56 VN =28 VN = 14 VN =7

1. See Table 8-20 on page 86

100 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.26 Configuration Register (CPO Register 16, Select 0)

8.26 Configuration Register (CPO Register 16, Select 0)
Compliance Level: Required.

The Config register specifies various configuration and capabilitiesinformation. Most of the fieldsin the Config register
areinitialized by hardware during the Reset Exception process, or are constant. Threefields, K23, KU, and KO, must be
initialized by software in the reset exception handler.

Figure 8-23 shows the format of the Config register; Table 8-30 describes the Config register fields.

Figure 8-23 Config Register Format
3130 2827 25 24 16 15 14 13 12 10 9 7 6 4 3 2 0
M| k2 [ku Impl BEf AT | AR | MT | o0 [vI] ko |

Table 8-30 Config Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
Denotes that the Configl register isimplemented at a .
M 3L | salectfield value of 1. R L Required
For processorsthat implement aFixed Mapping MMU, _
this field specifies the kseg2 and kseg3 coherency Undefined
algorithm. For processors that do not implement a for
Fixed Mapping MMU, thisfield reads aszero and is processors
K23 30:28 | ignored on write. RIW with a Fixed Optional
Mapping
See Appendix A, “Alternative MMU Organizations,” MMU; O
on page 133, for a description of the Fixed Mapping otherwise
MMU organization.
For processorsthat implement aFixed Mapping MMU, Undefined
this field specifies the kuseg coherency algorithm. For for
processors that do not implement a Fixed Mapping Processors
KU 27:25 MMU, thisfield reads as zero and is ignored on write. RIW witha F_i xed Optional
See Appendix A, “Alternative MMU Organizations,” M?Apﬁ'ng
on page 133, for adescription of the Fixed Mapping therw!
MMU organization. otherwise
Thisfield isreserved for implementations. Refer to the
processor specification for the format and definition of
Impl 24:16 thisfield Undefined Optional
Indicates the endian mode in which the processor is
running:
- - Preset or
BE 15 Encoding Meaning R Externally Required
0 [Littleendian Set
1 Big endian
MIPS32® Architecture For Programmers Volume lll, Revision 2.50 101

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 8-30 Config Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

Architecture type implemented by the processor:

Encoding Meaning
0 MIPS32

AT 14:13 " MIPS64 with access only to 32-bit R Preset Required
compatibility segments

MIPS64 with access to all address segments
3 Reserved

Architecture revision level:

Encoding Meaning
AR 12:10 0 Release 1 R Preset Required

1 Release 2
2-7 Reserved

MMU Type:

Encoding Meaning
0 None
1 Standard TLB

MT 97 5 Standard BAT (see Section A.2 on page
137)

Standard fixed mapping (see Section A.1
on page 133)

4-7 Reserved

R Preset Required

0 6:4 Must be written as zero; returns zero on read. 0 0 Reserved

Virtual instruction cache (using both virtual indexing
and virtua tags):

VI 3 Encoding Meaning R Preset Required
0 Instruction Cache is not virtual

1 Instruction Cache is virtua

KO 2:0 Kseg0 coherency algorithm. See Table 8-8 on page 65 RIW Undefined

for the encoding of this field. Required

102 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.27 Configuration Register 1 (CPO Register 16, Select 1)

8.27 Configuration Register 1 (CPO Register 16, Select 1)

Compliance Level: Required.

The Configl register isan adjunct to the Config register and encodes additional capabilitiesinformation. All fieldsin the
Configl register are read-only.

The Icache and Dcache configuration parameters include encodings for the number of sets per way, the line size, and
the associativity. Thetotal cache size for acacheistherefore:

Cache Size = Associativity * Line Size * Sets Per Way
If theline sizeis zero, there is no cache implemented.

Figure 8-24 shows the format of the Configl register; Table 8-31 describes the Configl register fields.

Figure 8-24 Configl Register For mat
31 30 25 24 2221 1918 1615 1312 109 7 6 5 4 3 2 1 0
\M\ MMU Size- 1 \ IS \ IL \ IA \ DS \ DL \ DA \cz\MD\Pc\WR\CA\EP\FP\

Table 8-31 Configl Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
Thishit isreserved to indicate that a Config2 register is
present. If the Config2 register is not implemented, this .
M sl bit should read as a 0. If the Config2 register is R Preset Required
implemented, this bit should read asa 1.
Number of entriesin the TLB minus one. The values 0
MMU through 63 isthisfield correspond to 1 to 64 TLB .
Size-1 30..25 entries. The value zero isimplied by Configy,t having R Preset Required
avalueof ‘none'.
I cache sets per way:
Encoding Meaning
0 64
1 128
IS 24:22 2 2%6 R Preset Required
3 512
4 1024
5 2048
6 4096
7 Reserved
MIPS32® Architecture For Programmers Volume lll, Revision 2.50 103

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 8-31 Configl Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

Icacheline size:

Encoding Meaning

No Icache present
4 bytes

8 bytes
16 bytes
32 bytes
64 bytes
128 bytes

Reserved

IL 21:19 R Preset Required

N|lfojlo|h~|[lw[N]|F|O

Icache associativity:

Encoding Meaning

Direct mapped

2-way

IA 18:16 Sway

R Preset Required
4-way

5-way

6-way

7-way

N|[fojlo|h~|[lw[N]|F|O

8-way

Dcache sets per way:

Encoding Meaning

128
256
512
1024
2048
4096

Reserved

DS 15:13 R Preset Required

N|jlo|jloa|h|lW[IN]|FL]| O

104 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.27 Configuration Register 1 (CPO Register 16, Select 1)

Table 8-31 Configl Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

Dcacheline size:

Encoding Meaning

No Dcache present
4 bytes

8 bytes
16 bytes
32 bytes
64 bytes
128 bytes

Reserved

DL 12:10 R Preset Required

N|lfojlo|h~|[lw[N]|F|O

Dcache associativity:

Encoding Meaning

Direct mapped

2-way

DA 97 Sway

R Preset Required
4-way

5-way

6-way

7-way

N|[fojlo|h~|[lw[N]|F|O

8-way

Coprocessor 2 implemented:

Encoding Meaning

0 No coprocessor 2 implemented

C2 6 1 Coprocessor 2 implements

This bit indicates not only that the processor contains
support for Coprocessor 2, but that such a coprocessor
is attached.

Used to denote MDM X ASE implemented on a
MIPS64 processor. Not used on a MIPS32 processor.

MD 5 R 0 Required

This bit indicates not only that the processor contains
support for MDM X, but that such a processing element
is attached.

Performance Counter registers implemented:

Encoding Meaning

PC 4 0 No performance counter registers R Preset Required
implemented

1 Performance counter registers implemented

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 105
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 8-31 Configl Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
Watch registers implemented:
Encoding Meaning)
WR 3 0 No watch registers implemented R Preset Required
1 Watch registers implemented
Code compression (MIPS16€) implemented:
Encoding M eaning)
CA 2 0 MIPS16e not implemented R Preset Required
1 MIPS16e implemented
EJTAG implemented:
Encoding M eaning
EP 1 R Preset Required

0 No EJTAG implemented
1 EJTAG implemented

FPU implemented:

Encoding M eaning
0 No FPU implemented
1 FPU implemented

FP 0 R Preset Required

This bit indicates not only that the processor contains
support for afloating point unit, but that such aunitis
attached.

If an FPU isimplemented, the capabilities of the FPU
can be read from the capability bitsin the FIR CP1
register.

106 MIPS32® Architecture For Programmers Volume lll, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.28 Configuration Register 2 (CPO Register 16, Select 2)

8.28 Configuration Register 2 (CPO Register 16, Select 2)

Compliance Level: Requiredif alevel 2 or level 3 cacheisimplemented, or if the Config3 register isrequired; Optional
otherwise.

The Config2 register encodes level 2 and level 3 cache configurations.
Figure 8-25 shows the format of the Config2 register; Table 8-32 describes the Config2 register fields.

Figure 8-25 Config2 Register For mat

313 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
|M| TU TS TL TA suU Ss sL SA

Table 8-32 Config2 Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

Thishitisreserved to indicate that a Config3 register is

M 31 present. If the Config3 register isnot implemented, this R
bit should read as a 0. If the Config3 register is

implemented, this bit should read asa 1.

Preset Required

Implementation-specific tertiary cache control or status
TU 30:28 bits. If thisfield is not implemented it should read as R/W Preset Optional
zero and be ignored on write.

Tertiary cache sets per way:

Encoding | Sets Per Way
0 64

128

256

512 R Preset Required

1024

2048

4096

8192

5 Reserved

TS 27:24

Bl~N]Jlo|la|ls|lw[N] -

[ee]

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 107

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 8-32 Config2 Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
Tertiary cacheline size:
Encoding| LineSize
0 No cache
present
1 4
2 8
TL 23:20 R Preset Required
3 16
4 32
5 64
6 128
7 256
8-15 Reserved
Tertiary cache associativity:
Encoding| Associativity
0 Direct
Mapped
1 2
TA 19:16 Z j R Preset Required
4 5
5 6
6 7
7 8
8-15 Reserved
Implementati on-specific secondary cache control or
SU 15:12 statushits. If thisfieldisnot implemented it should read R/W Preset Optional
as zero and beignored on write.
Secondary cache sets per way:
Encoding | Sets Per Way
0 64
1 128
2 256
SS 11:8 3 512 R Preset Required
4 1024
5 2048
6 4096
7 8192
8-15 Reserved
108 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.28 Configuration Register 2 (CPO Register 16, Select 2)

Table 8-32 Config2 Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
Secondary cache line size:
Encoding| LineSize
0 No cache
present
1 4
2 8
SL 74 R Preset Required
3 16
4 32
5 64
6 128
7 256
8-15 Reserved
Secondary cache associativity:
Encoding| Associativity
0 Direct
Mapped
1 2
SA 3.0 Z j R Preset Required
4 5
5 6
6 7
7 8
8-15 Reserved
MIPS32® Architecture For Programmers Volume lll, Revision 2.50 109

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.29 Configuration Register 3 (CPO Register 16, Select 3)

Compliance Level: Required if any optional feature described by thisregister isimplemented: Release 2 of the
Architecture, the SmartMIPS ASE, or trace logic; optional otherwise.

The Config3 register encodes additional capabilities. All fieldsin the Config3 register are read-only.

Figure 8-26 shows the format of the Config3 register; Table 8-33 describes the Config3 register fields.

Figure 8-26 Config3 Register Format

31 30 11109 8 7 6 5 4 3 2 1 0
M 0 DS o |LpalvEIQVINi SP| 0 [MT/SM|TL
000 0000 0000 0000 0000 O PP

Table 8-33 Config3 Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

Thishitisreserved to indicate that a Config4 register is
M 31 present. With the current architectural definition, this R Preset Required
bit should always read asa 0.

0 %)81% Must be written as zeros; returns zeros on read 0 0 Reserved

MIPS® DSPASE implemented. This bit indicates
whether the MIPS DSPASE isimplemented.

DSPP 10 Encoding Meaning R Preset Required
0 MIPS DSPASE is not implemented
1 MIPS ASE isimplemented

Denotes the presence of support for large physical
addresses on M1PS64 processors. Not used by MIPS32 Required
LPA 7 processors and returns zero on read. R Preset (Release 2

For implementations of Release 1 of the Architecture, Only)

this bit returns zero on read.

Support for an external interrupt controller is
implemented.

Encoding M eaning

Support for EIC interrupt mode is not

0 implemented

VEIC 6 1 _Support for EIC interrupt mode is R Preset (l;gqgg;gd 2
implemented only)

For implementations of Release 1 of the Architecture,
this bit returns zero on read.

This bit indicates not only that the processor contains
support for an external interrupt controller, but that
such a controller is attached.

110

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.29 Configuration Register 3 (CPO Register 16, Select 3)

Table 8-33 Config3 Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

Vectored interrupts implemented. This bit indicates
whether vectored interrupts are implemented.

Encoding Meaning .
Required

Vint 5 0 Vector interrupts are not implemented R Preset (Release 2

Only)

1 Vectored interrupts are implemented

For implementations of Release 1 of the Architecture,
this bit returns zero on read.

Small (1KByte) page support isimplemented, and the
PageGrain register exists

Encoding Meaning .
Required

SP 4 0 Small page support is not implemented R Preset (Release 2

Only)

1 Small page support isimplemented

For implementations of Release 1 of the Architecture,
this bit returns zero on read.

MIPS® MTASE implemented. This bit indicates
whether the MIPS MTASE is implemented.

MT 2 Encoding Meaning R Preset Required
0 MIPSMT ASE is not implemented

1 MIPS MTASE isimplemented

SmartMIPS™ ASE implemented. This bit indicates
whether the SmartMIPS ASE isimplemented.

SM 1 Encoding Meaning R Preset Required
0 SmartMIPS ASE is not implemented
1 SmartMIPS ASE isimplemented

Trace Logic implemented. This bit indicates whether
PC or datatraceisimplemented.

TL 0 Encoding Meaning R Preset Required
0 Tracelogic is not implemented

1 Trace logic isimplemented

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 111
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.30 Reserved for Implementations (CPO Register 16, Selects 6 and 7)

112

Compliance Level: Optional: Implementation Dependent.

CPO register 16, Selects 6 and 7 are reserved for implementation dependent use and is not defined by the architecture.
In order to use CPO register 16, Selects 6 and 7, it is not necessary to implement CPO register 16, Selects 2 through 5

only to set the M hit in each of these registers. That is, if the Config2 and Config3 registers are not needed for the
implementation, they need not be implemented just to provide the M hits.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.31 Load Linked Address (CPO Register 17, Select 0)

8.31 Load Linked Address (CPO Register 17, Select 0)

Compliance Level: Optional.

The LLAddr register contains relevant bits of the physical address read by the most recent L oad Linked instruction. This
register isimplementation dependent and for diagnostic purposes only and serves no function during normal operation.

Figure 8-27 shows the format of the LLAddr register; Table 8-34 describes the LLAddr register fields.

Figure 8-27 LLAddr Register Format

31 0
PAddr
Table 8-34 LLAddr Register Field Descriptions
Fields
Read/
Name Bits Description Write | Reset State | Compliance
Thisfield encodes the physical address read by the
most recent L oad Linked instruction. Theformat of this
PAddr 31.0 register isimplementation dependent, and an R Undefined Optional
implementation may implement as many of the bits or
format the addressin any way that it finds convenient.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 113

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.32 WatchL o Register (CPO Register 18)
Compliance Level: Optional.

The WatchLo and WatchHi registers together provide the interface to awatchpoint debug facility which initiates awatch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in the Satus
register. If either bit isaone, the WP bit is set in the Cause register, and the watch exception is deferred until both the
EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them viathe select
field of the M TCO/MFCO instructions, and each pair of Watch registers may be dedicated to a particular type of reference
(e.g., instruction or data). Software may determineif at least one pair of WatchLo and WatchHi registersareimplemented
viathe WR bit of the Configl register. See the discussion of the M bit in the WatchHi register description below.

TheWatchLo register specifiesthe base virtual address and the type of reference (instruction fetch, load, store) to match.
If aparticular Watch register only supports a subset of the reference types, the unimplemented enables must be ignored
on write and return zero on read. Software may determine which enables are supported by a particular Watch register
pair by setting all three enables bits and reading them back to see which ones were actualy set.

It isimplementation dependent whether a data watch istriggered by a prefetch, CACHE, or SYNCI (Release 2 only)
instruction whose address matches the Watch register address match conditions.

Figure 8-28 shows the format of the WatchLo register; Table 8-35 describes the WatchLo register fields.

Figure 8-28 WatchL o Register Format
31 3210
VAddr |1 R|W|

Table 8-35 WatchL o Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

Thisfield specifies the virtual address to match. Note
VAddr 31.3 that thisis a doubleword address, since bits [2:0] are R/W Undefined Required
used to control the type of match.

If thisbit is one, watch exceptions are enabled for
instruction fetches that match the address and are
actually issued by the processor (speculative

2 instructions never cause Watch exceptions). RIW 0 Optiona

If thisbit is not implemented, writesto it must be
ignored, and reads must return zero.

If thisbit isone, watch exceptions are enabled for loads
that match the address.

For the purposes of the MIPS16e PC-relative load
R 1 instructions, the PC-relative reference is considered to RIW 0

be adata, rather than an instruction reference. That is,
the watchpoint is triggered only if thisbitisa 1.

Optional

If thisbit is not implemented, writes to it must be
ignored, and reads must return zero.

114 MIPS32® Architecture For Programmers Volume lll, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.32 WatchLo Register (CPO Register 18)

Table 8-35 WatchL o Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance

If this bit is one, watch exceptions are enabled for

stores that match the address.

W 0 R/W 0 Optional
If thisbit is not implemented, writes to it must be
ignored, and reads must return zero.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

115

8.33 WatchHi Register (CPO Register 19)

116

Compliance Level: Optional.

The WatchLo and WatchHi registers together provide the interface to awatchpoint debug facility which initiates awatch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in the Satus
register. If either bit isaone, the WP bit is set in the Cause register, and the watch exception is deferred until both the
EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them viathe select
field of the M TCO/MFCO instructions, and each pair of Watch registers may be dedicated to a particular type of reference
(e.g., instruction or data). Software may determineif at least one pair of WatchLo and WatchHi registersareimplemented
viathe WR bit of the Configl register. If the M bit is onein the WatchHi register reference with a select field of ‘n’,
another WatchHi/WatchL o pair isimplemented with aselect field of ‘n+1’.

The WatchHi register contains information that qualifies the virtual address specified in the WatchLo register: an ASID,
aG(lobal) bit, an optional address mask, and three bits (I, R, and W) which denote the condition that caused the watch
register to match. If the G bit is one, any virtual address reference that matches the specified address will cause awatch
exception. If the G bit isazero, only those virtual address references for which the ASID value in the WatchHi register
matches the ASID value in the EntryHi register cause a watch exception. The optional mask field provides address
masking to qualify the address specified in WatchLo.

Thel, R, and W hits are set by the processor when the corresponding watch register condition is satisfied and indicate
which watch register pair (if more than one isimplemented) and which condition matched. When set by the processor,
each of these bits remain set until cleared by software. All three bits are “write oneto clear”, such that software must
write a one to the bit in order to clear its value. The typical way to do thisisto write the value read from the WatchHi
register back to WatchHi. In doing so, only those bits which were set when the register was read are cleared when the
register is written back.

Figure 8-29 shows the format of the WatchHi register; Table 8-36 describes the WatchHi register fields.

Figure 8-29 WatchHi Register Format
31 30 29 24 23 16 15 12 11 3 210
M| G| 0 ASID 0 Mask |1 R|W]|

Table 8-36 WatchHi Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

If thisbit is one, another pair of WatchHi/\WatchLo
M 31 registersisimplemented at aMTCO or MFCO select R Preset Required
field value of ‘n+1’

If thisbit isone, any addressthat matchesthat specified
inthe WatchL o register will cause awatch exception. If
G 30 this bit is zero, the ASID field of the WatchHi register R/W Undefined Required
must match the ASID field of the EntryHi register to
cause awatch exception.

ASID value which is reguired to match that in the
ASID 23..16 EntryHi register if the G bit is zero in the WatchHi R/W Undefined Required
register.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.33 WatchHi Register (CPO Register 19)

Table 8-36 WatchHi Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

Mask

11.3

Optional bit mask that qualifies the addressin the
WatchLo register. If thisfield isimplemented, any bitin
thisfield that is a one inhibits the corresponding
address bit from participating in the address match.

If thisfield is not implemented, writes to it must be
ignored, and reads must return zero.

Software may determine how many mask bits are
implemented by writing ones the thisfield and then
reading back the result.

RIW

Undefined

Optional

This bit is set by hardware when an instruction fetch
condition matchesthe valuesin thiswatch register pair.
When set, the bit remains set until cleared by software,
which is accomplished by writing a 1 to the bit.

wicC

Undefined

Required
(Release 2)

Thisbit is set by hardware when aload condition
matchesthevaluesin thiswatch register pair. When set,
the bit remains set until cleared by software, whichis
accomplished by writing a 1 to the bit.

wicC

Undefined

Required
(Release 2)

This bit is set by hardware when a store condition
matchesthe valuesin thiswatch register pair. When set,
the bit remains set until cleared by software, whichis
accomplished by writing a 1 to the bit.

wWiC

Undefined

Required
(Release 2)

29..24,

15..12

Must be written as zero; returns zero on read.

Reserved

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

117

8.34 Reserved for Implementations (CPO Register 22, all Select values)

Compliance Level: Optional: Implementation Dependent.

CPO register 22 isreserved for implementation dependent use and is not defined by the architecture.

118 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.35 Debug Register (CP0O Register 23)

8.35 Debug Register (CPO Register 23)

Compliance Level: Optional.

The Debug register is part of the EJTAG specification. Refer to that specification for the format and description of this
register.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 119

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.36 DEPC Register (CPO Register 24)

120

Compliance Level: Optional.

The DEPC register isaread-write register that contains the address at which processing resumes after adebug exception
has been serviced. It is part of the EJTAG specification and the reader is referred there for the format and description of
the register. All bits of the DEPC register are significant and must be writable.

When a debug exception occurs, the processor writes the DEPC register with.
* thevirtual address of the instruction that was the direct cause of the exception, or

» thevirtual address of theimmediately preceding branch or jump instruction, when the exception causing instruction
isinabranch delay dot, and the Branch Delay hit in the Cause register is set.

The processor reads the DEPC register as the result of execution of the DERET instruction.
Software may write the EEPC register to change the processor resume address and read the DEPC register to determine
at what address the processor will resume.
8.36.1 Special Handling of the DEPC Register in Processors That | mplement the M PS16e ASE
In processors that implement the MIPS16e ASE, the DEPC register requires special handling.

When the processor writes the DEPC register, it combines the address at which processing resumes with the value of the
| SA Mode register:

DEPC « resumePC3;_ ; || ISAMode,
“resumePC” isthe address at which processing resumes, as described above.

When the processor reads the DEPC register, it distributes the bits to the PC and | SAMode registers:

PC < DEPC3; 1 || O
ISAMode ¢« DEPC,

Software reads of the DEPC register simply return to aGPR the last value written with no interpretation. Software writes
to the DEPC register store a new value which isinterpreted by the processor as described above.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.37 Performance Counter Register (CPO Register 25)

8.37 Performance Counter Register (CPO Register 25)

Compliance L evel: Recommended.

The MIPS32 Architecture supportsimplementation dependent performance countersthat provide the capability to count
events or cycles for use in performance analysis. If performance counters are implemented, each performance counter
consists of apair of registers: a 32-bit control register and a 32-bit counter register. To provide additional capability,
multiple performance counters may be implemented.

Performance counters can be configured to count implementation dependent events or cycles under a specified set of
conditionsthat are determined by the control register for the performance counter. The counter register increments once
for each enabled event. When the most significant bit of the counter register is a one (the counter overflows), the
performance counter optionally requests an interrupt. Inimplementations of Release 1 of the Architecture, thisinterrupt
is combined in aimplementation-dependent way with hardware interrupt 5. In Release 2 of the Architecture, pending
interrupts from al performance counters are ORed together to become the PCI bit in the Cause register, and are
prioritized as appropriate to the interrupt mode of the processor. Counting continues after a counter register overflow
whether or not an interrupt is requested or taken.

Each performance counter is mapped into even-odd select values of the PerfCnt register: Even selects access the control
register and odd sel ects access the counter register. Table 8-37 shows an exampl e of two performance counters and how
they map into the select values of the PerfCnt register.

Table 8-37 Example Perfor mance Counter Usage of the PerfCnt CPO Register

PerfCnt
Performance | Register Select
Counter Value PerfCnt Register Usage

PerfCnt, Select 0 Control Register 0

0
PerfCnt, Select 1 Counter Register 0
PerfCnt, Select 2 Control Register 1

1
PerfCnt, Select 3 Counter Register 1

More or less than two performance counters are also possible, extending the select field in the obvious way to obtain the
desired number of performance counters. Software may determine if at |east one pair of Performance Counter Control
and Counter registersisimplemented viathe PC bit in the Configl register. If the M bit is one in the Performance
Counter Control register referenced viaa select field of ‘'n’, another pair of Performance Counter Control and Counter
registersisimplemented at the select values of ‘n+2" and ‘n+3’.

The Control Register associated with each performance counter controls the behavior of the performance counter.
Figure 8-30 shows the format of the Performance Counter Control Register; Table 8-38 describes the Performance
Counter Control Register fields.

Figure 8-30 Performance Counter Control Register Format

31 30 29 11 10 5 4 3 2 1 0
M w] 0 Event [1E| U | s|K]Ext]
MIPS32® Architecture For Programmers Volume lll, Revision 2.50 121

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 8-38 Performance Counter Control Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

If thishit isaone, another pair of Performance Counter
M 31 Control and Counter registersisimplemented at a R Preset Required
MTCO or MFCO select field value of ‘n+2’ and ‘'n+3'.

Denotes that the corresponding Counter register is 64

w 30 bitswide on aM1PS64 processor. Unused on aM1PS32 R Preset Required
processor.
0 29..11 Must be written as zero; returns zero on read 0 0 Reserved

Selects the event to be counted by the corresponding
Counter Register. Thelist of eventsisimplementation
dependent, but typical eventsinclude cycles,
instructions, memory reference instructions, branch

Event 10.5 | instructions, cacheand TLB misses, efc. RIW Undefined Required

Implementations that support multiple performance
countersallow ratiosof events, e.g., cachemissratiosif
cache miss and memory references are selected as the
events in two counters

Interrupt Enable. Enables the interrupt request when
the corresponding counter overflows (the most
significant bit of the counter isone. Thisishit 31 for a
32-bit wide counter or bit 63 of a 64-bit wide counter,
denoted by the W bit in this register).

Note that this bit simply enables the interrupt request.
IE 4 The actual interrupt is still gated by the normal R/W 0 Required
interrupt masks and enable in the Status register.

Encoding Meaning

0 Performance counter interrupt disabled

1 Performance counter interrupt enabled

Enables event counting in User Mode. Refer to Section
Section 3.4, "User Mode" on page 10 for the conditions
under which the processor is operating in User Mode.

U 3 Encoding M eaning RIW Undefined Required

0 Disable event counting in User Mode

1 Enable event counting in User Mode

Enables event counting in Supervisor Mode (for those
processors that implement Supervisor Mode). Refer to
Section Section 3.3, "Supervisor Mode" on page 9 for
the conditions under which the processor is operating

in Supervisor mode.

If the processor does not implement Supervisor Mode,

S 2 this bit must be ignored on write and return zero on R/W Undefined Required
read.
Encoding Meaning

0 Disable event counting in Supervisor Mode

1 Enable event counting in Supervisor Mode

122 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.37 Performance Counter Register (CPO Register 25)

Table 8-38 Performance Counter Control Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

Enables event counting in Kernel Mode. Unlike the
usual definition of Kernel Mode asdescribedin Section
Section 3.2, "Kernel Mode" on page 9, thisbit enables
event counting only when the EXL and ERL bitsin the
Satus register are zero.

K 1 R/W Undefined Required

Encoding Meaning

0 Disable event counting in Kernel Mode

1 Enable event counting in Kernel Mode

Enables event counting when the EXL bit in the Status
register is one and the ERL bit in the Status register is
zero.

Encoding Meaning

0 Disable event counting while EXL = 1,
EXL 0 ERL =0 RIW Undefined Required

Enable event counting while EXL =1,
ERL =0

Counting is never enabled when the ERL bit in the
Satus register or the DM bit in the Debug register is
one.

The Counter Register associated with each performance counter increments once for each enabled event. Figure 8-31
shows the format of the Performance Counter Counter Register; Table 8-39 describes the Performance Counter Counter

Register fields.
Figure 8-31 Performance Counter Counter Register Format
31 0
Event Count
Table 8-39 Performance Counter Counter Register Field Descriptions
Fields
Read/
Name Bits Description Write | Reset State | Compliance

Increments once for each event that is enabled by the
Event corresponding Control Register. When the most _)
Count 31.0 significant bit is one, a pending interrupt request is R/W Undefined Required
ORed with those from other performance counters and
indicated by the PCI bit in the Cause register.

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the |E
field of the Control register or the Event Count Field of the Counter register are written. See Section 5.1.2.1, " Soft-
ware Hazards and the Interrupt System" on page 32.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 123
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.38 ErrCtl Register (CPO Register 26, Select 0)

Compliance Level: Optional.

The ErrCtl register provides an implementation dependent diagnostic interface with the error detection mechanisms
implemented by the processor. Thisregister has been used in previous implementations to read and write parity or ECC
information to and from the primary or secondary cache data arrays in conjunction with specific encodings of the Cache
instruction or other implementation-dependent method. The exact format of the ErrCtl register is implementation
dependent and not specified by the architecture. Refer to the processor specification for the format of this register and a
description of the fields.

124 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.39 CacheErr Register (CPO Register 27, Select 0)

8.39 CacheErr Register (CPO Register 27, Select 0)
Compliance Level: Optional.
The CacheErr register provides an interface with the cache error detection logic that may beimplemented by a processor.

The exact format of the CacheErr register isimplementation dependent and not specified by the architecture. Refer to
the processor specification for the format of this register and a description of the fields.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 125
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.40 TagL o Register (CPO Register 28, Select 0, 2)
Compliance Level: Required if a cache isimplemented; Optional otherwise.

The TagLo and TagHi registers are read/write registers that act as the interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction use the TagLo and TagHi registers as the source or sink
of tag information, respectively.

The exact format of the TagLo and TagHi registersis implementation dependent. Refer to the processor specification
for the format of this register and a description of thefields.

However, software must be able to write zeros into the TagLo and TagHi registers and then use the Index Store Tag
cache operation to initialize the cache tags to avalid state at powerup.

It isimplementation dependent whether there is a single TaglLo register that acts as the interface to all caches, or a
dedicated TagL o register for each cache. If multiple TagLo registers are implemented, they occupy the even select values
for thisregister encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache. Whether
individual TagLo registers are implemented or not for each cache, processors must accept awrite of zero to select 0 and
select 2 of TagLo as part of the software process of initializing the cache tags at powerup.

126 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.41 Datalo Register (CPO Register 28, Select 1, 3)

8.41 DatalL o Register (CPO Register 28, Select 1, 3)

Compliance Level: Optional.

The Datal o and DataHi registers are read-only registersthat act asthe interface to the cache dataarray and are intended
for diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data
valuesinto the Datal o and DataHi registers.

The exact format and operation of the Datal.o and DataHi registersisimplementation dependent. Refer to the processor
specification for the format of this register and a description of the fields.

It isimplementation dependent whether there isa single Datal o register that acts as the interface to all caches, or a
dedicated Datal o register for each cache. If multiple Datal o registers are implemented, they occupy the odd select
values for this register encoding, with select 1 addressing the instruction cache and select 3 addressing the data cache.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 127

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.42 TagHi Register (CPO Register 29, Select 0, 2)
Compliance Level: Required if a cache isimplemented; Optional otherwise.

The TagLo and TagHi registers are read/write registers that act as the interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction use the TagLo and TagHi registers as the source or sink
of tag information, respectively.

The exact format of the TagLo and TagHi registersis implementation dependent. Refer to the processor specification
for the format of this register and a description of the fields. However, software must be able to write zeros into the
TagLo and TagHi registers and the use the Index Store Tag cache operation to initialize the cache tags to avalid state at
powerup.

It isimplementation dependent whether there isa single TagHi register that acts asthe interface to all caches, or a
dedicated TagHi register for each cache. If multiple TagHi registers areimplemented, they occupy the even select values
for thisregister encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache. Whether
individual TagHi registers are implemented or not for each cache, processors must accept awrite of zero to select 0 and
select 2 of TagHi as part of the software process of initializing the cache tags at powerup.

128 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.43 DataHi Register (CPO Register 29, Select 1, 3)

8.43 DataHi Register (CPO Register 29, Select 1, 3)
Compliance Level: Optional.

The Datal o and DataHi registers are read-only registersthat act asthe interface to the cache dataarray and are intended

for diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data
valuesinto the Datal o and DataHi registers.

The exact format and operation of the Datal.o and DataHi registersisimplementation dependent. Refer to the processor
specification for the format of this register and a description of the fields.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 129

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.44 ErrorEPC (CPO Register 30, Select 0)

Compliance Level: Required.

The ErrorEPC register is aread-write register, similar to the EPC register, at which processing resumes after a Reset,

Soft Reset, Nonmaskable Interrupt (NMI) or Cache Error exceptions (collectively referred to as error exceptions).

Unlikethe EPC register, there isno corresponding branch delay slot indication for the Error EPC register. All bits of the

ErrorEPC register are significant and must be writable.

When an error exception occurs, the processor writes the Error EPC register with:

* thevirtual address of the instruction that was the direct cause of the exception, or

» thevirtual address of theimmediately preceding branch or jump instruction when the error causing instructionisin a
branch delay slot.

The processor reads the ErrorEPC register as the result of execution of the ERET instruction.

Software may write the Error EPC register to change the processor resume address and read the ErrorEPC register to
determine at what address the processor will resume

Figure 8-32 shows the format of the ErrorEPC register; Table 8-40 describes the Error EPC register fields.

Figure 8-32 ErrorEPC Register Format
31 0
ErrorEPC

Table 8-40 Error EPC Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
ErrorEPC 31.0 Error Exception Program Counter R/W Undefined Required

8.44.1 Special Handling of the Error EPC Register in Processors That mplement the M1 PS16e ASE

130

In processors that implement the MIPS16e ASE, the ErrorEPC register requires specia handling.

When the processor writes the Error EPC register, it combines the address at which processing resumes with the value
of the ISA Mode register:

ErrorEPC <« resumePCy; ; || ISAModeq
“resumePC” isthe address at which processing resumes, as described above.

When the processor reads the ErrorEPC register, it distributes the bits to the PC and | SAMode registers:

PC ¢ ErrorEPC3; 1 || O
ISAMode <« ErrorEPCj,

Software reads of the ErrorEPC register simply return to a GPR the last value written with no interpretation. Software
writes to the ErrorEPC register store a new value which isinterpreted by the processor as described above.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8.45 DESAVE Register (CP0O Register 31)

8.45 DESAVE Register (CPO Register 31)

Compliance Level: Optional.

The DESAVE register is part of the EJTAG specification. Refer to that specification for the format and description of this
register.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 131

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

132 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix A

Alternative MMU Organizations

The main body of this specification describes the TLB-based MMU organization. This appendix describes other

potential MMU organizations.

A.1 Fixed MappingMMU

As an dternative to the full TLB-based MMU, the MIPS32 Architecture supports a lightweight memory management
mechanism with fixed virtual-to-physical addresstransation, and no memory protection beyond what is provided by the

address error checks required of all MMUs. This may be useful for those applications which do not require the

capabilities of afull TLB-based MMU.

A.1.1 Fixed Address Trandation

Address trandlation using the Fixed Mapping MMU is done as follows:

* Kseg0 and Ksegl addresses are translated in an identical manner to the TLB-based MMU: they both map to the low

512MB of physical memory.

 Useg/Suseg/Kuseg addresses are mapped by adding 1GB to the virtual address when the ERL bit is zero in the Status

register, and are mapped using an identity mapping when the ERL bit is one in the Status register.

* Sseg/K sseg/K seg2/K seg3 addresses are mapped using an identity mapping.

Supervisor Mode is not supported with a Fixed Mapping MMU.

Table 8-41 lists all mappings from virtual to physical addresses. Note that address error checking is still done before the
tranglation process. Therefore, an attempt to reference kseg0 from User Mode still resultsin an address error exception,
just asit does with a TLB-based MMU.

Table 8-41 Physical Address Generation from Virtual Addresses

Generates Physical Address
Segment
Name Virtual Address Statusgg,. =0 Statusgg, =1
useg 0x0000 0000 0x4000 0000 0x0000 0000
suseg through through through
kuseg 0x7FFF FFFF OxBFFF FFFF 0x7FFF FFFF
0x8000 0000 0x0000 0000
kseg0 through through
O0x9FFF FFFF 0x1FFF FFFF
0xA000 0000 0x0000 0000
through through
ksegl
OxBFFF FFFF 0x0x1FFF FFFF

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

133

Appendix A Alternative MMU Organizations

134

Table 8-41 Physical Address Generation from Virtual Addresses

Segment Generates Physical Address
Name Virtual Address Statusgg,. =0 Statusgg, =1
sseg 0xC000 0000 0xC000 0000
ksseg through through
kseg2 0xXDFFF FFFF 0xXDFFF FFFF
0xE000 0000 0xE000 0000
kseg3 through through
O0xXFFFF FFFF 0xXFFFF FFFF

Note that this mapping means that physical addresses 0x2000 0000 through 0x3FFF FFFF areinaccessible when
the ERL bit isoff inthe Satusregister, and physical addresses 0x8000 0000 through 0xBFFF FFFF areinaccessible
when the ERL bit is on in the Satus register.

Figure 8-33 shows the memory mapping when the ERL bit in the Satusregister is zero; Figure 8-34 shows the memory
mapping when the ERL bit is one.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

A.1 Fixed Mapping MMU

OXFFFF FFFF

0xEO00 0000
OxDFFF FFFF

0xC000 0000

0xBFFF FFFF

0xA000 0000
0x9FFF FFFF

0x8000 0000
0x7FFF FFFF

0x0000 0000

Figure 8-33 Memory Mapping when ERL =0

kseg3 kseg3 Mapped
kseg2 kseg2
ksseg ksseg
Sseg sseg Mapped
ksegl
kseg0 kuseg
Suseg
useg
Mapped
kuseg
suseg
useg Unmapped
kseg0
ksegl
Mapped

0XFFFF

0xEO000
OxDFFF

0xC000

0xBFFF

0x4000
0x3FFF

0x2000
0x1FFF

0x0000

FFFF

0000
FFFF

0000

FFFF

0000
FFFF

0000
FFFF

0000

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

135

Appendix A Alternative MMU Organizations

Figure 8-34 Memory Mapping when ERL =1

O0XFFFF FFFF O0xFFFF FFFF
kseg3
kseg3
Mapped
0xE000 0000 0xE000 0000
0xXDFFF FFFF kseg2 0xDFFF FFFF
kseg2
ksseg
ksseg
0xC000 0000 sseg S 0xC000 0000
Mapped
|
0xBFFF FFFF 0xBFFF FFFF
ksegl
0xA000 0000
Unmapped
0x9FFF FFFF
kseg0
0x8000 0000 0x8000 0000
0x7FFF FFFF 0x7FFF FFFF
kuseg
kuseg
suseg
Suseg
useg
useg
Mapped
kseg0
ksegl
0x0000 0000 Mapped 0x0000 0000

A.1.2 Cacheability Attributes

136

Because the TLB provided the cacheability attributes for the kuseg, kseg2, and kseg3 segments, some mechanismis
required to replace this capability when the fixed mapping MMU is used. Two additional fields are added to the Config
register whose encoding isidentical to that of the KO field. These additions are the K23 and KU fields which control the
cacheability of the kseg2/kseg3 and the kuseg segments, respectively. Note that when the ERL bit is on in the Satus
register, kuseg data references are always treated as uncacheabl e references, independent of the value of the KU field.
The operation of the processor is UNDEFINED if the ERL bit is set while the processor is executing instructions from

kuseg.

The cacheability attributes for kseg0 and ksegl are provided in the same manner as for a TLB-based MMU: the
cacheability attribute for kseg0 comes from the KO field of Config, and references to ksegl are always uncached.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

A.2 Block Address Translation

Figure 8-35 shows the format of the additions to the Config register; Table 8-42 describes the new Config register fields.

Figure 8-35 Config Register Additions
3130 2827 2524 16 15 141312 109 7 6 4 3 2 0
\M\ K23 \ KU \ 0 \ BE‘ AT \ AR \ MT \ 0 \ VI \ KO \

Table 8-42 Config Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
. K seg2/K seg3 coherency algorithm. See Table 8-8 on ' .
K23 30:28 page 65 for the encoding of thisfield. RW Undefined Required
. Kuseg coherency algorithm when Statuszg, is zero. . ;
KU 2125 See Table 8-8 on page 65 for the encoding of thisfield. RIW Undefined Reguired

A.1.3 Changestothe CPO Register Interface

Relative to the TLB-based address translation mechanism, the following changes are necessary to the CPO register
interface:

» TheIndex, Random, EntryL o0, EntryL 01, Context, PageMask, Wired, and EntryHi registers are no longer required
and may be removed. The effects of aread or write to these registers are UNDEFINED.

* The TLBWR, TLBWI, TLBP, and TLBR instructions are no longer required and must cause a Reserved Instruction
Exception.

A.2 Block Address Trandation

This section describes the architecture for ablock address translation (BAT) mechanism that reuses much of the
hardware and software interface that existsfor aTL B-Based virtual address trangl ation mechanism. This mechanism has
the following features:

* It preserves as much as possible of the TLB-Based interface, both in hardware and software.
* It providesindependent base-and-bounds checking and relocation for instruction references and data references.

* It provides optional support for base-and-bounds relocation of kseg2 and kseg3 virtual address regions.

A.2.1 BAT Organization

The BAT isan indexed structure which is used to trandate virtual addresses. It contains pairs of instruction/data entries
which provide the base-and-bounds checking and rel ocation for instruction references and data references, respectively.
Each entry contains a page-aligned bounds virtual page number, a base page frame number (whose width is
implementation dependent), acache coherencefield (C), adirty (D) bit, and avalid (V) bit. Figure 8-36 showsthelogical
arrangement of a BAT entry.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 137

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix A Alternative MMU Organizations

Figure 8-36 Contents of a BAT Entry

BoundsVPN

BasePFN C D|V

The BAT isindexed by the reference type and the address region to be checked as shown in Table 8-43.

Table 8-43 BAT Entry Assignments

Reference
Entry Index Type Address Region
0 Instruction
useg/kuseg
1 Data
2 Instruction kseg2
3 Data (or kseg2 and kseg3)
4 Instruction
kseg3

5 Data

EntriesOand 1 arerequired. Entries 2, 3, 4 and 5 are optional and may be implemented as necessary to address the needs
of the particular implementation. If entries for kseg2 and kseg3 are not implemented, it isimplementation-dependent
how, if at all, these address regions are translated. One aternative is to combine the mapping for kseg2 and kseg3 into
asingle pair of instruction/data entries. Software may determine how many BAT entries are implemented by looking at
the MMU Sizefield of the Configl register.

A.2.2 Address Translation

138

When avirtual addresstranslation isrequested, the BAT entry that isappropriate to the reference type and addressregion
isread. If the virtual addressis greater than the selected bounds address, or if the valid bit is off in the entry, aTLB
Invalid exception of the appropriate reference typeisinitiated. If the referenceisastore and the D bit is off in the entry,
aTLB Modified exception isinitiated. Otherwise, the base PFN from the selected entry, shifted to align with bit 12, is
added to the virtual address to form the physical address. The BAT process can be described as follows:
i « SelectIndex (reftype, va)
bounds < BAT[i]gounasyen || 132
pfn < BAT[i]lgsgepry
c « BAT[ilq
d « BAT[i]p
v « BAT[ily
if (va > bounds) or (v = 0) then
InitiateTLBInvalidException (reftype)
endif
if (d = 0) and (reftype = store) then
InitiateTLBModifiedException ()
endif

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

A.2 Block Address Translation

pa « va + (pfn || 0%?)

Making all addresses out-of-bounds can only be done by clearing the valid bit inthe BAT entry. Setting the bounds value
to zero leaves the first virtual page mapped.

A.2.3 Changestothe CPO Register Interface
Relative to the TLB-based address trandlation mechanism, the following changes are necessary to the CPO register
interface:
» Thelndex register is used to index the BAT entry to be read or written by the TLBWI and TLBR instructions.
e The EntryHi register isthe interface to the BoundsV PN field in the BAT entry.

» The EntryLoO register isthe interface to the BasePFN and C, D, and V fields of the BAT entry. The register has the
same format as for a TLB-based MMU.

» The Random, EntryLol, Context, PageMask, and Wred registers are eliminated. The effects of aread or write to
these registersis UNDEFINED.

e The TLBP and TLBWR instructions are unnecessary. The TLBWI and TLBR instructions reference the BAT entry
whose index is contained in the Index register. The effects of executinga TLBP or TLBWR are UNDEFINED, but
processors should signal a Reserved Instruction Exception.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 139

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix A Alternative MMU Organizations

140 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix B
Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changesto figures. Change bars
on figure titles are used to denote a potential change in the figure itself.

Revision Date Description
0.92 January 20, 2001 Internal review copy of reorganized and updated architecture documentation.
0.95 March 12, 2001 Clean up document for external review release
Update based on review feedback:
» Change ProbEn to ProbeTrap in the EJTAG Debug entry vector location
discussion.

» Add cache error and EJTAG Debug exceptions to the list of exceptions that
do not go through the general exception processing mechanism.

* Fix incorrect branch offset adjustment in general exception processing
pseudo code to deal with extended MIPS16e instructions.

* Add Configy, to denote an instruction cache with both virtual indexing and
virtual tags.

» Correct XContext register description to note that both BadVPN2 and R
fields are UNPREDICTABLE after an address error exception.

1.00 August 29, 2002
* Note that Supervisor Mode is not supported with a Fixed Mapping MMU.
 Define TagL o bits 4..3 as implementation dependent.

 Describe the intended usage model differences between Reset and Soft
Reset Exceptions.

 Correct the minimum number of TLB entriesto be 3, not 2, and show an
example of the need for 3.

» Modify the description of PageMask and the TLB lookup process to
acknowledge the fact that not all implementations may support all page
sizes.

Update the specification with the changes introduced in Release 2 of the
Architecture. Changesiin this revision include:

» The following new Coprocessor O registers were added: EBase, HWREna,
IntCtl, PageGrain, SRSCtl, SRSMap.

» Thefollowing Coprocessor O registers were modified: Cause, Config,
Config2, Config3, EntryHi, EntryL o0, EntryL o1, PageMask, PerfCnt,
1.90 September 1, 2002 Status, WatchHi, WatchLo.

» The descriptions of Virtual memory, exceptions, and hazards have been
updated to reflect the changes in Release 2.

A chapter on GPR shadow regsiters has been added.

» The chapter on CP0 hazards has been completely rewriten to reflect the
Release 2 changes.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50 141
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix B Revision History

Revision Date Description
Complete the update to include Release 2 changes. These include:

» Make bits 12..11 of the PageMask register power up zero and be gated by
1K page enable. This eliminates the problem of having these bits set to Ob11
on aRelease 2 chip in which kernel software has not enabled 1K page
support.

» Correct the address of the cache error vector when the BEV hitis 1. It
should be OxBFC0.0300,. not OxBFC0.0200.

* Correct the introduction to shadow registersto note that the SRSCt! register
is not updated at the end of an exception in which Statusgg,, = 1.

 Clarify that aMIPS16e PC-relative |oad reference is a data reference for the

2.00 June 9, 2003 purposes of the Watch registers.

» Add note about a hardware interrupt being deasserted between the time that
the processor detects the interrupt request and the time that the software
interrupt handler runs. Software must be prepared for this case and ssimply
dismisstheinterrupt viaan ERET.

+ Add restriction that software must set EBase;5_1, to zeroin al bit positions
less than or equal to the most significant bit in the vector offset. Thisisonly
required in certain combinations of vector number and vector spacing when
using V1 or EIC Interrupt modes.

» Add suggested software TLB init routine which reduced the probability of
triggering a machine check.

142 MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Revision Date

Description

Changesin thisrevision:

2.50 July 1, 2005 .

Correct the encoding table description for the Causepc bit to indicate that
the bit controlls the performance counter, not the timer interrupt.

Correct the figure Interrupt Generation for External Interrupt Controller
Interrupt Mode to show Cause p; g going to the EIC, rather than Status;p; g

Update al filesto FrameMaker 7.1.
Update reset exception list to reflect missing Release 2 reset requirements.

Define bits 31..30 in the HWRENa register as access enables for the
implementati on-dependent hardware registers 31 and 30.

Add definition for Coprocessor O Enable to Operating Modes chapter.

Add K23 and KU fieldsto main Config register definition as a pointer to the
Fixed Mapping MMU appendix.

Add specific note about the need to implement all shadow sets between 0
and HSS - no holes are allowed.

Change the hazard from a software write to the SRSCtlpss field and a
RDPGPR and WRPGPR and instruction hazard vs. an execution hazard.

Correct the pseudo-code in the cache error exception description to reflect
the Release 2 change that introduced EBase.

Document that EHB clears instruction state change hazards for writes to
interrupt-related fields in the Status, Cause, Compare, and PerfCnt registers.

Note that implementati on-dependent bits in the Status and Config registers
should be defined in such away that standard boot software will run, and
that software which preserves the value of the field when writing the
registers will also run correctly.

With Release 2 of the Architecture the FR bit in the Satus register should be
aR/W bit, not aR bit.

Improve the organization of the CPO hazards table, and document that
DERET, ERET, and exceptions and interrupts clear all hazards before the
instruction fetch at the target instruction.

Add list of MIPS® MT CPO registersand MIPSMT and MIPS® DSP
present bitsin the Config3 register.

MIPS32® Architecture For Programmers Volume lll, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

143

	MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	The MIPS32 Privileged Resource Architecture
	2.1 Introduction
	2.2 The MIPS Coprocessor Model
	2.2.1 CP0 - The System Coprocessor
	2.2.2 CP0 Registers

	MIPS32 Operating Modes
	3.1 Debug Mode
	3.2 Kernel Mode
	3.3 Supervisor Mode
	3.4 User Mode
	3.5 Other Modes
	3.5.1 64-bit Floating Point Operations Enable
	3.5.2 64-bit FPR Enable
	3.5.3 Coprocessor 0 Enable

	Virtual Memory
	4.1 Support in Release 1 and Release 2 of the Architecture
	4.1.1 Virtual Memory

	4.2 Terminology
	4.2.1 Address Space
	4.2.2 Segment and Segment Size
	4.2.3 Physical Address Size (PABITS)

	4.3 Virtual Address Spaces
	4.4 Compliance
	4.5 Access Control as a Function of Address and Operating Mode
	4.6 Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments
	4.7 Address Translation for the kuseg Segment when StatusERL = 1
	4.8 Special Behavior for the kseg3 Segment when DebugDM = 1
	4.9 TLB-Based Virtual Address Translation
	4.9.1 Address Space Identifiers (ASID)
	4.9.2 TLB Organization
	4.9.3 TLB Initialization
	4.9.4 Address Translation

	Interrupts and Exceptions
	5.1 Interrupts
	5.1.1 Interrupt Modes
	5.1.1.1 Interrupt Compatibility Mode
	5.1.1.2 Vectored Interrupt Mode
	5.1.1.3 External Interrupt Controller Mode

	5.1.2 Generation of Exception Vector Offsets for Vectored Interrupts
	5.1.2.1 Software Hazards and the Interrupt System

	5.2 Exceptions
	5.2.1 Exception Vector Locations
	5.2.2 General Exception Processing
	5.2.3 EJTAG Debug Exception
	5.2.4 Reset Exception
	5.2.5 Soft Reset Exception
	5.2.6 Non Maskable Interrupt (NMI) Exception
	5.2.7 Machine Check Exception
	5.2.8 Address Error Exception
	5.2.9 TLB Refill Exception
	5.2.10 TLB Invalid Exception
	5.2.11 TLB Modified Exception
	5.2.12 Cache Error Exception
	5.2.13 Bus Error Exception
	5.2.14 Integer Overflow Exception
	5.2.15 Trap Exception
	5.2.16 System Call Exception
	5.2.17 Breakpoint Exception
	5.2.18 Reserved Instruction Exception
	5.2.19 Coprocessor Unusable Exception
	5.2.20 Floating Point Exception
	5.2.21 Coprocessor 2 Exception
	5.2.22 Watch Exception
	5.2.23 Interrupt Exception

	GPR Shadow Registers
	6.1 Introduction to Shadow Sets
	6.2 Support Instructions

	CP0 Hazards
	7.1 Introduction
	7.2 Types of Hazards
	7.2.1 Execution Hazards
	7.2.2 Instruction Hazards

	7.3 Hazard Clearing Instructions and Events
	7.3.1 Instruction Encoding

	Coprocessor 0 Registers
	8.1 Coprocessor 0 Register Summary
	8.2 Notation
	8.3 Writing CPU Registers
	8.4 Index Register (CP0 Register 0, Select 0)
	8.5 Random Register (CP0 Register 1, Select 0)
	8.6 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)
	8.7 Context Register (CP0 Register 4, Select 0)
	8.8 PageMask Register (CP0 Register 5, Select 0)
	8.9 PageGrain Register (CP0 Register 5, Select 1)
	8.10 Wired Register (CP0 Register 6, Select 0)
	8.11 HWREna Register (CP0 Register 7, Select 0)
	8.12 BadVAddr Register (CP0 Register 8, Select 0)
	8.13 Count Register (CP0 Register 9, Select 0)
	8.14 Reserved for Implementations (CP0 Register 9, Selects 6 and 7)
	8.15 EntryHi Register (CP0 Register 10, Select 0)
	8.16 Compare Register (CP0 Register 11, Select 0)
	8.17 Reserved for Implementations (CP0 Register 11, Selects 6 and 7)
	8.18 Status Register (CP Register 12, Select 0)
	8.19 IntCtl Register (CP0 Register 12, Select 1)
	8.20 SRSCtl Register (CP0 Register 12, Select 2)
	8.21 SRSMap Register (CP0 Register 12, Select 3)
	8.22 Cause Register (CP0 Register 13, Select 0)
	8.23 Exception Program Counter (CP0 Register 14, Select 0)
	8.23.1 Special Handling of the EPC Register in Processors That Implement the MIPS16e ASE

	8.24 Processor Identification (CP0 Register 15, Select 0)
	8.25 EBase Register (CP0 Register 15, Select 1)
	8.26 Configuration Register (CP0 Register 16, Select 0)
	8.27 Configuration Register 1 (CP0 Register 16, Select 1)
	8.28 Configuration Register 2 (CP0 Register 16, Select 2)
	8.29 Configuration Register 3 (CP0 Register 16, Select 3)
	8.30 Reserved for Implementations (CP0 Register 16, Selects 6 and 7)
	8.31 Load Linked Address (CP0 Register 17, Select 0)
	8.32 WatchLo Register (CP0 Register 18)
	8.33 WatchHi Register (CP0 Register 19)
	8.34 Reserved for Implementations (CP0 Register 22, all Select values)
	8.35 Debug Register (CP0 Register 23)
	8.36 DEPC Register (CP0 Register 24)
	8.36.1 Special Handling of the DEPC Register in Processors That Implement the MIPS16e ASE

	8.37 Performance Counter Register (CP0 Register 25)
	8.38 ErrCtl Register (CP0 Register 26, Select 0)
	8.39 CacheErr Register (CP0 Register 27, Select 0)
	8.40 TagLo Register (CP0 Register 28, Select 0, 2)
	8.41 DataLo Register (CP0 Register 28, Select 1, 3)
	8.42 TagHi Register (CP0 Register 29, Select 0, 2)
	8.43 DataHi Register (CP0 Register 29, Select 1, 3)
	8.44 ErrorEPC (CP0 Register 30, Select 0)
	8.44.1 Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16e ASE

	8.45 DESAVE Register (CP0 Register 31)

	Alternative MMU Organizations
	A.1 Fixed Mapping MMU
	A.1.1 Fixed Address Translation
	A.1.2 Cacheability Attributes
	A.1.3 Changes to the CP0 Register Interface

	A.2 Block Address Translation
	A.2.1 BAT Organization
	A.2.2 Address Translation
	A.2.3 Changes to the CP0 Register Interface

	Revision History

