
 145

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 145 of 1 Printed: 10/02/00 04:16 PM

C H A P T E R 5

Topical Cross-reference for Coprocessor Instructions 146
Interpreting Coprocessor Instructions. 148

Syntax . 148
Examples . 148
Clock Speeds . 148
Instruction Size . 148

Architecture . 149

Coprocessor

146 Reference

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 146 of 2 Printed: 10/02/00 04:16 PM

Topical Cross-reference for Coprocessor Instructions
Arithmetic
FABS FADD/FIADD FADDP

FCHS FDIV/FIDIV FDIVP

FDIVR/FIDIVR FDIVRP FMUL/FIMUL

FMULP FPREM FPREM1§

FRNDINT FSCALE FSQRT

FSUB/FISUB FSUBP FSUBR/FISUBR

FSUBRP FXTRACT

Compare
FCOM/FICOM FCOMP/FICOMP FCOMPP

FSTSW/FNSTSW FTST FUCOM§

FUCOMP§ FUCOMPP§ FXAM

Load
FLD/FILD/FBLD FLDCW FLDENV

FRSTOR FXCH

Load Constant
FLD1 FLDL2E FLDL2T

FLDLG2 FLDLN2 FLDPI

FLDZ

Processor Control
FCLEX/FNCLEX FDECSTP FDISI/FNDISI*

FENI/FNENI* FFREE FINCSTP

FINIT/FNINIT FLDCW FNOP
FRSTOR FSAVE/FNSAVE FSETPM_

FSTCW/FNSTCW FSTENV/FNSTENV FSTSW/FNSTSW

FWAIT

Store Data
FSAVE/FNSAVE FST/FIST FSTCW/FNSTCW

FSTENV/FNSTENV FSTP/FISTP/FBSTP FSTSW/FNSTSW

 Coprocessor 147

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 147 of 3 Printed: 10/02/00 04:16 PM

Transcendental
F2XM1 FCOS§ FPATAN

FPREM FPREM1§ FPTAN

FSIN§ FSINCOS§ FYL2P1

FYL2X

* 8087 only † 80287 only. § 80387–80486 only.

148 Reference

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 148 of 4 Printed: 10/02/00 04:16 PM

Interpreting Coprocessor Instructions
This section provides an alphabetical reference to instructions of the 8087,
80287, and 80387 coprocessors. The format is the same as the processor
instructions except that encodings are not provided. Differences are noted in the
following.

The 80486 has the coprocessor built in. This one chip executes all the
instructions listed in the previous section and this section.

Syntax
Syntaxes in Column 1 use the following abbreviations for operand types:

Syntax Operand

reg A coprocessor stack register

memreal A direct or indirect memory operand storing a real number

memint A direct or indirect memory operand storing a binary integer

membcd A direct or indirect memory operand storing a BCD number

Examples
The position of the examples in Column 2 is not related to the clock speeds in
Column 3.

Clock Speeds
Column 3 shows the clock speeds for each processor. Sometimes an instruction
may have more than one possible clock speed. The following abbreviations are
used to specify variations:

Abbreviation Description

EA Effective address. This applies only to the 8087. See the Processor Section,
“Timings on the 8088 and 8086 Processors,” for an explanation of effective
address timings.

s,l,t Short real, long real, and 10-byte temporary real.

w,d,q Word, doubleword, and quadword binary integer.

to, fr To or from stack top. On the 80387 and 80486, the to clocks represent
timings when ST is the destination. The fr clocks represent timings when ST is
the source.

Instruction Size
The instruction size is always 2 bytes for instructions that do not access
memory. For instructions that do access memory, the size is 4 bytes on the
8087 and 80287. On the 80387 and 80486, the size for instructions that access
memory is 4 bytes in 16-bit mode, or 6 bytes in 32-bit mode.

 Coprocessor 149

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 149 of 5 Printed: 10/02/00 04:16 PM

On the 8087, each instruction must be preceded by the WAIT (also called
FWAIT) instruction, thereby increasing the instruction’s size by 1 byte. The
assembler inserts WAIT automatically by default, or with the .8087 directive.

Architecture
The 8087, 80287, and 80387 coprocessors, along with the 80486, have several
common elements of architecture. All have a register stack made up of eight 80-
bit data registers. These can contain floating-point numbers in the temporary real
format. The coprocessors also have 14 bytes of control registers. Figure 5.1
shows the format of registers.

Fig. 5.1 Coprocessor Registers

150 F2XM1 2X–1

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 150 of 6 Printed: 10/02/00 04:16 PM

The most important control registers are the control word and the status word.
Figure 5.2 shows the format of these registers.

Fig. 5.2 Control Word and Status Word

F2XM1 2X–1
Calculates Y = 2X – 1. X is taken from ST. The result, Y, is returned in ST. X
must be in the range 0 ≤ X ≤ 0.5 on the 8087/287, or in the range –1.0 ≤ X ≤
+1.0 on the 80387–80486.

Syntax Examples CPU Clock Cycles

F2XM1 f2xm1 87
287
387
486

310–630
310–630
211–476
140–279

FABS Absolute Value
Converts the element in ST to its absolute value.

Syntax Examples CPU Clock Cycles

FABS fabs 87
287
387
486

10–17
10–17
 22
 3

FBSTP Store BCD and Pop 151

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 151 of 7 Printed: 10/02/00 04:16 PM

FADD/FADDP/FIADD Add
Adds the source to the destination and returns the sum in the destination. If two
register operands are specified, one must be ST. If a memory operand is
specified, the sum replaces the value in ST. Memory operands can be 32- or 64-
bit real numbers or 16- or 32-bit integers. If no operand is specified, ST is added
to ST(1) and the stack is popped, returning the sum in ST. For FADDP, the
source must be ST; the sum is returned in the destination and ST is popped.

Syntax Examples CPU Clock Cycles

FADD [[reg,reg]] fadd st,st(2)
fadd st(5),st
fadd

87
287
387
486

70–100
70–100
to=23–31, fr=26–34
8–20

FADDP reg,ST faddp st(6),st 87
287
387
486

75–105
75–105
23–31
8–20

FADD memreal fadd QWORD PTR [bx]
fadd shortreal

87

287
387
486

(s=90–120,s=95–
125)+EA
s=90–120,l=95–125
s=24–32,l=29–37
8–20

FIADD memint fiadd int16
fiadd warray[di]
fiadd double

87

287

387
486

(w=102–137,d=108
–143)+EA
w=102–137,d=108
–143
w=71–85,d=57–72
w=20–35,d=19–32

FBLD Load BCD
See FLD.

FBSTP Store BCD and Pop
See FST.

152 FCHS Change Sign

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 152 of 8 Printed: 10/02/00 04:16 PM

FCHS Change Sign
Reverses the sign of the value in ST.

Syntax Examples CPU Clock Cycles

FCHS fchs 87
287
387
486

10–17
10–17
24–25
6

FCLEX/FNCLEX Clear Exceptions
Clears all exception flags, the busy flag, and bit 7 in the status word. Bit 7 is the
interrupt-request flag on the 8087, and the error-status flag on the 80287,
80387, and 80486. The instruction has wait and no-wait versions.

Syntax Examples CPU Clock Cycles*

FCLEX
FNCLEX

fclex 87
287
387
486

2–8
2–8
11
7

* These timings reflect the no-wait version of the instruction. The wait version may take additional
clock cycles.

FCOM/FCOMP/FCOMPP/FICOM/FICOMP Compare
Compares the specified source operand to ST and sets the condition codes of
the status word according to the result. The instruction subtracts the source
operand from ST without changing either operand. Memory operands can be
32- or 64-bit real numbers or 16- or 32-bit integers. If no operand is specified or
if two pops are specified, ST is compared to ST(1) and the stack is popped. If
one pop is specified with an operand, the operand is compared to ST. If one of
the operands is a NAN, an invalid-operation exception occurs (see FUCOM for
an alternative method of comparing on the 80387–80486).

FCOM/FCOMP/FCOMPP/FICOM/FICOMP Compare 153

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 153 of 9 Printed: 10/02/00 04:16 PM

Syntax Examples CPU Clock Cycles

FCOM [[reg]] fcom st(2)
fcom

87
287
387
486

40–50
40–50
24
4

FCOMP [[reg]] fcomp st(7)
fcomp

87
287
387
486

42–52
42–52
26
4

FCOMPP fcompp 87
287
387
486

45–55
45–55
26
5

FCOM memreal fcom shortreals[di]
fcom longreal

87
287
387
486

(s=60–70,l=65–75)+EA
s=60–70,l=65–75
s=26,l=31
4

FCOMP memreal fcomp longreal
fcomp shorts[di]

87
287
387
486

(s=63–73,l=67–77)+EA
s=63–73,l=67–77
s=26,l=31
4

FICOM memint ficom double
ficom warray[di]

87

287
387
486

(w=72–86,d=78–91)+EA
w=72–86,d=78–91
w=71–75,d=56–63
w=16–20,d=15–17

FICOMP memint ficomp WORD PTR
[bp+6]
ficomp darray[di]

87

287
387
486

(w=74–88,d=80–93)+EA
w=74–88,d=80–93
w=71–75,d=56–63
w=16–20,d=15–17

Condition Codes for FCOM

C3 C2 C1 C0 Meaning

0 0 ? 0 ST > source

0 0 ? 1 ST < source

1 0 ? 0 ST = source

1 1 ? 1 ST is not comparable to source

154 FCOS Cosine

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 154 of 10 Printed: 10/02/00 04:16 PM

FCOS Cosine
80387–80486 Only Replaces a value in radians in ST with its cosine. If |ST| <
263, the C2 bit of the status word is cleared and the cosine is calculated.
Otherwise, C2 is set and no calculation is performed. ST can be reduced to the
required range with FPREM or FPREM1.

Syntax Examples CPU Clock Cycles

FCOS fcos 87
287
387
486

—
—
123–772*
257–354†

* For operands with an absolute value greater than π/4, up to 76 additional clocks may be required.

† For operands with an absolute value greater than π/4, add n clocks where n = operand/(π/4).

FDECSTP Decrement Stack Pointer
Decrements the stack-top pointer in the status word. No tags or registers are
changed, and no data is transferred. If the stack pointer is 0, FDECSTP changes
it to 7.

Syntax Examples CPU Clock Cycles

FDECSTP fdecstp 87
287
387
486

6–12
6–12
22
3

FDISI/FNDISI Disable Interrupts
8087 Only Disables interrupts by setting the interrupt-enable mask in the
control word. This instruction has wait and no-wait versions. Since the 80287,
80387, and 80486 do not have an interrupt-enable mask, the instruction is
recognized but ignored on these coprocessors.

Syntax Examples CPU Clock Cycles*

FDISI
FNDISI

fdisi 87
287
387
486

2–8
2
2
3

FDIV/FDIVP/FIDIV Divide 155

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 155 of 11 Printed: 10/02/00 04:16 PM

* These timings reflect the no-wait version of the instruction. The wait version may take additional
clock cycles.

FDIV/FDIVP/FIDIV Divide
Divides the destination by the source and returns the quotient in the destination.
If two register operands are specified, one must be ST. If a memory operand is
specified, the quotient replaces the value in ST. Memory operands can be 32- or
64-bit real numbers or 16- or 32-bit integers. If no operand is specified, ST(1) is
divided by ST and the stack is popped, returning the result in ST. For FDIVP,
the source must be ST; the quotient is returned in the destination register and
ST
is popped.

Syntax Examples CPU Clock Cycles

FDIV [[reg,reg]] fdiv st,st(2)
fdiv st(5),st

87
287
387
486

193–203
193–203
to=88, fr=91
73

FDIVP reg,ST fdivp st(6),st 87
287
387
486

197–207
197–207
91
73

FDIV memreal fdiv DWORD PTR [bx]
fdiv shortreal[di]
fdiv longreal

87

287
387
486

(s=215–225,l=220–
230)+EA
s=215–225,l=220–230
s=89,l=94
73

FIDIV memint fidiv int16
fidiv warray[di]
fidiv double

87

287

387

486

(w=224–238,d=230–
243)+EA
w=224–238,d=230
–243
w=136–140,d=120
–127
w=85–89,d=84–86

156 FDIVR/FDIVRP/FIDIVR Divide Reversed

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 156 of 12 Printed: 10/02/00 04:16 PM

FDIVR/FDIVRP/FIDIVR Divide Reversed
Divides the source by the destination and returns the quotient in the destination.
If two register operands are specified, one must be ST. If a memory operand is
specified, the quotient replaces the value in ST. Memory operands can be 32- or
64-bit real numbers or 16- or 32-bit integers. If no operand is specified, ST is
divided by ST(1) and the stack is popped, returning the result in ST. For
FDIVRP, the source must be ST; the quotient is returned in the destination
register and ST is popped.

Syntax Examples CPU Clock Cycles

FDIVR [[reg,reg]] fdivr st,st(2)
fdivr st(5),st
fdivr

87
287
387
486

194–204
194–204
to=88, fr=91
73

FDIVRP reg,ST fdivrp st(6),st 87
287
387
486

198–208
198–208
91
73

FDIVR memreal fdivr longreal
fdivr shortreal[di]

87

287
387
486

(s=216–226,l=221
–231)+EA
s=216–226,l=221–231
s=89,l=94
73

FIDIVR memint fidivr double
fidivr warray[di]

87

287

387
486

(w=225–239,d=231
–245)+EA
w=225–239,d=231
–245
w=135–141,d=121–128
w=85–89,d=84–86

FENI/FNENI Enable Interrupts
8087 Only Enables interrupts by clearing the interrupt-enable mask in the
control word. This instruction has wait and no-wait versions. Since the 80287,
80387, and 80486 do not have interrupt-enable masks, the instruction is
recognized but ignored on these coprocessors.

FILD Load Integer 157

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 157 of 13 Printed: 10/02/00 04:16 PM

Syntax Examples CPU Clock Cycles*

FENI
FNENI

feni 87
287
387
486

2–8
2
2
3

* These timings reflect the no-wait version of the instruction. The wait version may take additional
clock cycles.

FFREE Free Register
Changes the specified register’s tag to empty without changing the contents of
the register.

Syntax Examples CPU Clock Cycles

FFREE ST(i) ffree st(3) 87
287
387
486

9–16
9–16
18
3

FIADD/FISUB/FISUBR/
FIMUL/FIDIV/FIDIVR Integer Arithmetic

See FADD, FSUB, FSUBR, FMUL, FDIV, and FDIVR.

FICOM/FICOMP Compare Integer
See FCOM.

FILD Load Integer
See FLD.

158 FINCSTP Increment Stack Pointer

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 158 of 14 Printed: 10/02/00 04:16 PM

FINCSTP Increment Stack Pointer
Increments the stack-top pointer in the status word. No tags or registers are
changed, and no data is transferred. If the stack pointer is 7, FINCSTP changes
it
to 0.

Syntax Examples CPU Clock Cycles

FINCSTP fincstp 87
287
387
486

6–12
6–12
21
 3

FINIT/FNINIT Initialize Coprocessor
Initializes the coprocessor and resets all the registers and flags to their default
values. The instruction has wait and no-wait versions. On the 80387–80486, the
condition codes of the status word are cleared. On the 8087/287, they are
unchanged.

Syntax Examples CPU Clock Cycles*

FINIT
FNINIT

finit 87
287
387
486

2–8
2–8
33
17

* These timings reflect the no-wait version of the instruction. The wait version may take additional
clock cycles.

FIST/FISTP Store Integer
See FST.

FLD1/FLDZ/FLDPI/FLDL2E/FLDL2T/FLDLG2/FLDLN2 Load Constant 159

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 159 of 15 Printed: 10/02/00 04:16 PM

FLD/FILD/FBLD Load
Pushes the specified operand onto the stack. All memory operands are
automatically converted to temporary-real numbers before being loaded.
Memory operands can be 32-, 64-, or 80-bit real numbers or 16-, 32-, or 64-bit
integers.

Syntax Examples CPU Clock Cycles

FLD reg fld st(3) 87
287
387
486

17–22
17–22
14
4

FLD memreal fld longreal
fld shortarray[bx+di]

fld tempreal

87

287

387
486

(s=38–56,l=40–60,t=
53–65)+EA
s=38–56,l=40–60,t=
53–65
s=20,1=25,t=44
s=3,l=3,t=6

FILD memint fild mem16
fild DWORD PTR [bx]
fild quads[si]

87

287

387

486

(w=46–54,d=52–
60,q=60–68)+EA
w=46-54,d=52-60,q=
60-68
w=61–65,d=45–
52,q=56–67
w=13–16,d=9–12,q=
10–18

FBLD membcd fbld packbcd 87
287
387
486

(290–310)+EA
290–310
266–275
70–103

FLD1/FLDZ/FLDPI/FLDL2E/
FLDL2T/FLDLG2/FLDLN2 Load Constant
FLD1/FLDZ/FLDPI/FLDL2E/FLDL2T/FLDLG2/FLDLN2 Load Constant

Pushes a constant onto the stack. The following constants can be loaded:

Instruction Constant

FLD1 +1.0

FLDZ +0.0

FLDPI π

160 FLD1/FLDZ/FLDPI/FLDL2E/FLDL2T/FLDLG2/FLDLN2 Load Constant

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 160 of 16 Printed: 10/02/00 04:16 PM

Instruction Constant

FLDL2E Log2(e)

FLDL2T Log2(10)

FLDLG2 Log10(2)

FLDLN2 Loge(2)

Syntax Examples CPU Clock Cycles

FLD1 fld1 87
287
387
486

15–21
15–21
24
4

FLDZ fldz 87
287
387
486

11–17
11–17
20
4

FLDPI fldpi 87
287
387
486

16–22
16–22
40
8

FLDL2E fldl2e 87
287
387
486

15–21
15–21
40
8

FLDL2T fldl2t 87
287
387
486

16–22
16–22
40
8

FLDLG2 fldlg2 87
287
387
486

18–24
18–24
41
8

FLDLN2 fldln2 87
287
387
486

17–23
17–23
41
8

FMUL/FMULP/FIMUL Multiply 161

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 161 of 17 Printed: 10/02/00 04:16 PM

FLDCW Load Control Word
Loads the specified word into the coprocessor control word. The format of the
control word is shown in the “Interpreting Coprocessor Instructions” section.

Syntax Examples CPU Clock Cycles

FLDCW mem16 fldcw ctrlword 87
287
387
486

(7–14)+EA
7–14
19
4

FLDENV/FLDENVW/FLDENVD
Load Environment State

Loads the 14-byte coprocessor environment state from a specified memory
location. The environment includes the control word, status word, tag word,
instruction pointer, and operand pointer. On the 80387–80486 in 32-bit mode,
the environment state is 28 bytes.

Syntax Examples CPU Clock Cycles

FLDENV mem fldenv [bp+10] 87 (35–45)+EA

FLDENVW mem* 287 35–45

FLDENVD mem* 387
486

71
44,pm=34

* 80387–80486 only.

FMUL/FMULP/FIMUL Multiply
Multiplies the source by the destination and returns the product in the
destination. If two register operands are specified, one must be ST. If a memory
operand is specified, the product replaces the value in ST. Memory operands
can be 32- or 64-bit real numbers or 16- or 32-bit integers. If no operand is
specified, ST(1) is multiplied by ST and the stack is popped, returning the
product in ST. For FMULP, the source must be ST; the product is returned in
the destination register and ST is popped.

162 FNinstruction No-Wait Instructions

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 162 of 18 Printed: 10/02/00 04:16 PM

Syntax Examples CPU Clock Cycles

FMUL [[reg,reg]] fmul st,st(2)
fmul st(5),st
fmul

87
287
387

486

130–145 (90–105)*
130–145 (90–105)*
to=46–54 (49), fr=
29–57 (52)†
16

FMULP reg,ST fmulp st(6),st 87
287
387
486

134–148 (94–108)*
134–148 (94–108)*
29–57 (52)†
16

FMUL memreal fmul DWORD PTR [bx]
fmul shortreal[di+3]
fmul longreal

87

287

387
486

(s=110–125,l=154–
168)+EA§
s=110–125,l=154
–168§
s=27–35,l=32–57
s=11,l=14

FIMUL memint fimul int16
fimul warray[di]
fimul double

87

287

387
486

(w=124–138,d=130
–144)+EA
w=124–138,d=130
–144
w=76–87,d=61–82
w=23–27,d=22–24

* The clocks in parentheses show times for short values—those with 40 trailing zeros in their fraction
because they were loaded from a short-real memory operand.

† The clocks in parentheses show typical speeds.

§ If the register operand is a short value—having 40 trailing zeros in its fraction because it was loaded
from a short-real memory operand—then the timing is (112–126)+EA on the 8087 or 112–126 on
the 80287.

FNinstruction No-Wait Instructions
Instructions that have no-wait versions include FCLEX, FDISI, FENI, FINIT,
FSAVE, FSTCW, FSTENV, and FSTSW. Wait versions of instructions check
for unmasked numeric errors; no-wait versions do not. When the .8087 directive
is used, the assembler puts a WAIT instruction before the wait versions and a
NOP instruction before the no-wait versions.

FPREM Partial Remainder 163

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 163 of 19 Printed: 10/02/00 04:16 PM

FNOP No Operation
Performs no operation. FNOP can be used for timing delays or alignment.

Syntax Examples CPU Clock Cycles

FNOP fnop 87
287
387
486

10–16
10–16
12
3

FPATAN Partial Arctangent
Finds the partial tangent by calculating Z = ARCTAN(Y / X). X is taken from
ST and Y from ST(1). On the 8087/287, Y and X must be in the range 0 ≤
 Y < X < ∞. On the 80387–80486, there is no restriction on X and Y. X is popped
from the stack and Z replaces Y in ST.

Syntax Examples CPU Clock Cycles

FPATAN fpatan 87
287
387
486

250–800
250–800
314–487
218–303

FPREM Partial Remainder
Calculates the remainder of ST divided by ST(1), returning the result in ST.
The remainder retains the same sign as the original dividend. The calculation
uses the following formula:

remainder = ST – ST(1) * quotient

The quotient is the exact value obtained by chopping ST / ST(1) toward 0. The
instruction is normally used in a loop that repeats until the reduction is complete,
as indicated by the condition codes of the status word.

Syntax Examples CPU Clock Cycles

FPREM fprem 87
287
387
486

15–190
15–190
74–155
70–138

164 FPREM1 Partial Remainder (IEEE Compatible)

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 164 of 20 Printed: 10/02/00 04:16 PM

Condition Codes for FPREM and FPREM1

C3 C2 C1 C0 Meaning

? 1 ? ? Incomplete reduction

0 0 0 0 quotient MOD 8 = 0

0 0 0 1 quotient MOD 8 = 4

0 0 1 0 quotient MOD 8 = 1

0 0 1 1 quotient MOD 8 = 5

1 0 0 0 quotient MOD 8 = 2

1 0 0 1 quotient MOD 8 = 6

1 0 1 0 quotient MOD 8 = 3

1 0 1 1 quotient MOD 8 = 7

FPREM1 Partial Remainder (IEEE Compatible)
80387–80486 Only Calculates the remainder of ST divided by ST(1), returning
the result in ST. The remainder retains the same sign as the original dividend.
The calculation uses the following formula:

remainder = ST – ST(1) * quotient

The quotient is the integer nearest to the exact value of ST / ST(1). When two
integers are equally close to the given value, the even integer is used. The
instruction is normally used in a loop that repeats until the reduction is complete,
as indicated by the condition codes of the status word. See FPREM for the
possible condition codes.

Syntax Examples CPU Clock Cycles

FPREM1 fprem1 87
287
387
486

—
—
95–185
72–167

FRNDINT Round to Integer 165

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 165 of 21 Printed: 10/02/00 04:16 PM

FPTAN Partial Tangent
Finds the partial tangent by calculating Y / X = TAN(Z). Z is taken from ST. Z
must be in the range 0 ≤ Z ≤ π / 4 on the 8087/287. On the 80387–80486, |Z|
must be less than 263. The result is the ratio Y / X. Y replaces Z, and X is
pushed into ST. Thus, Y is returned in ST(1) and X in ST.

Syntax Examples CPU Clock Cycles

FPTAN fptan 87
287
387
486

30–540
30–540
191–497*
200–273†

* For operands with an absolute value greater than π/4, up to 76 additional clocks may be required.

† For operands with an absolute value greater than π/4, add n clocks where n = operand/(π/4).

FRNDINT Round to Integer
Rounds ST from a real number to an integer. The rounding control (RC) field of
the control word specifies the rounding method, as shown in the introduction to
this section.

Syntax Examples CPU Clock Cycles

FRNDINT frndint 87
287
387
486

16–50
16–50
66–80
21–30

166 FRSTOR/FRSTORW/FRSTORD Restore Saved State

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 166 of 22 Printed: 10/02/00 04:16 PM

FRSTOR/FRSTORW/FRSTORD Restore Saved State
Restores the 94-byte coprocessor state to the coprocessor from the specified
memory location. In 32-bit mode on the 80387–80486, the environment state
takes 108 bytes.

Syntax Examples CPU Clock Cycles

FRSTOR mem
FRSTORW mem*
FRSTORD mem*

frstor [bp–94] 87
287
387
486

(197–207)+EA
†
308
131,pm=120

* 80387–80486 only.

† Clock counts are not meaningful in determining overall execution time of this instruction. Timing is
determined by operand transfers.

FSAVE/FSAVEW/FSAVED/FNSAVE/
FNSAVEW/FNSAVED Save Coprocessor State

Stores the 94-byte coprocessor state to the specified memory location. In 32-bit
mode on the 80387–80486, the environment state takes 108 bytes. This
instruction has wait and no-wait versions. After the save, the coprocessor is
initialized as if FINIT had been executed.

Syntax Examples CPU Clock Cycles§

FSAVE mem
FSAVEW mem*
FSAVED mem*
FNSAVE mem
FNSAVEW mem*
FNSAVED mem*

fsave [bp–94]
fsave cobuffer

87
287
387
486

(197–207)+EA
†
375–376
154,pm=143

* 80387–80486 only.

† Clock counts are not meaningful in determining overall execution time of this instruction. Timing is
determined by operand transfers.

§ These timings reflect the no-wait version of the instruction. The wait version may take additional
clock cycles.

FSETPM Set Protected Mode 167

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 167 of 23 Printed: 10/02/00 04:16 PM

FSCALE Scale
Scales by powers of 2 by calculating the function Y = Y * 2X. X is the scaling
factor taken from ST(1), and Y is the value to be scaled from ST. The scaled
result replaces the value in ST. The scaling factor remains in ST(1). If the
scaling factor is not an integer, it will be truncated toward zero before the
scaling.

On the 8087/287, if X is not in the range –215 ≤ X < 215 or if X is in the range 0
< X < 1, the result will be undefined. The 80387–80486 have no restrictions on
the range of operands.

Syntax Examples CPU Clock Cycles

FSCALE fscale 87
287
387
486

32–38
32–38
67–86
30–32

FSETPM Set Protected Mode
80287 Only Sets the 80287 to protected mode. The instruction and operand
pointers are in the protected-mode format after this instruction. On the 80387–
80486, FSETPM is recognized but interpreted as FNOP, since the 80386/486
processors handle addressing identically in real and protected mode.

Syntax Examples CPU Clock Cycles

FSETPM fsetpm 87
287
387
486

—
2–8
12
3

168 FSIN Sine

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 168 of 24 Printed: 10/02/00 04:16 PM

FSIN Sine
80387–80486 Only Replaces a value in radians in ST with its sine. If |ST| < 263,
the C2 bit of the status word is cleared and the sine is calculated. Otherwise, C2
is set and no calculation is performed. ST can be reduced to the required range
with FPREM or FPREM1.

Syntax Examples CPU Clock Cycles

FSIN fsin 87
287
387
486

—
—
122–771*
257–354†

* For operands with an absolute value greater than π/4, up to 76 additional clocks may be required.

† For operands with an absolute value greater than π/4, add n clocks where n = operand/(π/4).

FSINCOS Sine and Cosine
80387–80486 Only Computes the sine and cosine of a radian value in ST. The
sine replaces the value in ST, and then the cosine is pushed onto the stack. If
|ST| < 263, the C2 bit of the status word is cleared and the sine and cosine are
calculated. Otherwise, C2 is set and no calculation is performed. ST can be
reduced to the required range with FPREM or FPREM1.

Syntax Examples CPU Clock Cycles

FSINCOS fsincos 87
287
387
486

—
—
194–809*
292–365†

* For operands with an absolute value greater than π/4, up to 76 additional clocks may be required.

† For operands with an absolute value greater than π/4, add n clocks where n = operand/(π/4).

FST/FSTP/FIST/FISTP/FBSTP Store 169

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 169 of 25 Printed: 10/02/00 04:16 PM

FSQRT Square Root
Replaces the value of ST with its square root. (The square root of –0 is –0.)

Syntax Examples CPU Clock Cycles

FSQRT fsqrt 87
287
387
486

180–186
180–186
122–129
83–87

FST/FSTP/FIST/FISTP/FBSTP Store
Stores the value in ST to the specified memory location or register. Temporary-
real values in registers are converted to the appropriate integer, BCD, or
floating-point format as they are stored. With FSTP, FISTP, and FBSTP, the
ST register value is popped off the stack. Memory operands can be 32-, 64-, or
80-bit real numbers for FSTP or 16-, 32-, or 64-bit integers for FISTP.

Syntax Examples CPU Clock Cycles

FST reg fst st(6)
fst st

87
287
387
486

15–22
15–22
11
3

FSTP reg fstp st
fstp st(3)

87
287
387
486

17–24
17–24
12
3

FST memreal fst shortreal
fst longs[bx]

87

287
387
486

(s=84–90,l=96–
104)+EA
s=84–90,l=96–104
s=44,l=45
s=7,l=8

FSTP memreal fstp longreal
fstp tempreals[bx]

87

287

387
486

(s=86–92,l=98–106,
t=52–58)+EA
s=86–92,l=98–106,
t=52–58
s=44,l=45,t=53
s=7,l=8,t=6

170 FSTCW/FNSTCW Store Control Word

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 170 of 26 Printed: 10/02/00 04:16 PM

Syntax Examples CPU Clock Cycles

FIST memint fist int16
fist doubles[8]

87

287
387
486

(w=80–90,d=82–
92)+EA
w=80–90,d=82–92
w=82-95,d=79-93
w=29–34,d=28–34

FISTP memint fistp longint
fistp doubles[bx]

87

287

387

486

(w=82–92,d=84–94,
q=94–105)+EA
w=82–92,d=84–94,
q=94–105
w=82–95,d=79–93,
q=80–97
29–34

FBSTP membcd fbstp bcds[bx] 87
287
387
486

(520–540)+EA
520–540
512–534
172–176

FSTCW/FNSTCW Store Control Word
Stores the control word to a specified 16-bit memory operand. This instruction
has wait and no-wait versions.

Syntax Examples CPU Clock Cycles*

FSTCW mem16
FNSTCW mem16

fstcw ctrlword 87
287
387
486

12–18
12–18
15
3

* These timings reflect the no-wait version of the instruction. The wait version may take additional
clock cycles.

FSTENV/FSTENVW/FSTENVD/FNSTENV/FNSTENVW/
FNSTENVD Store Environment State

Stores the 14-byte coprocessor environment state to a specified memory
location. The environment state includes the control word, status word, tag
word, instruction pointer, and operand pointer. On the 80387–80486 in 32-bit
mode, the environment state is 28 bytes.

FSUB/FSUBP/FISUB Subtract 171

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 171 of 27 Printed: 10/02/00 04:16 PM

Syntax Examples CPU Clock Cycles†

FSTENV mem
FSTENVW mem*
FSTENVD mem*
FNSTENV mem
FNSTENVW mem*
FNSTENVD mem*

fstenv [bp–14] 87
287
387
486

(40–50)+EA
40–50
103–104
67,pm=56

* 80387–80486 only.

† These timings reflect the no-wait version of the instruction. The wait version may take additional
clock cycles.

FSTSW/FNSTSW Store Status Word
Stores the status word to a specified 16-bit memory operand. On the 80287,
80387, and 80486, the status word can also be stored to the processor’s AX
register. This instruction has wait and no-wait versions.

Syntax Examples CPU Clock Cycles*

FSTSW mem16
FNSTSW mem16

fstsw statword 87
287
387
486

12–18
12–18
15
3

FSTSW AX
FNSTSW AX

fstsw ax 87
287
387
486

—
10–16
13
3

* These timings reflect the no-wait version of the instruction. The wait version may take additional
clock cycles.

FSUB/FSUBP/FISUB Subtract
Subtracts the source operand from the destination operand and returns the
difference in the destination operand. If two register operands are specified, one
must be ST. If a memory operand is specified, the result replaces the value in
ST. Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST is subtracted from ST(1) and the stack is
popped, returning the difference in ST. For FSUBP, the source must be ST; the
difference (destination minus source) is returned in the destination register and
ST is popped.

172 FSUBR/FSUBRP/FISUBR Subtract Reversed

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 172 of 28 Printed: 10/02/00 04:16 PM

Syntax Examples CPU Clock Cycles

FSUB [[reg,reg]] fsub st,st(2)
fsub st(5),st
fsub

87
287
387
486

70–100
70–100
to=29–37, fr=26–34
8–20

FSUBP reg,ST fsubp st(6),st 87
287
387
486

75–105
75–105
26–34
8–20

FSUB memreal fsub longreal
fsub shortreals[di]

87

287
387
486

(s=90–120,s=95–
125)+EA
s=90–120,l=95–125
s=24–32,l=28–36
8–20

FISUB memint fisub double
fisub warray[di]

87

287

387
486

(w=102–137,d=108-
143)+EA
w=102–137,d=108–
143
w=71–83,d=57–82
w=20–35,d=19–32

FSUBR/FSUBRP/FISUBR Subtract Reversed
Subtracts the destination operand from the source operand and returns the result
in the destination operand. If two register operands are specified, one must be
ST. If a memory operand is specified, the result replaces the value in ST.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit integers. If
no operand is specified, ST(1) is subtracted from ST and the stack is popped,
returning the difference in ST. For FSUBRP, the source must be ST; the
difference (source minus destination) is returned in the destination register and
ST is popped.

Syntax Examples CPU Clock Cycles

FSUBR [[reg,reg]] fsubr st,st(2)
fsubr st(5),st
fsubr

87
287
387
486

70–100
70–100
to=29–37, fr=26–34
8–20

FSUBRP reg,ST fsubrp st(6),st 87
287
387
486

75–105
75–105
26–34
8–20

FUCOM/FUCOMP/FUCOMPP Unordered Compare 173

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 173 of 29 Printed: 10/02/00 04:16 PM

Syntax Examples CPU Clock Cycles

FSUBR memreal fsubr QWORD PTR [bx]
fsubr shortreal[di]
fsubr longreal

87

287
387
486

(s=90–120,s=95–
125)+EA
s=90–120,l=95–125
s=25–33,l=29–37
8–20

FISUBR memint fisubr int16
fisubr warray[di]
fisubr double

87

287

387
486

(w=103–139,d=109–
144)+EA
w=103–139,d=109–
144
w=72–84,d=58–83
w=20–55,d=19–32

FTST Test for Zero
Compares ST with +0.0 and sets the condition of the status word according to
the result.

Syntax Examples CPU Clock Cycles

FTST ftst 87
287
387
486

38–48
38–48
28
4

Condition Codes for FTST

C3 C2 C1 C0 Meaning

0 0 ? 0 ST is positive

0 0 ? 1 ST is negative

1 0 ? 0 ST is 0

1 1 ? 1 ST is not comparable (NAN or projective infinity)

FUCOM/FUCOMP/FUCOMPP Unordered Compare
80387–80486 Only Compares the specified source to ST and sets the condition
codes of the status word according to the result. The instruction subtracts the
source operand from ST without changing either operand. Memory operands
are not allowed. If no operand is specified or if two pops are specified, ST is
compared to ST(1). If one pop is specified with an operand, the given register is
compared to ST.

174 FWAIT Wait

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 174 of 30 Printed: 10/02/00 04:16 PM

Unlike FCOM, FUCOM does not cause an invalid-operation exception if one of
the operands is NAN. Instead, the condition codes are set to unordered.

Syntax Examples CPU Clock Cycles

FUCOM [[reg]] fucom st(2)
fucom

87
287
387
486

—
—
24
4

FUCOMP [[reg]] fucomp st(7)
fucomp

87
287
387
486

—
—
26
4

FUCOMPP fucompp 87
287
387
486

—
—
26
5

Condition Codes for FUCOM

C3 C2 C1 C0 Meaning

0 0 ? 0 ST > source

0 0 ? 1 ST < source

1 0 ? 0 ST = source

1 1 ? 1 Unordered

FWAIT Wait
Suspends execution of the processor until the coprocessor is finished executing.
This is an alternate mnemonic for the processor WAIT instruction.

Syntax Examples CPU Clock Cycles

FWAIT fwait 87
287
387
486

4
3
6
1–3

FXAM Examine 175

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 175 of 31 Printed: 10/02/00 04:16 PM

FXAM Examine
Reports the contents of ST in the condition flags of the status word.

Syntax Examples CPU Clock Cycles

FXAM fxam 87
287
387
486

12–23
12–23
30–38
8

Condition Codes for FXAM

C3 C2 C1 C0 Meaning

0 0 0 0 + Unnormal*

0 0 0 1 + NAN

0 0 1 0 – Unnormal*

0 0 1 1 – NAN

0 1 0 0 + Normal

0 1 0 1 + Infinity

0 1 1 0 – Normal

0 1 1 1 – Infinity

1 0 0 0 + 0

1 0 0 1 Empty

1 0 1 0 – 0

1 0 1 1 Empty

1 1 0 0 + Denormal

1 1 0 1 Empty*

1 1 1 0 – Denormal

1 1 1 1 Empty*

* Not used on the 80387–80486. Unnormals are not supported by the 80387–80486. Also, the 80387–
80486 use two codes instead of four to identify empty registers.

176 FXCH Exchange Registers

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 176 of 32 Printed: 10/02/00 04:16 PM

FXCH Exchange Registers
Exchanges the specified (destination) register and ST. If no operand is specified,
ST and ST(1) are exchanged.

Syntax Examples CPU Clock Cycles

FXCH [[reg]] fxch st(3)
fxch

87
287
387
486

10–15
10–15
18
4

FXTRACT Extract Exponent and Significand
Extracts the exponent and significand (mantissa) fields of ST. The exponent
replaces the value in ST, and then the significand is pushed onto the stack.

Syntax Examples CPU Clock Cycles

FXTRACT fxtract 87
287
387
486

27–55
27–55
70–76
16–20

FYL2X Y log2(X)
Calculates Z = Y log2(X). X is taken from ST and Y from ST(1). The stack is
popped, and the result, Z, replaces Y in ST. X must be in the range 0 < X < ∞
and Y in the range –∞ < Y < ∞.

Syntax Examples CPU Clock Cycles

FYL2X fyl2x 87
287
387
486

900–1100
900–1100
120–538
196–329

FYL2XP1 Y log2(X+1) 177

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 177 of 33 Printed: 10/02/00 04:16 PM

FYL2XP1 Y log2(X+1)
Calculates Z = Y log2(X + 1). X is taken from ST and Y from ST(1). The stack
is popped once, and the result, Z, replaces Y in ST. X must be in the range 0 <
|X| < (1 – (√2 / 2)). Y must be in the range –∞ < Y < ∞.

Syntax Examples CPU Clock Cycles

FYL2XP1 fyl2xp1 87
287
387
486

700–1000
700–1000
257–547
171–326

178 FYL2XP1 Y log2(X+1)

Filename: LMARFC05.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Mike Eddy
Revision #: 79 Page: 178 of 34 Printed: 10/02/00 04:16 PM

