
 341

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 341 of 1 Printed: 10/02/00 04:18 PM

A P P E N D I X A

For the many users who come to version 6.1 of the Microsoft Macro Assembler
directly from the popular MASM 5.1, this appendix describes the differences
between the two versions. Version 6.1 contains significant changes, including:

u An integrated development environment called Programmer’s WorkBench
(PWB) from which you can write, edit, debug, and execute code.

u Expanded functionality for structures, unions, and type definitions.

u New directives for generating loops and decision statements, and for
declaring and calling procedures.

u Simplified methods for applying public attributes to variables and routines in
multiple-module programs.

u Enhancements for writing and using macros.

u Flat-model support for Windows NT and new instructions for the 80486
processor.

The OPTION M510 directive (or the /Zm command-line switch) assures nearly
complete compatibility between MASM 6.1 and MASM 5.1. However, to take
full advantage of the enhancements in MASM 6.1, you will need to rewrite
some code written for MASM 5.1.

The first section of this appendix describes the new or enhanced features in
MASM 6.1. The second section, “Compatibility Between MASM 5.1 and 6.1,”
explains how to:

u Minimize the number of required changes with the OPTION directive.

u Rewrite your existing assembly code, if necessary, to take advantage of the
assembler’s enhancements.

Differences Between
MASM 6.1 and 5.1

342 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 342 of 2 Printed: 10/02/00 04:18 PM

New Features of Version 6.1
This section gives an overview of the new features of MASM 6.1 and provides
references to more detailed information elsewhere in the documentation. For full
explanations and coding examples, see the documentation listed in the cross-
references.

The Assembler, Environment, and Utilities
Most of the executable files provided with MASM 6.1 are new or revised. For a
complete list of these files, read the PACKING.TXT file on the distribution
disk. The book Getting Started also provides information about setting up the
environment, assembler, and Help system.

The Assembler
The macro assembler, named ML.EXE, can assemble and link in one step. Its
new 32-bit operation gives ML.EXE the ability to handle much larger source
files than MASM 5.1. The command-line options are new. For example, the /Fl
and /Sc options generate instruction timings in the listing file. Command-line
options are case-sensitive and must be separated by spaces.

For backward compatibility with MASM 5.1 makefiles, MASM 6.1 includes the
MASM.EXE utility. MASM.EXE translates MASM 5.1 command-line options
to the new MASM 6.1 command-line options and calls ML.EXE. See the
Reference book for details.

H2INC
H2INC converts C include files to MASM include files. It translates data
structures and declarations but does not translate executable code. For more
information, see Chapter 20 of Environment and Tools.

NMAKE
NMAKE replaces the MAKE utility. NMAKE provides new functions for
evaluating target files and more flexibility with macros and command-line
options. For more information, see Environment and Tools.

Integrated Environment
PWB is an integrated development environment for writing, developing, and
debugging programs. For information on PWB and the CodeView debugging
application, see Environment and Tools.

Online Help
MASM 6.1 incorporates the Microsoft Advisor Help system. Help provides a
vast database of online help about all aspects of MASM, including the syntax

 Appendix A Differences Between MASM 6.1 and 5.1 343

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 343 of 3 Printed: 10/02/00 04:18 PM

and timings for processor and coprocessor instructions, directives, command-
line options, and support programs such as LINK and PWB.

For information on how to set up the help system, see Getting Started. You can
invoke the help system from within PWB or from the QuickHelp program
(QH).

HELPMAKE
You can use the HELPMAKE utility to create additional help files from ASCII
text files, allowing you to customize the online help system. For more
information, see Environment and Tools.

Other Programs
MASM 6.1 contains the most recent versions of LINK, LIB, BIND, CodeView,
and the mouse driver. The CREF program is not included in MASM 6.1. The
Source Browser provides the information that CREF provided under MASM
5.1. For more information on the Source Browser, see Chapter 5 of
Environment and Tools or Help.

Segment Management
This section lists the changes and additions to memory-model support and
directives that relate to memory model.

Predefined Symbols
The following predefined symbols (also called predefined equates) provide
information about simplified segments:

Predefined Symbol Value

@stack DGROUP for near stacks, STACK for far stacks

@Interface Information about language parameters

@Model Information about the current memory model

@Line The source line in the current file

@Date The current date

@FileCur The current file

@Time The current time

@Environ The current environment variables

For more information about predefined symbols, see “Predefined Symbols” in
Chapter 1.

344 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 344 of 4 Printed: 10/02/00 04:18 PM

Enhancements to the ASSUME Directive
MASM automatically generates ASSUME values for the code segment register
(CS). It is no longer necessary to include lines such as

ASSUME CS:MyCodeSegment

in your programs. In addition, the ASSUME directive can include ERROR,
FLAT, or register:type. MASM 6.1 issues a warning when you specify
ASSUME values for CS other than the current segment or group.

For more information, see “Setting the ASSUME Directive for Segment
Registers” in Chapter 2 and “Defining Register Types with ASSUME” in
Chapter 3.

Relocatable Offsets
For compatibility with applications for Windows, the LROFFSET operator can
calculate a relocatable offset, which is resolved by the loader at run time. See
Help for details.

Flat Model
MASM 6.1 supports the flat-memory model of Windows NT, which allows
segments as large as 4 gigabytes. All other memory models limit segment size to
64K for MS-DOS and Windows. For more information about memory models,
see “Defining Basic Attributes with .MODEL” in Chapter 2.

Data Types
MASM 6.1 supports an improved data typing. This section summarizes the
improved forms of data declarations in MASM 6.1.

Defining Typed Variables
You can now use the type names as directives to define variables. Initializers are
unsigned by default. The following example lines are equivalent:

var1 DB 25
var1 BYTE 25

Signed Types
You can use the SBYTE, SWORD, and SDWORD directives to declare signed
data. For more information about these directives, see “Allocating Memory for
Integer Variables” in Chapter 4.

 Appendix A Differences Between MASM 6.1 and 5.1 345

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 345 of 5 Printed: 10/02/00 04:18 PM

Floating-Point Types
MASM 6.1 provides the REAL4, REAL8, and REAL10 directives for
declaring floating-point variables. For information on these type directives, see
“Declaring Floating-Point Variables and Constants” in Chapter 6 .

Qualified Types
Type definitions can now include distance and language type attributes.
Procedures, procedure prototypes, and external declarations let you specify the
type as a qualified type. A complete description of qualified types is provided in
the section “Data Types” in Chapter 1.

Structures
Changes to structures since MASM 5.1 include:

u Structures can be nested.

u The names of structure fields need not be unique. As a result, you must
qualify references to field names.

u Initialization of structure variables can continue over multiple lines provided
the last character in the line before the comment field is a comma.

u Curly braces and angle brackets are equivalent.

For example, this code works in MASM 6.1:

SCORE STRUCT
 team1 BYTE 10 DUP (?)
 score1 BYTE ?
 team2 BYTE 10 DUP (?)
 score2 BYTE ?
 SCORE ENDS

 first SCORE {"BEARS", 20, ; This comment is allowed.
 "CUBS", 10 }

 mov al, [bx].score.team1 ; Field name must be qualified
 ; with structure name.

You can use OPTION OLDSTRUCTS or OPTION M510 to enable MASM
5.1 behavior for structures. See “Compatibility between MASM 5.1 and 6.1,”
later in this appendix. For more information on structures and unions, see
“Structures and Unions” in Chapter 5.

Unions
MASM 6.1 allows the definition of unions with the UNION directive. Unions
differ from structures in that all fields within a union occupy the same data
space. For more information, see “Structures and Unions” in Chapter 5.

346 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 346 of 6 Printed: 10/02/00 04:18 PM

Types Defined with TYPEDEF
The TYPEDEF directive defines a type for use later in the program. It is most
useful for defining pointer types. For more information on defining types, see
“Data Types” in Chapter 1, and “Defining Pointer Types with TYPEDEF” in
Chapter 3.

Names of Identifiers
MASM 6.1 accepts identifier names up to 247 characters long. All characters
are significant, whereas under MASM 5.1, names are significant to 31
characters only. For more information on identifiers, see “Identifiers” in Chapter
1.

Multiple-Line Initializers
In MASM 6.1, a comma at the end of a line (except in the comment field)
implies that the line continues. For example, the following code is legal in
MASM 6.1:

longstring BYTE "This string ",
 "continues over two lines."
bitmasks BYTE 80h, 40h, 20h, 10h,
 08h, 04h, 02h, 01h

For more information, see “Statements” in Chapter 1.

Comments in Extended Lines
MASM 5.1 allows a backslash (\) as the line-continuation character if it is the
last nonspace character in the line. MASM 6.1 permits a comment to follow the
backslash.

Determining Size and Length of Data Labels
The LENGTHOF operator returns the number of data items allocated for a data
label. MASM 6.1 also provides the SIZEOF operator. When applied to a type,
SIZEOF returns the size attribute of the type expression. When applied to a data
label, SIZEOF returns the number of bytes used by the initializer in the label’s
definition. In this case, SIZEOF for a variable equals the number of bytes in the
type multiplied by LENGTHOF for the variable.

MASM 6.1 recognizes the LENGTH and SIZE operators for backward
compatibility. For a description of the behavior of SIZE under OPTION M510,
see “Length and Size of Labels with OPTION M510,” later in this appendix.
For obsolete behavior with the LENGTH operator, see also “LENGTH
Operator Applied to Record Types,” page 356.

For information on LENGTHOF and SIZEOF, see the following sections in
chapter 5: “Declaring and Referencing Arrays,” “Declaring and Initializing

 Appendix A Differences Between MASM 6.1 and 5.1 347

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 347 of 7 Printed: 10/02/00 04:18 PM

Strings,” “Declaring Structure and Union Variables,” and “Defining Record
Variables.”

HIGHWORD and LOWWORD Operators
These operators return the high and low words for a given 32-bit operand. They
are similar to the HIGH and LOW operators of MASM 5.1 except that
HIGHWORD and LOWWORD can take only constants as operands, not
relocatables (labels).

PTR and CodeView
Under MASM 5.1, applying the PTR operator to a data initializer determines the
size of the data displayed by CodeView. You can still use PTR in this manner in
MASM 6.1, but it does not affect CodeView typing. Defining pointers with the
TYPEDEF directive allows CodeView to generate correct information. See
“Defining Pointer Types with TYPEDEF” in Chapter 3.

Procedures, Loops, and Jumps
With its significant improvements for procedure and jump handling, MASM 6.1
closely resembles high-level – language implementations of procedure calls.
MASM 6.1 generates the code to correctly handle argument passing, check type
compatibility between parameters and arguments, and process a variable number
of arguments. MASM 6.1 can also automatically recast jump instructions to
correct for insufficient jump distance.

Function Prototypes and Calls
The PROTO directive lets you prototype procedures in the same way as high-
level languages. PROTO enables type-checking and type conversion of
arguments when calling the procedure with INVOKE. For more information,
see “Declaring Procedure Prototypes” in Chapter 7.

The INVOKE directive sets up code to call a procedure and correctly pass
arguments according to the prototype. MASM 6.1 also provides the VARARG
keyword to pass a variable number of arguments to a procedure with INVOKE.
For more information about INVOKE and VARARG, see “Calling Procedures
with INVOKE” and “Declaring Parameters with the PROC Directive” in
Chapter 7.

The ADDR keyword is new since MASM 5.1. When used with INVOKE, it
provides the address of a variable, in the same way as the address-of operator
(&) in C. This lets you conveniently pass an argument by reference rather than
value. See “Calling Procedures with INVOKE” in Chapter 7.

348 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 348 of 8 Printed: 10/02/00 04:18 PM

High-Level Flow-Control Constructions
MASM 6.1 contains several directives that generate code for loops and decisions
depending on the status of a conditional statement. The conditions are tested at
run time rather than at assembly time.

Directives new since MASM 5.1 include .IF, .ELSE, .ELSEIF, .REPEAT,
.UNTIL, .UNTILCXZ, .WHILE, and .ENDW. MASM 6.1 also provides the
associated .BREAK and .CONTINUE directives for loops and IF statements.
For more information, see “Loops” in Chapter 7 and “Decision Directives” on
page 171.

Automatic Optimization for Unconditional Jumps
MASM 6.1 automatically determines the smallest encoding for direct
unconditional jumps. See “Unconditional Jumps” in Chapter 7.

Automatic Lengthening for Conditional Jumps
If a conditional jump cannot reach its target destination, MASM automatically
recasts the code to use an unconditional jump to the target. See “Jump
Extending,” page 169.

User-Defined Stack Frame Setup and Cleanup
The prologue code generated immediately after a PROC statement sets up the
stack for parameters and local variables. The epilogue code handles stack
cleanup. MASM 6.1 allows user-defined prologues and epilogues, as described
in “Generating Prologue and Epilogue Code” in Chapter 7.

Simplifying Multiple-Module Projects
MASM 6.1 simplifies the sharing of code and data among modules and makes
the use of include files more efficient.

EXTERNDEF in Include Files
MASM 5.1 requires that you declare public and external all data and routines
used in more than one module. With MASM 6.1, a single EXTERNDEF
directive accomplishes the same task. EXTERNDEF lets you put global data
declarations within an include file, making the data visible to all source files that
include the file. For more information, see “Using EXTERNDEF” in Chapter 8.

Search Order for Include Files
MASM 6.1 searches for include files in the directory of the main source file
rather than in the current directory. Similarly, it searches for nested include files
in the directory of the include file. You can specify additional paths to search
with the /I command-line option. For more information on include files, see
“Organizing Modules” in Chapter 8.

 Appendix A Differences Between MASM 6.1 and 5.1 349

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 349 of 9 Printed: 10/02/00 04:18 PM

Enforcing Case Sensitivity
In MASM 5.1, sensitivity to case is influenced only by command-line options
such as /MX, not the language type given with the .MODEL directive. In
MASM 6.1, the language type takes precedence over the command-line options
in specifying case sensitivity.

350 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 350 of 10 Printed: 10/02/00 04:18 PM

Alternate Names for Externals
The syntax for EXTERN allows you to specify an alternate symbol name,
which the linker can use to resolve an external reference to an unused symbol.
This prevents linkage with unneeded library code, as explained in “Using
EXTERN with Library Routines,” Chapter 8.

Expanded State Control
Several directives in MASM 6.1 enable or disable various aspects of the
assembler control. These include 80486 coprocessor instructions and use of
compatibility options.

The OPTION Directive
The new OPTION directive allows you to selectively define the assembler’s
behavior, including its compatibility with MASM 5.1. See “Using the OPTION
Directive” in Chapter 1 and “Compatibility between MASM 5.1 and 6.1,” later
in this appendix.

The .NO87 Directive
The .NO87 directive disables all coprocessor instructions. For more information,
see Help.

The .486 and .486P Directives
MASM 6.1 can assemble instructions specific to the 80486, enabled with the
.486 directive. The .486P directive enables 80486 instructions at the highest
privilege level (recommended for systems-level programs only). For more
information, see Help.

The PUSHCONTEXT and POPCONTEXT Directives
The directive PUSHCONTEXT saves the assembly environment, and
POPCONTEXT restores it. The environment includes the segment register
assumes, the radix, the listing and CREF flags, and the current processor and
coprocessor. Note that .NOCREF (the MASM 6.1 equivalent to .XCREF) still
determines whether information for a given symbol will be added to Browser
information and to the symbol table in the listing file. For more information on
listing files, see Appendix C or Help.

 Appendix A Differences Between MASM 6.1 and 5.1 351

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 351 of 11 Printed: 10/02/00 04:18 PM

New Processor Instructions
MASM 6.1 supports these instructions for the 80486 processor:

80486 Instruction Description

BSWAP Byte swap

CMPXCHG Compare and exchange

INVD Invalidate data cache

INVLPG Invalidate Translation Lookaside Buffer entry

WBINVD Write back and invalidate data cache

XADD Exchange and add

For full descriptions of these instructions, see the Reference or Help.

Renamed Directives
Although MASM 6.1 still supports the old names in MASM 5.1, the following
directives have been renamed for language consistency:

MASM 6.1 MASM 5.1

.DOSSEG DOSSEG

.LISTIF .LFCOND

.LISTMACRO .XALL

.LISTMACROALL .LALL

.NOCREF .XCREF

.NOLIST .XLIST

.NOLISTIF .SFCOND

.NOLISTMACRO .SALL

ECHO %OUT

EXTERN EXTRN

FOR IRP

FORC IRPC

REPEAT REPT

STRUCT STRUC

SUBTITLE SUBTTL

Specifying 16-Bit and 32-Bit Instructions
MASM 6.1 supports all instructions that work with the extended 32-bit registers
of the 80386/486. For certain instructions, you can override the default operand

352 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 352 of 12 Printed: 10/02/00 04:18 PM

size with the W (word) and the D (doubleword) suffixes. For details, see the
Reference or Help.

Macro Enhancements
There are significant enhancements to macro functions in MASM 6.1.
Directives provide for a variable number of arguments, loop constructions,
definitions of text equates, and macro functions.

Variable Arguments
MASM 5.1 ignores extra arguments passed to macros. In MASM 6.1, you can
pass a variable number of arguments to a macro by appending the VARARG
keyword to the last macro parameter in the macro definition. The macro can
then reference additional arguments relative to the last declared parameter. This
procedure is explained in “Returning Values with Macro Functions” in Chapter
9.

Required and Default Macro Arguments
With MASM 6.1, you can use REQ or the := operator to specify required or
default arguments. See “Specifying Required and Default Parameters” in
Chapter 9.

New Directives for Macro Loops
Within a macro definition, WHILE repeats assembly as long as a condition
remains true. Other macro loop directives, IRP, IRPC, and REPT, have been
renamed FOR, FORC, and REPEAT. For more information, see “Defining
Repeat Blocks with Loop Directives” in Chapter 9.

Text Macros
The EQU directive retains its old functionality, but MASM 6.1 also incorporates
a TEXTEQU directive for defining text macros. TEXTEQU allows greater
flexibility than EQU. For example, TEXTEQU can assign to a label the value
calculated by a macro function. For more information, see “Text Macros” in
Chapter 9.

The GOTO Directive for Macros
Within a macro definition, GOTO transfers assembly to a line labeled with a
leading colon(:). For more information on GOTO, see Help.

Macro Functions
At assembly time, macro functions can determine and return a text value using
EXITM. Predefined macro string functions concatenate strings, return the size
of a string, and return the position of a substring within a string. For information

 Appendix A Differences Between MASM 6.1 and 5.1 353

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 353 of 13 Printed: 10/02/00 04:18 PM

on writing your own macro functions, see “Returning Values with Macro
Functions” in Chapter 9.

Predefined Macro Functions
MASM 6.1 provides the following predefined text macro functions:

Symbol Value Returned

@CatStr A concatenated string

@InStr The position of one string within another

@SizeStr The size of a string

@SubStr A substring

For more information on predefined macros, see “String Directives and
Predefined Functions” in Chapter 9.

MASM 6.1 Programming Practices
MASM 6.1 provides many features that make it easier for you to write assembly
code. If you are familiar with MASM 5.1 programming, you may find it helpful
to adopt the following list of new programming practices for programming with
MASM 6.1. The list summarizes many of the changes covered in the following
section, “Compatibility Between MASM 5.1 and 6.1.”

u Select identifier names that do not begin with the dot operator (.).

u Use the dot operator (.) only to reference structure fields, and the plus
operator (+) when not referencing structures.

u Different structures can have the same field names. However, the assembler
does not allow ambiguous references. You must include the structure type
when referring to field names common to two or more structures.

u Separate macro arguments with commas, not spaces.
u Avoid adding extra ampersands in macros. For a list of the new rules about

using ampersands in macros, see “Substitution Operator” in Chapter 9 and
“OPTION OLDMACROS,” page 372.

u By default, code labels defined with a colon are local. Place two colons after
code labels if you want to reference the label outside the procedure.

Compatibility Between MASM 5.1 and 6.1
MASM 6.1 provides a “compatibility mode,” making it easy for you to transfer
existing MASM 5.1 code to the new version. You invoke the compatibility mode
through the OPTION M510 directive or the /Zm command-line switch. This

354 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 354 of 14 Printed: 10/02/00 04:18 PM

section explains the changes you may need to make to get your MASM 5.1 code
to run under MASM 6.1 in compatibility mode.

Rewriting Code for Compatibility
In some cases, MASM 6.1 with OPTION M510 does not support MASM 5.1
behavior. In several cases, this is because bugs in MASM 5.1 were corrected.
To update your code to MASM 6.1, use the instructions in this section. This
usually requires only minor changes.

Many of the topics listed here will not apply to your code. This section discusses
topics in order of likelihood, beginning with the most common. In addition, you
may have conflicts between identifier names and new reserved words. OPTION
NOKEYWORD resolves errors generated from the use of reserved words as
identifiers. See “OPTION NOKEYWORD,” page 376, for more information.

Bug Fixes Since MASM 5.1
This section lists the differences between MASM 5.1 and MASM 6.1 due to
bug corrections since MASM 5.1.

Invalid Use of LOCK, REPNE, and REPNZ
Except in compatibility mode, MASM 6.1 flags illegal uses of the instruction
prefixes LOCK, REPNE, and REPNZ. The error generated for invalid uses of
the LOCK, REPNE, and REPNZ prefixes is error A2068:

instruction prefix not allowed

Table A.1 summarizes the correct use of the instruction prefixes. It lists each
string instruction with the type of repeat prefix it uses, and indicates whether the
instruction works on a source, a destination, or both.

Table A.1 Requirements for String Instructions

Instruction Repeat Prefix Source/Destination Register Pair

MOVS REP Both DS:SI, ES:DI

SCAS REPE/REPNE Destination ES:DI

CMPS REPE/REPNE Both DS:SI, ES:DI

LODS -- Source DS:SI

STOS REP Destination ES:DI

INS REP Destination ES:DI

OUTS REP Source DS:SI

 Appendix A Differences Between MASM 6.1 and 5.1 355

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 355 of 15 Printed: 10/02/00 04:18 PM

No Closing Quotation Marks in Macro Arguments
In MASM 5.1, you can use both single and double quotation marks (' and ") to
begin strings in macro arguments. The assembler does not generate an error or
warning if the string does not end with quotation marks on a macro call. Instead,
MASM 5.1 considers the remainder of the line to be part of the macro argument
containing the opening quote, as if there were a closing quotation mark at the
end of the line.

By default, MASM 6.1 now generates error A2046:

missing single or double quotation mark in string

so all single and double quotation marks in macro arguments must be matched.

To correct such errors in MASM 6.1, either end the string with a closing
quotation mark as shown in the following example, or use the macro escape
character (!) to treat the quotation mark literally.

; MASM 5.1 code
MyMacro "all this in one argument

; Default MASM 6.1 code
MyMacro "all this in one argument"

Making a Scoped Label Public
MASM 5.1 considers code labels defined with a single colon inside a procedure
to be local to that procedure if the module contains a .MODEL directive with a
language type. Although the label is local, MASM 5.1 does not generate an error
if it is also declared PUBLIC. MASM 6.1 generates error A2203:

cannot declare scoped code label as PUBLIC

If you want to make a label PUBLIC, it must not be local. You can use the
double colon operator to define a non-scoped label, as shown in this example:

 PUBLIC publicLabel
publicLabel:: ; Non-scoped label MASM 6.1

Byte Form of BT, BTS, BTC, and BTR Instructions
MASM 5.1 allows a byte argument for the 80386 bit-test instructions, but
encodes it as a word argument. The byte form is not supported by the
processor.

MASM 6.1 does not support this behavior and generates error A2024:

invalid operand size for instruction

Rewrite your code to use a word-sized argument.

356 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 356 of 16 Printed: 10/02/00 04:18 PM

Default Values for Record Fields
In MASM 5.1, default values for record fields can range down to –2n, where n
is the number of bits in the field. This results in the loss of the sign bit.

MASM 6.1 allows a range of –2n–1 to 2n–1 for default values. Illegal initializers
generate error A2071:

initializer too large for specified size

Design Change Issues
MASM 6.1 includes design changes that make the language more consistent.
These changes are not affected by the OPTION directive, discussed later in
this appendix. Therefore, the changes require revisions in your code. In most
cases, the necessary revisions are minor and the circumstances requiring
changes are rare.

Operands of Different Size
MASM 5.1 does not require operands to agree in size, as the following code
illustrates:

 .DATA?
 var1 DB ?
 var2 DB ?
 .CODE
 .
 .
 .
 mov var1, ax ; Copy AX to word at var1

The operands for the MOV instruction do not match in size, yet the instruction
assembles correctly. It places the contents of AL into var1 and AH into var2,
moving a word of data in one step. If the code defined var1 as a word value,
the instruction

 mov var1, al

would also assemble correctly, copying AL into the low byte of var1 while
leaving the high byte unaffected. Except at warning level 0, MASM 5.1 issues a
warning to inform you of the size mismatch, but both scenarios are legal.

MASM 6.1 does not accept instructions with operands that do not agree in size.
You must specifically “coerce” the size of the memory operand, like this:

 Appendix A Differences Between MASM 6.1 and 5.1 357

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 357 of 17 Printed: 10/02/00 04:18 PM

 mov BYTE PTR var1, al

Conflicting Structure Declarations
MASM 5.1 allows you to declare two or more structures with the same name.
Each declaration replaces the previous declaration. However, the field names
from previous declarations still remain in the assembler’s list of declared values.

MASM 6.1 does not allow conflicting declarations of a structure. It generates
errors A2160 through A2165 for each conflicting declaration. The errors note a
specific conflict, such as conflicting number of fields, conflicting names of fields,
or conflicting initializers.

Forward References to Text Macros Outside of Expressions
MASM 5.1 allows forward references to text macros in specialized cases.
MASM 6.1 with OPTION M510 also permits forward references, but only
when the text macro is referenced in an expression. To revise your code, place
all macro definitions at the beginning of the file.

HIGH and LOW Applied to Relocatable Operands
In some cases, MASM 5.1 accepts HIGH and LOW applied to relocatable
memory expressions. For example, MASM 5.1 allows this code sequence:

; MASM 5.1 code
EXTRN var1:WORD
var2 DW 0
 mov al, LOW var1 ; These two instructions yield the
 mov ah, HIGH var1 ; same as mov ax, OFFSET var1

However, the instruction

 mov ax, LOW var2

is not legal. MASM 6.1 generates error A2105:

HIGH and LOW require immediate operands

The OFFSET operator is required on these operands in MASM 6.1, as shown in
the following. Rewrite your code if necessary.

; MASM 6.1 code
 mov al, LOW OFFSET var1
 mov ah, HIGH OFFSET var2

OFFSET Applied to Group Names and Indirect Memory Operands
In MASM 6.1, you cannot apply OFFSET to a group name, indirect argument,
or procedure argument. Doing so generates error A2098:

358 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 358 of 18 Printed: 10/02/00 04:18 PM

invalid operand for OFFSET

LENGTH Operator Applied to Record Types
In MASM 5.1, the LENGTH operator, when applied to a record type, returns
the total number of bits in a record definition.

 Appendix A Differences Between MASM 6.1 and 5.1 359

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 359 of 19 Printed: 10/02/00 04:18 PM

In MASM 6.1, the statement LENGTH recordName returns error A2143:

expected data label

Rewrite your code if necessary. The new SIZEOF operator returns information
about records in MASM 6.1. For more information, see “Defining Record
Variables” in Chapter 5.

Signed Comparison of Hexadecimal Values Using GT, GE, LE, or LT
The rules for two’s-complement comparisons have changed. In MASM 5.1, the
expression

0FFFFh GT -1

is false because the two’s-complement values are equal. However, because
hexadecimal numbers are now treated as unsigned, the expression is true in
MASM 6.1. To update, rewrite the affected code.

RET Used with a Constant in Procedures with Epilogues
By default in MASM 6.1, the RET instruction followed by a constant
suppresses automatic generation of epilogue code. MASM 5.1 ignores the
operand and generates the epilogue. Remove the argument if necessary. See
“Generating Prologue and Epilogue Code” in Chapter 7.

Code Labels at Top of Procedures with Prologues
By default in MASM 5.1, a code label defined on the same line as the first
procedure instruction refers to the first byte of the prologue.

In MASM 6.1, a code label defined at the beginning of a procedure refers to the
first byte of the procedure after the prologue. If you need to label the start of the
prologue code, place the label before the PROC statement. For more
information, see “Generating Prologue and Epilogue Code” in Chapter 7.

Use of % as an Identifier Character
MASM 5.1 allows % as an identifier character. This behavior leads to
ambiguities when % is used as the expansion operator in macros. Since % is not
allowed as a character in MASM 6.1 identifiers, you must change the names of
any identifiers containing the % character. For a list of legal identifier characters,
see “Identifiers” in Chapter 1.

ASSUME CS Set to Wrong Value
With MASM 6.1 you do not need to use the ASSUME statement for the CS
register. Instead, MASM 6.1 generates an automatic ASSUME statement for
the code segment register to the current segment or group, as explained in
“Setting the ASSUME Directive for Segment Registers” in Chapter 2.

360 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 360 of 20 Printed: 10/02/00 04:18 PM

Additionally, MASM 6.1 does not allow explicit ASSUME statements for CS
that contradict the automatically set ASSUME statement.

MASM 5.1 allows CS to be assumed to the current segment, even if that
segment is a member of a group. With MASM 6.1, this results in warning
A4004:

cannot ASSUME CS

To avoid this warning with MASM 6.1, delete the ASSUME statement for CS.

Code Requiring Two-Pass Assembly
Unlike version 5.1, MASM 6.1 does most of its work on its first pass, then
performs as many subsequent passes as necessary. In contrast, MASM 5.1
always assembles in two source passes. As a result, you may need to revise or
delete some pass-dependent constructs under MASM 6.1.

Two-Pass Directives
To assure compatibility, MASM 6.1 supports 5.1 directives referring to two
passes. These include .ERR1, .ERR2, IF1, IF2, ELSEIF1, and ELSEIF2. For
second-pass constructs, you must specify OPTION SETIF2, as discussed in
“OPTION SETIF2,” page 377. Without OPTION SETIF2, the IF2 and .ERR2
directives cause error A2061:

[[ELSE]]IF2/.ERR2 not allowed : single-pass assembler

MASM 6.1 handles first-pass constructs differently. It treats the .ERR1
directive as .ERR, and the IF1 directive as IF.

The following examples show you how you can rewrite typical pass-sensitive
code for MASM 6.1:

u Declare var external only if not defined in current module:
; MASM 5.1:
 IF2
 IFNDEF var
 EXTRN var:far
 ENDIF
 ENDIF

; MASM 6.1:
 EXTERNDEF var:far

 Appendix A Differences Between MASM 6.1 and 5.1 361

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 361 of 21 Printed: 10/02/00 04:18 PM

u Include a file of definitions only once to speed assembly:
; MASM 5.1:
 IF1
 INCLUDE file1.inc
 ENDIF

; MASM 6.1:
 INCLUDE FILE1.INC

u Generate a %OUT or .ERR message only once:
; MASM 5.1:
 IF2
 %OUT This is my message
 ENDIF

 IF2
 .ERRNZ A NE B
 ENDIF

; MASM 6.1:
 ECHO This is my message

 .ERRNZ A NE B <ASSERTION FAILURE: A NE B>

u Generate an error if a symbol is not defined but may be forward referenced:
; MASM 5.1:
 IF2
 .ERRNDEF var
 ENDIF

; MASM 6.1:
 .ERRNDEF var

For information on conditional directives, see “Conditional Directives,” Chapter
1.

IFDEF and IFNDEF with Forward-Referenced Identifiers
If you use a symbol name that has not yet been defined in an IFDEF or
IFNDEF expression, MASM 6.1 returns FALSE for the IFDEF expression and
TRUE for the IFNDEF expression. When OPTION M510 is enabled, the
assembler generates warning A6005:

expression condition may be pass-dependent

To resolve the warning, place the symbol definition before the conditional test.

362 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 362 of 22 Printed: 10/02/00 04:18 PM

Address Spans as Constants
The value of offsets calculated on the first assembly pass may not be the same
as those calculated on later passes. Therefore, you should avoid comparisons
with an address span, as in the following examples:

IF (OFFSET var1 - OFFSET var2) EQ 10
WHILE dx LT (OFFSET var1 - OFFSET var2)
REPEAT OFFSET var1 - OFFSET var2

However, the DUP operator allows such an expression as its count value. The
assembler evaluates the DUP count on every pass, so even expressions
involving forward references assemble correctly.

You can also use expressions containing span distances with the .ERR
directives, since the assembler evaluates these directives after calculating all
offsets:

.ERRE OFFSET var1 - OFFSET var2 - 10,

.TYPE with Forward References
MASM 5.1 evaluates .TYPE on both assembly passes. This means it yields zero
on the first pass and nonzero on the second pass, if applied to an expression that
forward-references a symbol.

MASM 6.1 evaluates .TYPE only on the first assembly pass. As a result, if the
operand references a symbol that has not yet been defined, .TYPE yields a
value of zero. This means that .TYPE, if used in a conditional-assembly
construction, may yield different results in MASM 6.1 than in MASM 5.1.

Obsolete Features No Longer Supported
The following two features are no longer supported by MASM 6.1. Because
both are obscure features provided by early versions of the assembler, they
probably do not affect your MASM 5.1 code.

The ESC Instruction
MASM 6.1 no longer supports the ESC instruction, which was used to send
hand-coded commands to the coprocessor. Because MASM 6.1 recognizes and
assembles the full set of coprocessor mnemonics, the ESC instruction is not
necessary. Using the ESC instruction generates error A2205:

ESC instruction is obsolete: ignored

To update MASM 5.1 code, use the coprocessor instructions instead of ESC.

 Appendix A Differences Between MASM 6.1 and 5.1 363

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 363 of 23 Printed: 10/02/00 04:18 PM

The MSFLOAT Binary Format
MASM 6.1 does not support the .MSFLOAT directive, which provided the
Microsoft Binary Format (MSB) for floating-point numbers in variable
initializers. Using the .MSFLOAT directive generates error A2204:

.MSFLOAT directive is obsolete: ignored

Use IEEE format or, if MSB format is necessary, initialize variables with
hexadecimal values. See “Storing Numbers in Floating-Point Format” in Chapter
6.

Using the OPTION Directive
The OPTION directive lets you control compatibility with MASM 5.1 code.
This section explains the differences in MASM 5.1 and MASM 6.1 behavior
that the OPTION directive can influence.

The OPTION M510 directive (or /Zm command-line option) initiates all aspects
of 5.1 compatibility mode. You can select from among specific characteristics of
MASM 5.1 behavior with the OPTION arguments discussed in following
sections. Each section also explains how to revise your code if you want to
remove OPTION directives from your MASM 5.1 code.

If your code includes both .MODEL and OPTION M510, the OPTION
M510 statement must appear first. Wherever this appendix suggests using
OPTION M510 in your code, you can set the /Zm command-line option
instead.

OPTION M510
This section discusses the M510 argument to the OPTION directive, which
selects the MASM 5.1 compatibility mode. In this mode, MASM 6.1
implements MASM 5.1 behavior relating to macros, offsets, scope of code
labels, structures, identifier names, identifier case, and other behaviors.

The OPTION M510 directive automatically sets the following:

OPTION OLDSTRUCTS ; MASM 5.1 structures
OPTION OLDMACROS ; MASM 5.1 macros
OPTION DOTNAME ; Identifiers may begin with a dot (.)
OPTION SETIF2:TRUE ; Two-pass code activates on every pass

If you do not have a .386, 386P .486, or 486P directive in your module, then
OPTION M510 adds:

Note

364 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 364 of 24 Printed: 10/02/00 04:18 PM

OPTION EXPR16 ; 16-bit expression precision
 ; See "OPTION EXPR16," following

 Appendix A Differences Between MASM 6.1 and 5.1 365

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 365 of 25 Printed: 10/02/00 04:18 PM

If you do not have a .MODEL directive in your module, OPTION M510 adds:

OPTION OFFSET:SEGMENT ; OFFSET operator defaults to
 ; segment-relative
 ; See "OPTION OFFSET," following

If you do not have a .MODEL directive with a language specifier in your
module, OPTION M510 also adds:

OPTION NOSCOPED ; Code labels are not local inside
 ; procedures
 ; See "OPTION NOSCOPED," following
OPTION PROC:PRIVATE ; Labels defined with PROC are not
 ; public by default
 ; See "OPTION PROC," following

If you want to remove OPTION M510 from your code (or /Zm from the
command line), add the OPTION directive arguments to your module according
to the conditions stated earlier.

There may be compatibility issues affecting your code that are supported under
OPTION M510, but are not covered by the other OPTION directive
arguments. Once you have modified your source code so it no longer requires
behavior supported by OPTION M510, you can replace OPTION M510 with
other OPTION directive arguments. These compatibility issues are discussed in
following sections.

Once you have replaced OPTION M510 with other forms of the OPTION
directive and your code works correctly, try removing the OPTION directives,
one at a time. Make appropriate source modifications as necessary, until your
code uses only MASM 6.1 defaults.

Reserved Keywords Dependent on CPU Mode with OPTION M510
With OPTION M510, keywords and instructions not available in the current
CPU mode (such as ENTER under .8086) are not treated as keywords. This
also means the USE32, FLAT, FAR32, and NEAR32 segment types and the
80386/486 registers are not keywords with a processor selection less than .386.

If you remove OPTION M510, any reserved word used as an identifier
generates a syntax error. You can either rename the identifiers or use OPTION
NOKEYWORD. For more information on OPTION NOKEYWORD, see
“OPTION NOKEYWORD,” later in this appendix.

Invalid Use of Instruction Prefixes with OPTION M510
Code without OPTION M510 generates errors for all invalid uses of the
instruction prefixes. OPTION M510 suppresses some of these errors to match
MASM 5.1 behavior. MASM 5.1 does not check for illegal usage of the
instruction prefixes LOCK, REP, REPE, REPZ, REPNE, and REPNZ.

366 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 366 of 26 Printed: 10/02/00 04:18 PM

Illegal usage of these prefixes results in error A2068:

instruction prefix not allowed

For more information on these instruction prefixes, see “Overview of String
Instructions” in Chapter 5. See also “Bug Fixes from MASM 5.1,” earlier in this
appendix.

Size of Constant Operands with OPTION M510
In MASM 5.1, a large constant value that can fit only in the processor’s default
word (4 bytes for .386 and .486, 2 bytes otherwise) is assigned a size attribute
of the default word size. The value of the constant affects the number of bytes
changed by the instruction. For example,

; Legal only with OPTION M510
 mov [bx], 0100h

is legal in OPTION M510 mode. Since 0100h cannot fit in a byte, the
assembler interprets the value as a word.

Without OPTION M510, the assembler never assigns a size automatically. You
must state it explicitly with the PTR operator, as shown in the following
example:

; Without OPTION M510
 mov [bx], WORD PTR 0100h

Code Labels when Defining Data with OPTION M510
MASM 5.1 allows a code label definition in a data definition statement if that
statement does not also define a data label. MASM 6.1 also allows such
definitions if OPTION M510 is enabled; otherwise it is illegal.

; Legal only with OPTION M510
MyCodeLabel: DW 0

SEG Operator with OPTION M510
In MASM 5.1, the SEG operator returns a label’s segment address unless the
frame is explicitly specified, in which case it returns the segment address of the
frame. A statement such as SEG DGROUP:var always returns DGROUP,
whereas SEG var always returns the segment address of var. OPTION M510
forces this same behavior in MASM 6.1.

If you do not use OPTION M510, the behavior of the SEG operator is
determined by the OPTION OFFSET directive, as described in “OPTION
OFFSET,” later in this appendix.

In MASM 6.1, the value returned by the SEG operator applied to a nonexternal
variable depends on compatibility mode:

 Appendix A Differences Between MASM 6.1 and 5.1 367

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 367 of 27 Printed: 10/02/00 04:18 PM

u Without OPTION M510, SEG returns the address of the frame (the
segment, group, or the value assumed to the segment register) if one has
been explicitly set.

u With OPTION M510, SEG returns the group if one has been specified. In
the absence of a defined group, SEG returns the segment where the variable
is defined.

Expression Evaluation with OPTION M510
By default, MASM 6.1 changes the way expressions are evaluated. In MASM
5.1,

var-2[bx]

is parsed as

(var-2)[bx]

Without OPTION M510, you must rewrite the statement, since the assembler
parses it as

var-(2[bx])

which generates an error.

Length and Size of Labels with OPTION M510
With OPTION M510, you can apply the LENGTH and SIZE operators to any
label. For a code label, SIZE returns a value of 0FFFFh for NEAR and 0FFFEh
for FAR. LENGTH always returns a value of 1. For strings, SIZE and
LENGTH both return 1.

Without OPTION M510, SIZE returns values of 0FF01h, 0FF02h, 0FF04h,
0FF05h, and 0FF06h for SHORT, NEAR16, NEAR32, FAR16, and FAR32
labels, respectively. LENGTH returns 1 except when used with DUP, in which
case it returns the outermost count. For arrays initialized with DUP, SIZE
returns the length multiplied by the size of the type.

The LENGTHOF and SIZEOF operators in MASM 6.1 handle arrays much
more consistently. These operators return the number of data items and the
number of bytes in an initializer. For a description of SIZEOF and
LENGTHOF, see the following sections in Chapter 5: “Declaring and
Referencing Arrays,” “Declaring and Initializing Strings,” “Defining Structure
and Union Variables,” and “Defining Record Variables.”

Comparing Types Using EQ and NE with OPTION M510
With OPTION M510, the assembler converts types to a constant value before
comparisons with EQ and NE. Code types are converted to values of 0FFFFh

368 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 368 of 28 Printed: 10/02/00 04:18 PM

(near) or 0FFFEh (far). If OPTION M510 is not enabled, the assembler
converts types to constants only when comparing them with constants. Thus,
MASM 6.1 recognizes only equivalent qualified types as equal expressions.

For existing MASM 5.1 code, these distinctions affect only the use of the TYPE
operator in conjunction with EQ and NE. The following example illustrates how
the assembler compares types with and without compatibility mode:

MYSTRUCT STRUC
 f1 DB 0
 f2 DB 0
MYSTRUCT ENDS

; With OPTION M510

val = (TYPE MYSTRUCT) EQ WORD ; True: 2 EQ 2
val = 2 EQ WORD ; True: 2 EQ 2
val = WORD EQ WORD ; True: 2 EQ 2
val = SWORD EQ WORD ; True: 2 EQ 2

; Without OPTION M510

val = (TYPE MYSTRUCT) EQ WORD ; False: MyStruct NE WORD
val = 2 EQ WORD ; True: 2 EQ 2
val = WORD EQ WORD ; True: WORD EQ WORD
val = SWORD EQ WORD ; False: SWORD NE WORD

Use of Constant and PTR as a Type with OPTION M510
You can use a constant as the left operand to PTR in compatibility mode.
Otherwise, you must use a type expression. With OPTION M510, a constant
must have a value of 1 (BYTE), 2 (WORD), 4 (DWORD), 6 (FWORD), 8
(QWORD) or 10 (TBYTE). The assembler treats the constant as the

 Appendix A Differences Between MASM 6.1 and 5.1 369

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 369 of 29 Printed: 10/02/00 04:18 PM

parenthesized type. Note that the TYPE operator yields a type expression, but
the SIZE operator yields a constant.

; With OPTION M510

MyData DW 0

 mov WORD PTR [bx], 10 ; Legal
 mov (TYPE MyData) PTR [bx], 10 ; Legal
 mov (SIZE MyData) PTR [bx], 10 ; Legal
 mov 2 ptr [bx], 10 ; Legal

; Without OPTION M510

MyData WORD 0

 mov WORD PTR [bx], 10 ; Legal
 mov (TYPE MyData) PTR [bx], 10 ; Legal
; mov (SIZE MyData) PTR [bx], 10 ; Illegal
; mov 2 PTR [bx], 10 ; Illegal

Structure Type Cast on Expressions with OPTION M510
In compatibility mode, use the PTR operator to type-cast a constant to a
structure type. This is most often done in data initializers to affect the CodeView
information of the data label. Without OPTION M510, the assembler generates
an error.

MYSTRC STRUC
 f1 DB 0
MYSTRC ENDS

MyPtr DW MYSTRC PTR 0 ; Illegal without OPTION M510

In MASM 6.1, the initializer type does not influence CodeView’s type
information.

Hidden Coercion of OFFSET Expression Size with OPTION M510
When programming for the 80386 or 80486, the size of an OFFSET expression
can be 2 bytes for a symbol in a USE16 segment, or 4 bytes for a symbol in a
USE32 or FLAT segment. With OPTION M510, you can use a 32-bit
OFFSET expression in a 16-bit context. Without OPTION M510, you must use
the LOWWORD operator to convert the offset size.

370 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 370 of 30 Printed: 10/02/00 04:18 PM

.386

; With OPTION M510

seg32 SEGMENT USE32
MyLabel WORD 0
seg32 ENDS

seg16 SEGMENT USE16 'code' ; With OPTION M510:
 mov ax, OFFSET MyLabel ; Legal
 mov ax, LOWWORD OFFSET MyLabel ; Legal
 mov eax, OFFSET MyLabel ; Legal
seg16 ENDS

; Without OPTION M510

seg32 SEGMENT USE32
MyLabel WORD 0
seg32 ENDS

seg16 SEGMENT USE16 'code' ; Without OPTION M510:
; mov ax, OFFSET MyLabel ; Illegal
 mov ax, LOWWORD offset MyLabel ; Legal
 mov eax, OFFSET MyLabel ; Legal
seg16 ENDS

Specifying Radixes with OPTION M510
If the current radix in your code is greater than 10 decimal, MASM 6.1 allows
the radix specifiers B (binary) and D (decimal) only in compatibility mode. You
must change B to Y for binary, and D to T for decimal, since both B and D are
legitimate hexadecimal values, making numbers such as 12D ambiguous. If you
want to keep B and D as radix specifiers when the current radix is greater than
10, you must specify OPTION M510. For more information about radixes, see
“Integer Constants and Constant Expressions” in Chapter 1.

Naming Conventions with OPTION M510
By default, MASM 5.1 does not write the names of public variables in
uppercase to the object file, even when a language type of PASCAL,
FORTRAN, or BASIC is specified.

Unless you use OPTION M510, these language types in MASM 6.1 write
identifier names in uppercase, even with the /Cp or /Cx command-line options.
When you link with /NOI, case must match in the object files to resolve
externals.

 Appendix A Differences Between MASM 6.1 and 5.1 371

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 371 of 31 Printed: 10/02/00 04:18 PM

Length Significance of Symbol Names with OPTION M510
With MASM 5.1, only the first 31 characters of a symbol name are considered
significant, and only the first 31 characters of a public or external symbol name
are placed in the object file.

Without OPTION M510, the entire name is considered significant. The
maximum number of characters placed in the object file is controlled with the
/Hnumber command-line option, with a default of 247 (the maximum length of
an identifier in MASM 6.1).

String Defaults in Structure Variables with OPTION M510
In compatibility mode, a constant initializer can override a structure field
initialized with a string value. Without OPTION M510, only another string or a
list can override a string initializer. To update your code, surround the constant
override value with angle brackets or curly braces to indicate a list with one
element.

MTSTRUCT STRUCT
MyString BYTE "This is a string"
MTSTRUCT ENDS

; With OPTION M510

MyInst MTSTRUCT <0>

; Without OPTION M510, either of these statements is correct

MyInst MTSTRUCT <<0>>
MyInst MTSTRUCT {<0>}

Effects of the ? Initializer in Data Definitions with OPTION M510
As described in “Declaring and Initializing Strings” in Chapter 5, the assembler
treats the ? initializer as either zero or as an unspecified value. In compatibility
mode, however, the assembler always treats the ? initializer as zero unless it is
used with the DUP operator. In this case, the assembler allocates space, but
does not initialize it with any value.

Current Address Operator with OPTION M510
In compatibility mode, the current address operator ($) applied to a structure
returns the offset of the first byte of the structure. When OPTION M510 is not
enabled, $ returns the offset of the current field in the structure.

Segment Association for FAR Externals with OPTION M510
In MASM 5.1, you must place an EXTRN directive for a variable in the same
segment that holds the variable. For far data, this often entails opening and
closing a segment just to place the EXTRN statement.

372 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 372 of 32 Printed: 10/02/00 04:18 PM

MASM 6.1 offers much greater flexibility in where EXTERN and
EXTERNDEF statements can appear, as described in “Positioning External
Declarations” in Chapter 8. However, in compatibility mode, MASM 6.1
emulates the behavior of MASM 5.1.

Defining Aliases Using EQU with OPTION M510
In MASM 5.1, you can equate one symbol with another. These equates are
called “aliases.”

Unless you specify OPTION M510, MASM 6.1 does not allow aliases defined
with EQU. An immediate expression or text must appear as the right operand of
an EQU directive. Change aliases to use the TEXTEQU directive, described in
“Text Macros” in Chapter 9. This change may cause an expression to evaluate
differently.

The following examples illustrate the differences between MASM 5.1 code,
MASM 6.1 code with OPTION M510, and MASM 6.1 code without OPTION
M510:

; MASM 5.1 code
var1 EQU 3
var2 EQU var1 ; var2 taken as an alias
 ; var2 references var1 anywhere var2 is
 ; used as a symbol

; MASM 6.1 with OPTION M510
var1 EQU 3
var2 EQU var1 ; var2 taken as a var2 EQU <var1>
 ; var2 substituted for var1 whenever
 ; text macros substituted

; MASM 6.1 without OPTION M510
var1 EQU 3
var2 EQU var1 ; Treated as var2 EQU 3

 Appendix A Differences Between MASM 6.1 and 5.1 373

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 373 of 33 Printed: 10/02/00 04:18 PM

Difference in Text Macro Expansions with OPTION M510
MASM 6.1 recursively expands text macros used as values, whereas MASM 5.1
simply replaces the text macro with its value. The following example illustrates
the difference:

; With OPTION M510

tm1 EQU <contains tm2>
tm2 EQU <value>

tm3 CATSTR tm1 ; == <contains tm2>

; Without OPTION M510

tm3 CATSTR tm1 ; == <contains value>

Conditional Directives and Missing Operands with OPTION M510
MASM 5.1 considers a missing argument to be a zero. MASM 6.1 requires an
argument unless OPTION M510 is enabled.

OPTION OLDSTRUCTS
This section describes changes in MASM 6.1 that apply to structures. With
OPTION OLDSTRUCTS or OPTION M510:

u You can use plus operator (+) in structure field references.

u Labels and structure field names cannot have the same name with OPTION
OLDSTRUCTS.

Plus Operator Not Allowed with Structures
By default, each reference to structure member names must use the dot
operator (.) to separate the structure variable name from the field name. You
cannot use the dot operator as the plus operator (+) or vice versa.

To convert your code so that it does not need OPTION OLDSTRUCTS:

u Qualify all structure field references.

u Change all uses of the dot operator (.) that occur outside of structure
references to use the plus operator (+).

374 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 374 of 34 Printed: 10/02/00 04:18 PM

If you remove OPTION OLDSTRUCTS from your code, the assembler
generates errors for all lines requiring change. Using the dot operator in any
context other than for a structure field results in error A2166:

structure field expected

Unqualified structure references result in error A2006:

undefined symbol : identifier

The following example illustrates how to change MASM 5.1 code from the old
structure references to the new type in MASM 6.1:

; OPTION OLDSTRUCTS (simulates MASM 5.1)
structname STRUC
a BYTE ?
b WORD ?
structname ENDS

structinstance structname <>

 mov ax, [bx].b ; This code assembles
 mov al, structinstance.a ; correctly only with
 mov ax, [bx].4 ; OPTION OLDSTRUCTS
 ; or OPTION M510

; OPTION NOOLDSTRUCTS (the MASM 6.1 default)
structname STRUCT
a BYTE ?
b WORD ?
structname ENDS

structinstance structname <>

 mov ax, [bx].structname.b ; Add qualifying type
 mov al, structinstance.a ; No change needed
 mov ax, [bx]+4 ; Change dot to plus

; Alternative methods in MASM 6.1
; Either this:
 ASSUME bx:PTR structname
 mov ax, [bx]
; or this:
 mov ax, (structname PTR[bx]).b

 Appendix A Differences Between MASM 6.1 and 5.1 375

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 375 of 35 Printed: 10/02/00 04:18 PM

Duplicate Structure Field Names
With the default, OPTION NOOLDSTRUCTS, label and structure field names
may have the same name. With OPTION OLDSTRUCTS (the MASM 5.1
default), labels and structure fields cannot have the same name. For more
information, see “Structures and Unions” in Chapter 5.

OPTION OLDMACROS
This section describes how MASM 5.1 and 6.1 differ in their handling of
macros. Without OPTION OLDMACROS or OPTION M510, MASM 6.1
changes the behavior of macros in several ways. If you want the MASM 5.1
macro behavior, add OPTION OLDMACROS or OPTION M510 to your
MASM 5.1 code.

Separating Macro Arguments with Commas
MASM 5.1 allows white spaces or commas to separate arguments to macros.
MASM 6.1 with OPTION NOOLDMACROS (the default) requires commas
between arguments. For example, in the macro call

 MyMacro var1 var2 var3, var4

OPTION OLDMACROS causes the assembler to treat all four items as
separate arguments. With OPTION NOOLDMACROS, the assembler treats

 var1 var2 var3

as one argument, since the items are not separated with commas. To convert
your macro code, replace spaces between macro arguments with a single
comma.

New Behavior with Ampersands in Macros
The default OPTION NOOLDMACROS causes the assembler to interpret
ampersands (&) within a macro differently than does MASM 5.1. MASM 5.1
requires one ampersand for each level of macro nesting. OPTION
OLDMACROS emulates this behavior.

Without OPTION OLDMACROS, MASM 6.1 removes ampersands only once
no matter how deeply nested the macro. To update your MASM 5.1 macros,
follow this simple rule: replace every sequence of ampersands with a single
ampersand. The only exception is when macro parameters immediately precede
and follow the ampersand, and both require substitution. In this case, use two
ampersands. For a description of the new rules, see “Substitution Operator” in
Chapter 9.

376 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 376 of 36 Printed: 10/02/00 04:18 PM

This example shows how to update a MASM 5.1 macro:

; OPTION OLDMACROS (emulates MASM 5.1 behavior)

createNames macro arg
 irp tail, <Next, Last>
 irp num, <1, 2>
 ; Define more names of the form: abcNext1?
arg&&tail&&&num&&&? label BYTE
 ENDM
 ENDM
ENDM

; OPTION NOOLDMACROS (the MASM 6.1 default)

createNames macro arg
 for tail, <Next, Last> ; FOR is the MASM 6.1
 for num, <1, 2> ; synonym for irp
 ; Define more names of the form: abcNext1?
arg&&tail&&num&? label BYTE
 ENDM
 ENDM
ENDM

OPTION DOTNAME
MASM 5.1 allows names of identifiers to begin with a period. The MASM 6.1
default is OPTION NODOTNAME. Adding OPTION DOTNAME to your
code enables the MASM 5.1 behavior.

If you don’t want to use this directive in your source code, rename the
identifiers whose names begin with a period.

OPTION EXPR16
MASM 5.1 treats expressions as 16-bit words if you do not specify .386 or
.386P directives. MASM 6.1 by default treats expressions as 32-bit words,
regardless of the CPU type. You can force MASM 6.1 to use the smaller
expression size with the OPTION EXPR16 statement.

Unless your MASM 5.1 code specifies .386 or .386P, OPTION M510 also sets
16-bit expression size. You can selectively disable this by following OPTION
M510 with the OPTION EXPR32 directive, which sets the size back to 32 bits.
You cannot have both OPTION EXPR32 and OPTION EXPR16 in your
program.

It may not be easy to determine the effect of changing from 16-bit internal
expression size to 32-bit size. In most cases, the 32-bit word size does not affect
the MASM 5.1 code. However, problems may arise because of differences in

 Appendix A Differences Between MASM 6.1 and 5.1 377

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 377 of 37 Printed: 10/02/00 04:18 PM

intermediate values during evaluation of expressions. You can compare the files
for differences by generating listing files with the /Fl and /Sa command-line
options with and without OPTION EXPR16.

OPTION OFFSET
The information in this section is relevant only if your MASM 5.1 code does not
use the .MODEL directive. With no .MODEL, MASM 5.1 computes offsets
from the start of the segment, whereas MASM 6.1 computes offsets from the
start of the group. (With .MODEL, MASM 5.1 also computes offsets from the
start of the group.)

To force MASM 6.1 to emulate 5.1 behavior, specify either
OFFSET:SEGMENT or OPTION M510. Both directives cause the assembler
to compute offsets relative to the segment if you do not include .MODEL.

To selectively enable MASM 6.1 behavior, place the directive OPTION
OFFSET:GROUP after OPTION M510. In this case, you should ensure each
OFFSET statement has a segment override where appropriate. The following
example shows how OPTION OFFSET:SEGMENT affects code written for
MASM 5.1:

OPTION OFFSET:SEGMENT
MyGroup GROUP MySeg

MySeg SEGMENT 'data'
MyLabel LABEL BYTE
 DW OFFSET MyLabel ; Relative to MySeg
 DW OFFSET MyGroup:MyLabel ; Relative to MyGroup
 DW OFFSET MySeg:MyLabel ; Relative to MySeg
MySeg ENDS

In the preceding example, the first OFFSET statement computes the offset of
MyLabel relative to MySeg. Without OFFSET:SEGMENT, MASM 6.1 returns
the offset relative to MyGroup. To maintain the correct behavior with
OFFSET:GROUP, specify a segment override, as shown in the following. The
other two OFFSET statements already include overrides, and so do not require
modification.

OPTION OFFSET:GROUP
MyGroup GROUP MySeg

MySeg SEGMENT 'data'
MyLabel LABEL BYTE
 DW OFFSET MySeg:MyLabel ; Relative to MySeg
 DW OFFSET MyGroup:MyLabel ; Relative to MyGroup
 DW OFFSET MySeg:MyLabel ; Relative to MySeg
MySeg ENDS

378 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 378 of 38 Printed: 10/02/00 04:18 PM

When not in compatibility mode, the OPTION OFFSET directive determines
whether the SEG operator returns a value relative to the group or segment. With
OPTION M510, SEG is always segment-relative by default, regardless of the
current value of OPTION OFFSET.

OPTION NOSCOPED
The information in this section applies only if the .MODEL directive in your
MASM 5.1 code does not specify a language type. Without a language type,
MASM 5.1 assumes code labels in procedures have no “scope” — that is, the
labels are not local to the procedure. When not in compatibility mode, MASM
6.1 always gives scope to code labels, even without a language type.

To force MASM 5.1 behavior, specify either OPTION M510 or OPTION
NOSCOPED in your code. To selectively enable MASM 6.1 behavior, place
the directive OPTION SCOPED after OPTION M510.

To determine which labels require change, assemble the module without the
OPTION NOSCOPED directive. For each reference to a label that is not local,
the assembler generates error A2006:

undefined symbol : identifier

OPTION PROC
The information in this section applies only if the .MODEL directive in your
MASM 5.1 code does not specify a language type. Without a language type,
MASM 5.1 makes procedures private to the module. By default, MASM 6.1
makes procedures public. You can explicitly change the default visibility to
private with either OPTION M510, OPTION PROC:PRIVATE, or OPTION
PROC:EXPORT.

To selectively enable MASM 6.1 behavior, place the directive OPTION
PROC:PUBLIC after OPTION M510. You can override the default by adding
the PUBLIC or PRIVATE keyword to selected procedures. The following
example shows how to change MASM 5.1 code to keep a procedure private:

; MASM 5.1 (OPTION PROC:PRIVATE)
MyProc PROC NEAR

; MASM 6.1 (OPTION PROC:PUBLIC)
MyProc PROC NEAR PRIVATE

This is necessary only to avoid naming conflicts between public names in
multiple modules or libraries. The symbol table in a listing file shows the
visibility (public, private, or export) of each procedure.

 Appendix A Differences Between MASM 6.1 and 5.1 379

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 379 of 39 Printed: 10/02/00 04:18 PM

OPTION NOKEYWORD
MASM 6.1 has several new keywords that MASM 5.1 does not recognize as
reserved. To resolve any conflicts, you can:

u Rename any offending symbols in your code.

u Selectively disable keywords with the OPTION NOKEYWORD directive.

The second option lets you retain the offending symbol names in your code by
forcing MASM 6.1 to not recognize them as keywords. For example,

OPTION NOKEYWORD:<INVOKE STRUCT>

removes the keywords INVOKE and STRUCT from the assembler’s list of
reserved words. However, you cannot then use the keywords in their intended
function, since the assembler no longer recognizes them.

The following list shows MASM 6.1 reserved words new since MASM 5.1:

.BREAK

.CONTINUE

.DOSSEG

.ELSE

.ELSEIF

.ENDIF

.ENDW

.EXIT

.IF

.LISTALL

.LISTIF

.LISTMACRO

.LISTMACROALL

.NO87

.NOCREF

.NOLIST

.NOLISTIF

.NOLISTMACRO

.REPEAT

.STARTUP

.UNTIL

.UNTILCXZ

.WHILE

ADDR

ALIAS

BSWAP

CARRY?

CMPXCHG

ECHO

EXTERN

EXTERNDEF

FAR16

FAR32

FLAT

FLDENVD

FLDENVW

FNSAVED

FNSAVEW

FNSTENVD

FNSTENVW

FOR

FORC

FRSTORD

FRSTORW

FSAVED

FSAVEW

FSTENVD

FSTENVW

GOTO

HIGHWORD

INVD

INVLPG

INVOKE

IRETDF

IRETF

LENGTHOF

LOOPD

LOOPED

LOOPEW

LOOPNED

LOOPNEW

LOOPNZD

LOOPNZW

380 Programmer’s Guide

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 380 of 40 Printed: 10/02/00 04:18 PM

LOOPW

LOOPZW

LOWWORD

LROFFSET

NEAR16

NEAR32

OPATTR

OPTION

OVERFLOW?

PARITY?

POPAW

POPCONTEXT

PROTO

PUSHAW

PUSHCONTEXT

PUSHD

PUSHW

REAL10

REAL4

REAL8

REPEAT

SBYTE

SDWORD

SIGN?

SIZEOF

STDCALL

STRUCT

SUBTITLE

SWORD

SYSCALL

TEXTEQU

TR3

TR4

TR5

TYPEDEF

UNION

VARARG

WBINVD

WHILE

XADD

ZERO?

OPTION SETIF2
By default, MASM 6.1 does not recognize pass-dependent constructs. Both the
OPTION M510 and OPTION SETIF2 statements force MASM 6.1 to handle
MASM 5.1 constructs that activate on the second assembly pass, such as
.ERR2, IF2, and ELSEIF2.

Invoke the option like this:

OPTION SETIF2: {TRUE | FALSE}

When set to TRUE, OPTION SETIF2 forces all second-pass constructs to
activate on every assembly pass. When set to FALSE, second-pass constructs
do not activate on any pass. OPTION M510 implies OPTION SETIF2:TRUE.

Changes to Instruction Encodings
MASM 6.1 contains changes to the encodings for several instructions. In some
cases, the changes help optimize code size.

Coprocessor Instructions
For the 8087 coprocessor, MASM 5.1 adds an extra NOP before the no-wait
versions of coprocessor instructions. MASM 6.1 does not. In the rare case that
the missing NOP affects timing, insert NOP.

 Chapter 1 Chapter Head 381

Filename: LMAPGAPA.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio

Revision #: 2 Page: 381 of 41 Printed: 10/02/00 04:18 PM

For the 80287 coprocessor or better, MASM 5.1 inserts FWAIT before certain
instructions. MASM 6.1 does not prefix any 80287, 80387, or 80486
coprocessor instruction with FWAIT, except for wait forms of instructions that
have a no-wait form.

RET Instruction
MASM 5.1 generates a 3-byte encoding for RET, RETN, or RETF instructions
with an operand value of zero, unless the operand is an external absolute. In this
case, MASM 5.1 ignores the parameter and generates a 1-byte encoding.

MASM 6.1 does the opposite. It ignores a zero operand for the return
instructions and generates a 1-byte encoding, unless the operand is an external
absolute. In this case, MASM 6.1 generates a 3-byte encoding.

Thus, you can suppress epilogue code in a procedure but still specify the default
size for RET by coding the return as

 ret 0

Arithmetic Instructions
Versions 5.1 and 6.1 differ in the way they encode the arithmetic instructions
ADC, ADD, AND, CMP, OR, SUB, SBB, and XOR, under the following
conditions:

u The first operand is either AX or EAX.

u The second operand is a constant value between 0 and 127.

For the AX register, there is no size or speed difference between the two
encodings. For the EAX register, the encoding in MASM 6.1 is 2 bytes smaller.
The OPTION NOSIGNEXTEND directive forces the MASM 5.1 behavior for
AND, OR,
and XOR.

