
 211

Filename: LMAPGC08.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio

Revision #: 4 Page: 211 of 1 Printed: 10/02/00 04:22 PM

C H A P T E R 8

To use symbols and procedures in more than one module, the assembler must
be able to recognize the shared data as global to all the modules where they are
used. MASM provides techniques to simplify data-sharing and give a high-level
interface to multiple-module programming. With these techniques, you can place
shared symbols in include files. This makes the data declarations in the file
available to all modules that use the include file.

This chapter explains the two data-sharing methods MASM 6.1 offers. The first
method simplifies data sharing between modules with include files. The second
does not involve include files. Instead, this method allows modules to share
procedures and data items using the PUBLIC and EXTERN directives.

The last section of this chapter explains how to create program libraries and
access their routines.

Selecting Data-Sharing Methods
If data defined in one module is to be used in other modules of a program, you
must declare the data public and external. MASM provides several ways to do
this:

u Declare a symbol public with the PUBLIC directive in the module where it is
defined. This makes the symbol available to other modules. You must also
place an EXTERN statement for that symbol in all other modules that refer
to the public symbol. This statement informs the assembler that the symbol is
external — that is, defined in another module.

u Declare the data communal with the COMM directive. However, communal
variables have limitations. You cannot depend on their location in memory
because they are allocated by the linker, and they cannot be initialized.

The EXTERNDEF directive declares a symbol either public or external, as
appropriate. EXTERNDEF simplifies the declarations for global (public and
external) variables and encourages the use of include files.

Sharing Data and Procedures
Among Modules and Libraries

212 Programmer’s Guide

Filename: LMAPGC08.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio

Revision #: 4 Page: 212 of 2 Printed: 10/02/00 04:22 PM

The next section provides further details on using include files. For more
information on PUBLIC and EXTERN, see “Using Alternatives to Include
Files,” page 219.

Sharing Symbols with Include Files
Include files can contain any valid MASM statement, but typically consist of
type and symbol declarations. The assembler inserts the contents of the include
file into a module at the location of the INCLUDE directive. Include files are
optional, but can simplify project organization by eliminating the need to insert
common declarations into all modules of a program. An alternative to using
include files is described in “Using Alternatives to Include Files,” page 219.

This section explains how to organize symbol definitions and the declarations
that make them global (available to all modules); how to make both variables
and procedures public with EXTERNDEF, PROTO, and COMM.; and where
to place these directives in the modules and include files.

Organizing Modules
This section summarizes the organization of declarations and definitions in
modules and include files and the use of the INCLUDE directive.

Include Files
Type declarations that need to be identical in every module should be placed in
an include file. This ensures consistency and saves time when you update
programs. Include files should contain only symbol declarations and any other
declarations that are resolved at assembly time. (For a list of assembly-time
operations, see “Generating and Running Executable Programs” in Chapter 1.)

If more than one module accesses the include file, the file cannot contain
statements that define and allocate memory for symbols. Otherwise, the
assembler would attempt to allocate the same symbol more than once.

An include file used in two or more modules should not allocate data
variables.

Modules
An INCLUDE statement is usually placed before data and code segments in
your modules. When the assembler encounters an INCLUDE directive, it opens
the specified file and assembles all its statements. The assembler then returns to
the original module and continues the assembly.

Note

 Chapter 8 Sharing Data and Procedures Among Modules and Libraries 213

Filename: LMAPGC08.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio

Revision #: 4 Page: 213 of 3 Printed: 10/02/00 04:22 PM

The INCLUDE directive takes the form:

INCLUDE filename

where filename is the full name of the include file. For example, the following
declaration inserts the contents of the include file SCREEN.INC in your
program:

 INCLUDE SCREEN.INC

The filename in the INCLUDE directive must be fully specified; no extensions
are assumed. If a full pathname is not given, the assembler first searches the
directory of the source file containing the INCLUDE directive.

If the include file is not in the source file directory, the assembler searches the
paths specified in the assembler’s command-line option /I, or in PWB’s Include
Paths field in the MASM Option dialog box (accessed from the Option menu).
The /I option takes this form:

/I path

You can include more than one /I option on the command line. The assembler
then searches for include files within each specified path in the order given. If
none of these directories contains the include file, the assembler finally searches
in the paths specified in the INCLUDE environment variable. If the include file
still cannot be found, an assembly error occurs. (The /x command-line option
tells the assembler to ignore the INCLUDE environment variable when
searching for include files.)

An include file may specify another include file. The assembler processes the
second include file before returning to the first. Your program can nest include
files this way as deeply as the amount of free memory allows.

Include Files or Modules
You can use the EQU directive to create named constants that cannot be
redefined in your program. (For information about the EQU directive, see
“Integer Constants and Constant Expressions,” page 11.) Placing a constant
defined with EQU in an include file makes it available to all modules that use
that include file.

Placing TYPEDEF, STRUCT, UNION, and RECORD definitions in an include
file guarantees consistency in type definitions. If required, the variable instances
derived from these definitions can be made public among the modules with
EXTERNDEF declarations (see the next section). Macros, including macros
defined with TEXTEQU, must be placed in include files to make them visible in
other modules.

214 Programmer’s Guide

Filename: LMAPGC08.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio

Revision #: 4 Page: 214 of 4 Printed: 10/02/00 04:22 PM

If you elect to use full segment definitions with, or instead of, simplified
definitions, you can force a consistent segment order in all files by defining
segments in an include file. This technique is explained in “Controlling the
Segment Order,”
page 47.

Declaring Symbols Public and External
It is sometimes useful to make certain procedures and variables (such as status
flags) global to all program modules. Global variables are freely accessible within
all routines; you do not have to explicitly pass them to the routines that need
them. This section describes how to make variables and procedures global using
the EXTERNDEF, PROTO, or COMM declarations within include files.

When a procedure is defined in one module and called in another module, it
must be declared public in the defining module and external in the calling
module(s). MASM offers three ways to declare a procedure public and external:

u Use the PUBLIC directive in the defining module and EXTERN in all other
modules that reference the procedure. The PUBLIC and EXTERN
directives are explained on page 220.

u Declare the procedure with EXTERNDEF.

u Prototype the procedure with the PROTO directive.

Using EXTERNDEF
MASM treats EXTERNDEF as a public declaration in the defining module, and
as an external declaration in the referencing module(s). You can use the
EXTERNDEF statement in your include file to make a variable common to two
or more modules. EXTERNDEF works with all types of variables, including
arrays, structures, unions, and records. It also works with procedures.

As a result, a single include file can contain an EXTERNDEF declaration that
works in both the defining module and any referencing module. It is ignored in
modules that neither define nor reference the variable. Therefore, an include file
for a library which is used in multiple .EXE files does not force the definition of
a symbol as EXTERN does.

The EXTERNDEF statement takes this form:

EXTERNDEF [[langtype]] name:qualifiedtype

The name is the variable’s identifier. The qualifiedtype is explained in detail in
“Data Types,” page 14.

The optional langtype specifier sets the naming conventions for the name it
precedes. It overrides any language specified in the .MODEL directive. The
specifier can be C, SYSCALL, STDCALL, PASCAL, FORTRAN, or

 Chapter 8 Sharing Data and Procedures Among Modules and Libraries 215

Filename: LMAPGC08.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio

Revision #: 4 Page: 215 of 5 Printed: 10/02/00 04:22 PM

BASIC. For information on selecting the appropriate langtype type, see
“Naming and Calling Conventions,” page 308.

216 Programmer’s Guide

Filename: LMAPGC08.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio

Revision #: 4 Page: 216 of 6 Printed: 10/02/00 04:22 PM

The following diagram shows the statements that declare an array, make it
public, and use it in another module.

Figure 8.1 Using EXTERNDEF for Variables

The file position of EXTERNDEF directives is important. For more information,
see “Positioning External Declarations,” following.

You can also make procedures visible by using EXTERNDEF without PROTO
inside an include file. This method treats the procedure name as a simple
identifier, without the parameter list, so you forgo the assembler’s ability to
check for the correct parameters during assembly. Use EXTERNDEF with
procedures in the same way as variables:

EXTERNDEF MyProc:FAR ; Declare far procedure external

You can also use EXTERNDEF to make a code label global between modules
so that one module can reference a label in another module. Give the label
global scope with the double colon operator, like this:

EXTERNDEF codelabel:NEAR
.
.
.
codelabel::

Another module can reference codelabel like this:

EXTERNDEF codelabel:NEAR
.
.
.
 jmp codelabel

 Chapter 8 Sharing Data and Procedures Among Modules and Libraries 217

Filename: LMAPGC08.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio

Revision #: 4 Page: 217 of 7 Printed: 10/02/00 04:22 PM

Using PROTO
This section describes how to prototype a procedure with the PROTO directive.
PROTO automatically issues an EXTERNDEF for the procedure unless the
PROC statement declares the procedure PRIVATE. Defining a prototype
enables type-checking for the procedure arguments.

Follow these steps to create an interface for a procedure defined in one module
and called from other modules:

 1. Place the PROTO declaration in the include file.

 2. Define the procedure with PROC in one module. The PROC directive
declares the procedure PUBLIC by default.

 3. Call the procedure with the INVOKE statement (or with CALL). Make sure
that all calling modules access the include file.

For descriptions, syntax, and examples of PROTO, PROC, and INVOKE, see
Chapter 7, “Controlling Program Flow.”

The following example illustrates these three steps. In the example, a PROTO
statement defines the far procedure CopyFile, which uses the C parameter-
passing and naming conventions, and takes the arguments filename and
numberlines. The diagram following the example shows the file placement
for these statements.

This definition goes into the include file:

CopyFile PROTO FAR C filename:BYTE, numberlines:WORD

The procedure definition for CopyFile is:

CopyFile PROC FAR C USES cx, filename:BYTE, numberlines:WORD

To call the CopyFile procedure, you can use this INVOKE statement:

 INVOKE CopyFile, NameVar, 200

218 Programmer’s Guide

Filename: LMAPGC08.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio

Revision #: 4 Page: 218 of 8 Printed: 10/02/00 04:22 PM

Figure 8.2 Using PROTO and INVOKE

Using COMM
Another way to share variables among modules is to add the COMM
(communal) declaration to your include file. Since communal variables are
allocated by the linker and cannot be initialized, you cannot depend on their
location or sequence.

Communal variables are supported by MASM primarily for compatibility with
communal variables in Microsoft C. Communal variables are not used in any
other Microsoft language, and they are not compatible with C++ and some other
languages.

COMM declares a data variable external and instructs the linker to allocate the
variable if it has not been explicitly defined in a module. The memory space for
communal variables may not be assigned until load time, so using communal
variables may reduce the size of your executable file.

The COMM declaration has the syntax:

COMM [[langtype]] [[NEAR | FAR]] label:type[[:count]]

The label is the name of the variable. The langtype sets the naming conventions
for the name it precedes. It overrides any language specified in the .MODEL
directive.

 Chapter 8 Sharing Data and Procedures Among Modules and Libraries 219

Filename: LMAPGC08.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio

Revision #: 4 Page: 219 of 9 Printed: 10/02/00 04:22 PM

If NEAR or FAR is not specified, the variable determines the default from the
current memory model (NEAR for TINY, SMALL, COMPACT, and FLAT;
FAR for MEDIUM, LARGE, and HUGE). If you do not provide a memory
model with the .MODEL directive, you must specify a distance when accessing
a communal variable, like this:

 mov ax, NEAR PTR CommNear
 mov bx, FAR PTR CommFar

The type can be a constant expression, but it is usually a type such as BYTE,
WORD, or DWORD, or a structure, union, or record. If you first declare the
type with TYPEDEF, CodeView can provide type information. The count is the
number of elements. If no count is given, one element is assumed.

The following example creates the on far variable DataBlock, which is a
1,024-element array of uninitialized signed doublewords:

COMM FAR DataBlock:SDWORD:1024

C variables declared outside functions (except static variables) are
communal unless explicitly initialized; they are the same as assembly-language
communal variables. If you are writing assembly-language modules for C, you
can declare the same communal variables in both C and MASM include files.
However, communal variables in C do not have to be declared communal in
assembler. The linker will match the EXTERN, PUBLIC, and COMM
statements for the variable.

EXTERNDEF (explained in the previous section) is more flexible than COMM
because you can initialize variables defined with it, and your code can rely on
the position and sequence of the defined data.

Positioning External Declarations
Although LINK determines the actual address of an external symbol, the
assembler assumes a default segment for the symbol, based on the location of
the external directive in the source code. You should therefore position
EXTERN and
EXTERNDEF directives according to these rules:

u If you know which segment defines an external symbol, put the EXTERN
statement in that segment.

Note

220 Programmer’s Guide

Filename: LMAPGC08.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio

Revision #: 4 Page: 220 of 10 Printed: 10/02/00 04:22 PM

u If you know the group but not the segment, position the EXTERN statement
outside any segment and reference the variable with the group name. For
example, if var1 is in DGROUP, reference the variable as
 mov DGROUP:var1, 10

u If you know nothing about the location of an external variable, put the
EXTERN statement outside any segment. You can use the SEG directive to
access the external variable like this:
 mov ax, SEG var1
 mov es, ax
 mov ax, es:var1

u If the symbol is an absolute symbol or a far code label, you can declare it
external anywhere in the source code.

Always close any segments opened in include files so that external declarations
following an include statement are not incorrectly placed inside a segment. If
you want to be certain an external definition lies outside a segment, you can use
@CurSeg. The @CurSeg predefined symbol returns a blank if the definition is
not in a segment. For example,

 .DATA
 .
 .
 .
@CurSeg ENDS ; Close segment
 EXTERNDEF var:WORD

For information about predefined symbols such as @CurSeg, see “Predefined
Symbols,” page 10.

Using Alternatives to Include Files
If your project uses only two modules (or if it is written with a version of
MASM prior to 6.0), you may want to continue using PUBLIC in the defining
module and EXTERN in the referencing module, and not create an include file
for the project. The EXTERN directive can be used in an include file, but the
include file containing EXTERN cannot be added to the module that contains
the corresponding PUBLIC directive for that symbol. This section assumes that
you are not using include files.

 Chapter 8 Sharing Data and Procedures Among Modules and Libraries 221

Filename: LMAPGC08.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio

Revision #: 4 Page: 221 of 11 Printed: 10/02/00 04:22 PM

PUBLIC and EXTERN
The PUBLIC and EXTERN directives are less flexible than EXTERNDEF and
PROTO because they are module-specific: PUBLIC must appear in the
defining module and EXTERN must appear in the calling modules. This section
shows how to use PUBLIC and EXTERN. Information on where to place the
external declarations in your file is in “Positioning External Declarations,”
previous.

The PUBLIC directive makes a name visible outside the module in which it is
defined. This gives other program modules access to that identifier.

The EXTERN directive performs the complementary function. It tells the
assembler that a name referenced within a particular module is actually defined
and declared public in another module that will be specified at link time.

A PUBLIC directive can appear anywhere in a file. Its syntax is:

PUBLIC [[langtype]] name[[, [[langtype]] name]]...

The name must be the name of an identifier defined within the current source
file. Only code labels, data labels, procedures, and numeric equates can be
declared public.

If you specify the langtype field here, it overrides the language specified by
.MODEL. The langtype field can be C, SYSCALL, STDCALL, PASCAL,
FORTRAN, or BASIC. For more information on specifying langtype types, see
“Declaring Parameters with the PROC Directive,” page 184, and “Naming and
Calling Conventions,” page 308.

The EXTERN directive tells the assembler that an identifier is external —
defined in some other module that will be supplied at link time. Its syntax is:

EXTERN [[langtype]] name:{ABS | qualifiedtype}

“Data Types,” page 14, describes qualifiedtype. You can use the ABS
(absolute) keyword only with external numeric constants. ABS causes the
identifier to be imported as a relocatable unsized constant. This identifier can
then be used anywhere a constant can be used. If the identifier is not found in
another module at link time, the linker generates an error.

222 Programmer’s Guide

Filename: LMAPGC08.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio

Revision #: 4 Page: 222 of 12 Printed: 10/02/00 04:22 PM

In the following example, the procedure BuildTable and the variable Var are
declared public. The procedure uses the Pascal naming and data-passing
conventions:

Figure 8.3 Using PUBLIC and EXTERN

Other Alternatives
You can also use the directives discussed earlier (EXTERNDEF, PROTO, and
COMM) without the include file. In this case, place the declarations to make a
symbol global in the same module where the symbol is defined. You might want
to use this technique if you are linking only a few modules that have very little
data in common.

Developing Libraries
As you create reusable procedures, you can place them in a library file for
convenient access. Although you can put any routine into a library, each library
file, recognizable by its .LIB extension, usually contains related routines. For
example, you might place string-manipulation functions in one library, matrix
calculations in another, and port communications in another. Do not place
communal variables (defined with the COMM directive) in a library.

A library consists of combined object modules, each created from a single
source file. The object module is the smallest independent unit in a library. If
you link with one symbol in a module, the linker adds the entire module to your
program, but not the entire library.

 Chapter 8 Sharing Data and Procedures Among Modules and Libraries 223

Filename: LMAPGC08.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio

Revision #: 4 Page: 223 of 13 Printed: 10/02/00 04:22 PM

Associating Libraries with Modules
You can choose either of two methods for associating your libraries with the
modules that use them: you can use the INCLUDELIB directive inside your
source files, or link the modules from the command line.

To associate a specified library with your object code, use INCLUDELIB. You
can add this directive to the source file to specify the libraries you want linked,
rather than specifying them in the LINK command line. The INCLUDELIB
syntax is:

INCLUDELIB libraryname

The libraryname can be a file name or a complete path specification. If you do
not specify an extension, .LIB is assumed. The libraryname is placed in the
comment record of the object file. LINK reads this record and links with the
specified library file.

For example, the statement INCLUDELIB GRAPHICS passes a message from
the assembler to the linker telling LINK to use library routines from the file
GRAPHICS.LIB. If you place this statement in the source file DRAW.ASM and
GRAPHICS.LIB is in the same directory, you can assemble and link the
program with the following command:

ML DRAW.ASM

Without the INCLUDELIB directive, you must link the program DRAW.ASM
with either of the following commands:

ML DRAW.ASM GRAPHICS.LIB
ML DRAW /link GRAPHICS

If you want to assemble and link separately, type

ML /c DRAW.ASM
LINK DRAW,,,GRAPHICS

If you do not specify a complete path in the INCLUDELIB statement or at the
command line, LINK searches for the library file in the following order:

 1. In the current directory.
 2. In any directories in the library field of the LINK command line.

 3. In any directories specified by the LIB environment variable.

The LIB.EXE utility helps you create, organize, and maintain run-time libraries.
Refer to Environment and Tools for instructions on LIB.EXE.

224 Programmer’s Guide

Filename: LMAPGC08.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio

Revision #: 4 Page: 224 of 14 Printed: 10/02/00 04:22 PM

Using EXTERN with Library Routines
In some cases, EXTERN helps you limit the size of your executable file by
specifying in the syntax an alternative name for a procedure. You would use this
form of the EXTERN directive when declaring a procedure or symbol that may
not need to be used.

The syntax looks like this:

EXTERN [[langtype]] name [[(altname)]] :qualifiedtype

The addition of the altname to the syntax provides the name of an alternate
procedure that the linker uses to resolve the external reference if the procedure
given by name is not needed. Both name and altname must have the same
qualifiedtype.

When the linker encounters an external definition for a procedure that gives an
altname, the linker finishes processing that module before it links the object
module that contains the procedure given by name. If the program does not
reference any symbols in the name file’s object from any of the linked modules,
the linker uses altname to satisfy the external reference. This saves space
because the library object module is not brought in.

For example, assume that the contents of STARTUP.ASM include these
statements:

EXTERN init(dummy):PROC
 .
 .
 .
dummy PROC
 .
 .
 . ; A procedure definition containing no
 ret ; executable code

dummy ENDP
 .
 .
 .
 call init ; Defined in FLOAT.OBJ

In this example, the reference to the routine init (defined in FLOAT.OBJ)
does not force the module FLOAT.OBJ to be linked into the executable file. If
another reference causes FLOAT.OBJ to be linked into the executable file, then
init will refer to the init label in FLOAT.OBJ. If there are no references that
force linkage with FLOAT.OBJ, the linker will use the alternate name for
init(dummy).

224 Programmer’s Guide

Filename: LMAPGC08.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio

Revision #: 4 Page: 224 of 16 Printed: 10/02/00 04:22 PM

