
 53

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 53 of 1 Printed: 10/02/00 04:23 PM

C H A P T E R 3

MASM applications running in real mode require segmented addresses to access
code and data. The address of the code or data in a segment is relative to a
segment address in a segment register. You can also use pointers to access data
in assembly language programs. (A pointer is a variable that contains an address
as its value.)

The first section of this chapter describes how to initialize default segment
registers to access near and far addresses. The next section describes how to
access code and data. It also describes related operators, syntax, and
displacements. The discussion of memory operands lays the foundation for the
third section, which describes the stack.

The fourth section of this chapter explains how to use the TYPEDEF directive
to declare pointers and the ASSUME directive to give the assembler information
about registers containing pointers. This section also shows you how to do
typical pointer operations and how to write code that works for pointer variables
in any memory model.

Programming Segmented Addresses
Before you use segmented addresses in your programs, you need to initialize the
segment registers. The initialization process depends on the registers used and
on your choice of simplified segment directives or full segment definitions. The
simplified segment directives (introduced in Chapter 2) handle most of the
initialization process for you. This section explains how to inform the assembler
and the processor of segment addresses, and how to access the near and far
code and data in those segments.

Initializing Default Segment Registers
The segmented architecture of the 8086-family of processors does not require
that you specify two addresses every time you access memory. As explained in
Chapter 2, “Organizing Segments,” the 8086 family of processors uses a system

Using Addresses and Pointers

54 Programmer’s Guide

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 54 of 2 Printed: 10/02/00 04:23 PM

of default segment registers to simplify access to the most commonly used data
and code.

The segment registers DS, SS, and CS are normally initialized to default
segments at the beginning of a program. If you write the main module in a high-
level language, the compiler initializes the segment registers. If you write the
main module in assembly language, you must initialize the segment registers
yourself. Follow these steps to initialize segments:

 1. Tell the assembler which segment is associated with a register. The
assembler must know the default segments at assembly time.

 2. Tell the processor which segment is associated with a register by writing the
necessary code to load the correct segment value into the segment register on
the processor.

These steps are discussed separately in the following sections.

Informing the Assembler About Segment Values
The first step in initializing segments is to tell the assembler which segment to
associate with a register. You do this with the ASSUME directive. If you use
simplified segment directives, the assembler automatically generates the
appropriate ASSUME statements. If you use full segment definitions, you must
code the ASSUME statements for registers other than CS yourself. (ASSUME
can also be used on general-purpose registers, as explained in “Defining Register
Types with ASSUME” later in this chapter.)

The .STARTUP directive generates startup code that sets DS equal to SS
(unless you specify FARSTACK), allowing default data to be accessed through
either SS or DS. This can improve efficiency in the code generated by
compilers. The “DS equals SS” convention may not work with certain
applications, such as memory-resident programs in MS-DOS and Windows
dynamic-link libraries (see Chapter 10). The code generated for .STARTUP is
shown in “Starting and Ending Code with .STARTUP and .EXIT” in Chapter 2.
You can use similar code to set DS equal to SS in programs using full segment
definitions.

Here is an example of ASSUME using full segment definitions:

ASSUME cs:_TEXT, ds:DGROUP, ss:DGROUP

This example is equivalent to the ASSUME statement generated with simplified
segment directives in small model with NEARSTACK. Note that DS and SS
are part of the same segment group. It is also possible to have different
segments for data and code, and to use ASSUME to set ES, as shown here:

 Chapter 3 Using Addresses and Pointers 55

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 55 of 3 Printed: 10/02/00 04:23 PM

ASSUME cs:MYCODE, ds:MYDATA, ss:MYSTACK, es:OTHER

Correct use of the ASSUME statement can help find addressing errors. With
.CODE, the assembler assumes CS is the current segment. When you use the
simplified segment directives .DATA, .DATA?, .CONST, .FARDATA, or
.FARDATA?, the assembler automatically assumes CS is the ERROR
segment. This prevents instructions from appearing in these segments. If you
use full segment definitions, you can accomplish the same by placing ASSUME
CS:ERROR in a data segment.

With simple or full segments, you can cancel the control of an ASSUME
statement by assuming NOTHING. You can cancel the previous assumption for
ES with the following statement:

ASSUME es:NOTHING

Prior to the .MODEL statement (or in its absence), the assembler sets the
ASSUME statement for DS, ES, and SS to the current segment.

Informing the Processor About Segment Values
The second and final step in initializing segments is to inform the processor of
segment values at run time. How segment values are initialized at run time
differs for each segment register and depends on the operating system and on
your use of simplified segment directives or full segment definitions.

Specifying a Starting Address
A program’s starting address determines where execution begins. After the
operating system loads a program, it simply jumps to the starting address, giving
processor control to the program. The true starting address is known only to the
loader; the linker determines only the offset of the address within an
undetermined code segment. That’s why a normal application is often referred
to as “relocatable code,” because it runs regardless of where the loader places it
in memory.

The offset of the starting address depends on the program type. Programs with
an .EXE extension contain a header from which the loader reads the offset and
combines it with a segment to form the starting address. Programs with a .COM
extension (tiny model) have no such header, so by convention the loader jumps
to the first byte of the program.

In either case, the .STARTUP directive identifies where execution begins,
provided you use simplified segment directives. For an .EXE program, place
.STARTUP immediately before the instruction where you want execution to
start. In a .COM program, place .STARTUP before the first assembly
instruction in your source code.

56 Programmer’s Guide

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 56 of 4 Printed: 10/02/00 04:23 PM

If you use full segment directives or prefer not to use .STARTUP, you must
identify the starting instruction in two steps:

 1. Label the starting instruction.

 2. Provide the same label in the END directive.

These steps tell the linker where execution begins in the program. The following
example illustrates the two steps for a tiny model program:

_TEXT SEGMENT WORD PUBLIC 'CODE'
 ORG 100h ; Use this declaration for .COM files only
start: . ; First instruction here
 .
 .
_TEXT ENDS
 END start ; Name of starting label

Notice the ORG statement in this example. This statement is mandatory in a
tiny model program without the .STARTUP directive. It places the first
instruction at offset 100h in the code segment to create space for a 256-byte
(100h) data area called the Program Segment Prefix (PSP). The operating
system takes care of initializing the PSP, so you need only make sure the area
exists. (For a description of what data resides in the PSP, refer to the “Tables”
chapter in the Reference.)

Initializing DS
The DS register is automatically initialized to the correct value (DGROUP) if
you use .STARTUP or if you are writing a program for Windows. If you do not
use .STARTUP with MS-DOS, you must initialize DS using the following
instructions:

 mov ax, DGROUP
 mov ds, ax

The initialization requires two instructions because the segment name is a
constant and the assembler does not allow a constant to be loaded directly to a
segment register. The previous example loads DGROUP, but you can load any
valid segment or group.

Initializing SS and SP
The SS and SP registers are initialized automatically if you use the .STACK
directive with simplified segments or if you define a segment that has the
STACK combine type with full segment definitions. Using the STACK directive
initializes SS to the stack segment. If you want SS to be equal to DS, use
.STARTUP or its equivalent. (See “Combining Segments,” page 45.) For an
.EXE file, the stack address is encoded into the executable header and resolved

 Chapter 3 Using Addresses and Pointers 57

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 57 of 5 Printed: 10/02/00 04:23 PM

at load time. For a .COM file, the loader sets SS equal to CS and initializes SP
to 0FFFEh.

If your program does not access far data, you do not need to initialize the ES
register. If you choose to initialize, use the same technique as for the DS
register. You can initialize SS to a far stack in the same way.

Near and Far Addresses
Addresses that have an implied segment name or segment registers associated
with them are called “near addresses.” Addresses that have an explicit segment
associated with them are called “far addresses.” The assembler handles near and
far code automatically, as described in the following sections. You must specify
how to handle far data.

The Microsoft segment model puts all near data and the stack in a group called
DGROUP. Near code is put in a segment called _TEXT. Each module’s far
code or far data is placed in a separate segment. This convention is described in
“Controlling the Segment Order” in Chapter 2.

The assembler cannot determine the address for some program components;
these are said to be relocatable. The assembler generates a fixup record and the
linker provides the address once it has determined the location of all segments.
Usually a relocatable operand references a label, but there are exceptions.
Examples in the next two sections include information about relocating near and
far data.

Near Code
Control transfers within near code do not require changes to segment registers.
The processor automatically handles changes to the offset in the IP register
when control-flow instructions such as JMP, CALL, and RET are used. The
statement

 call nearproc ; Change code offset

changes the IP register to the new address but leaves the segment unchanged.
When the procedure returns, the processor resets IP to the offset of the next
instruction after the CALL instruction.

Far Code
The processor automatically handles segment register changes when dealing with
far code. The statement

 call farproc ; Change code segment and offset

automatically moves the segment and offset of the farproc procedure to the
CS and IP registers. When the procedure returns, the processor sets CS to the

58 Programmer’s Guide

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 58 of 6 Printed: 10/02/00 04:23 PM

original code segment and sets IP to the offset of the next instruction after the
call.

Near Data
A program can access near data directly, because a segment register already
holds the correct segment for the data item. The term “near data” is often used
to refer to the data in the DGROUP group.

After the first initialization of the DS and SS registers, these registers normally
point into DGROUP. If you modify the contents of either of these registers
during the execution of the program, you must reload the register with
DGROUP’s address before referencing any DGROUP data.

The processor assumes all memory references are relative to the segment in the
DS register, with the exception of references using BP or SP. The processor
associates these registers with the SS register. (You can override these
assumptions with the segment override operator, described in “Direct Memory
Operands,” on page 62.)

The following lines illustrate how the processor accesses either the DS or SS
segments, depending on whether the pointer operand contains BP or SP. Note
the distinction loses significance when DS and SS are equal.

nearvar WORD 0
 .
 .
 .
 mov ax, nearvar ; Reads from DS:[nearvar]
 mov di, [bx] ; Reads from DS:[bx]
 mov [di], cx ; Writes to DS:[di]
 mov [bp+6], ax ; Writes to SS:[bp+6]
 mov bx, [bp] ; Reads from SS:[bp]

Far Data
To read or modify a far address, a segment register must point to the segment of
the data. This requires two steps. First load the segment (normally either ES or
DS) with the correct value, and then (optionally) set an assume of the segment
register to the segment of the address.

Flat model does not require far addresses. By default, all addressing is
relative to the initial values of the segment registers. Therefore, this section on
far addressing does not apply to flat model programs.

One method commonly used to access far data is to initialize the ES segment
register. This example shows two ways to do this:

Note

 Chapter 3 Using Addresses and Pointers 59

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 59 of 7 Printed: 10/02/00 04:23 PM

; First method
 mov ax, SEG farvar ; Load segment of the
 mov es, ax , far address into ES
 mov ax, es:farvar ; Provide an explicit segment
 ; override on the addressing

60 Programmer’s Guide

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 60 of 8 Printed: 10/02/00 04:23 PM

; Second method
 mov ax, SEG farvar2 ; Load the segment of the
 mov es, ax ; far address into ES
 ASSUME ES:SEG farvar2 ; Tell the assembler that ES points
 ; to the segment containing farvar2
 mov ax, farvar2 ; The assembler provides the ES
 ; override since it knows that
 ; the label is addressable

After loading the segment of the address into the ES segment register, you can
explicitly override the segment register so that the addressing is correct (method
1) or allow the assembler to insert the override for you (method 2). The
assembler uses ASSUME statements to determine which segment register can
be used to address a segment of memory. To use the segment override operator,
the left operand must be a segment register, not a segment name. (For more
information on segment overrides, see “Direct Memory Operands” on page 62.)

If an instruction needs a segment override, the resulting code is slightly larger
and slower, since the override must be encoded into the instruction. However,
the resulting code may still be smaller than the code for multiple loads of the
default segment register for the instruction.

The DS, SS, FS, and GS segment registers (FS and GS are available only on the
80386/486 processors) may also be used for addressing through other segments.

If a program uses ES to access far data, it need not restore ES when finished
(unless the program uses flat model). However, some compilers require that you
restore ES before returning to a module written in a high-level language.

To access far data, first set DS to the far segment and then restore the original
DS when finished. Use the ASSUME directive to let the assembler know that
DS no longer points to the default data segment, as shown here:

 push ds ; Save original segment
 mov ax, SEG fararray ; Move segment into data register
 mov ds, ax ; Initialize segment register
 ASSUME ds:SEG fararray ; Tell assembler where data is
 mov ax, fararray[0] ; Set DX:AX = dword variable
 mov dx, fararray[2] ; fararray
 .
 .
 .
 pop ds ; Restore segment
 ASSUME ds:@DATA ; and default assumption

 Chapter 3 Using Addresses and Pointers 61

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 61 of 9 Printed: 10/02/00 04:23 PM

“Direct Memory Operands,”on page 62, describes an alternative method for
accessing far data. The technique of resetting DS as shown in the previous
example is best for a lengthy series of far data references. The segment override
method described in “Direct Memory Operands” serves best when accessing
only one or two far variables.

If your program changes DS to access far data, it should restore DS when
finished. This allows procedures to assume that DS is the segment for near data.
Many compilers, including Microsoft compilers, use this convention.

Operands
With few exceptions, assembly language instructions work on sources of data
called operands. In a listing of assembly code (such as the examples in this
book), operands appear in the operand field immediately to the right of the
instructions.

This section describes the four kinds of instruction operands: register,
immediate, direct memory, and indirect memory. Some instructions, such as
POPF and STI, have implied operands which do not appear in the operand
field. Otherwise, an implied operand is just as real as one stated explicitly.

Certain other instructions such as NOP and WAIT deserve special mention.
These instructions affect only processor control and do not require an operand.

The following four types of operands are described in the rest of this section:

Operand Type Addressing Mode

Register An 8-bit or 16-bit register on the 8086–80486; can also be 32-bit on the
80386/486.

Immediate A constant value contained in the instruction itself.

Direct memory A fixed location in memory.

Indirect memory A memory location determined at run time by using the address stored in
one or two registers.

Instructions that take two or more operands always work right to left. The right
operand is the source operand. It specifies data that will be read, but not
changed, in the operation. The left operand is the destination operand. It
specifies the data that will be acted on and possibly changed by the instruction.

62 Programmer’s Guide

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 62 of 10 Printed: 10/02/00 04:23 PM

Register Operands
Register operands refer to data stored in registers. The following examples show
typical register operands:

 mov bx, 10 ; Load constant to BX
 add ax, bx ; Add BX to AX
 jmp di ; Jump to the address in DI

An offset stored in a base or index register often serves as a pointer into
memory. You can store an offset in one of the base or index registers, then use
the register as an indirect memory operand. (See “Indirect Memory Operands,”
following.) For example:

 mov [bx], dl ; Store DL in indirect memory operand
 inc bx ; Increment register operand
 mov [bx], dl ; Store DL in new indirect memory operand

This example moves the value in DL to 2 consecutive bytes of a memory
location pointed to by BX. Any instruction that changes the register value also
changes the data item pointed to by the register.

Immediate Operands
An immediate operand is a constant or the result of a constant expression. The
assembler encodes immediate values into the instruction at assembly time. Here
are some typical examples showing immediate operands:

 mov cx, 20 ; Load constant to register
 add var, 1Fh ; Add hex constant to variable
 sub bx, 25 * 80 ; Subtract constant expression

Immediate data is never permitted in the destination operand. If the source
operand is immediate, the destination operand must be either a register or direct
memory to provide a place to store the result of the operation.

Immediate expressions often involve the useful OFFSET and SEG operators,
described in the following paragraphs.

The OFFSET Operator
An address constant is a special type of immediate operand that consists of an
offset or segment value. The OFFSET operator returns the offset of a memory
location, as shown here:

 mov bx, OFFSET var ; Load offset address

For information on differences between MASM 5.1 behavior and MASM 6.1
behavior related to OFFSET, see Appendix A.

 Chapter 3 Using Addresses and Pointers 63

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 63 of 11 Printed: 10/02/00 04:23 PM

Since data in different modules may belong to a single segment, the assembler
cannot know for each module the true offsets within a segment. Thus, the offset
for var, although an immediate value, is not determined until link time.

The SEG Operator
The SEG operator returns the segment of a memory location:

 mov ax, SEG farvar ; Load segment address
 mov es, ax

The actual value of a particular segment is not known until the program is
loaded into memory. For .EXE programs, the linker makes a list in the
program’s header of all locations in which the SEG operator appears. The
loader reads this list and fills in the required segment address at each location.
Since .COM programs have no header, the assembler does not allow relocatable
segment expressions in tiny model programs.

The SEG operator returns a variable’s “frame” if it appears in the instruction.
The frame is the value of the segment, group, or segment override of a
nonexternal variable. For example, the instruction

 mov ax, SEG DGROUP:var

places in AX the value of DGROUP, where var is located. If you do not
include a frame, SEG returns the value of the variable’s group if one exists. If
the variable is not defined in a group, SEG returns the variable’s segment
address.

This behavior can be changed with the /Zm command-line option or with the
OPTION OFFSET:SEGMENT statement. (See Appendix A, “Differences
between MASM 6.1 and 5.1.”) “Using the OPTION Directive” in Chapter 1
introduces the OPTION directive.

Direct Memory Operands
A direct memory operand specifies the data at a given address. The instruction
acts on the contents of the address, not the address itself. Except when size is
implied by another operand, you must specify the size of a direct memory
operand so the instruction accesses the correct amount of memory. The
following example shows how to explicitly specify data size with the BYTE
directive:

64 Programmer’s Guide

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 64 of 12 Printed: 10/02/00 04:23 PM

 .DATA? ; Segment for uninitialized data
var BYTE ? ; Reserve one byte, labeled "var"
 .CODE
 .
 .
 .
 mov var, al ; Copy AL to byte at var

Any location in memory can be a direct memory operand as long as a size is
specified (or implied) and the location is fixed. The data at the address can
change, but the address cannot. By default, instructions that use direct memory
addressing use the DS register. You can create an expression that points to a
memory location using any of the following operators:

Operator Name Symbol

Plus +

Minus –

Index []

Structure member .

Segment override :

These operators are discussed in more detail in the following section.

Plus, Minus, and Index
The plus and index operators perform in exactly the same way when applied to
direct memory operands. For example, both the following statements move the
second word value from an array into the AX register:

 mov ax, array[2]
 mov ax, array+2

The index operator can contain any direct memory operand. The following
statements are equivalent:

 mov ax, var
 mov ax, [var]

Some programmers prefer to enclose the operand in brackets to show that the
contents, not the address, are used.

 Chapter 3 Using Addresses and Pointers 65

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 65 of 13 Printed: 10/02/00 04:23 PM

The minus operator behaves as you would expect. Both the following
instructions retrieve the value located at the word preceding array:

 mov ax, array[-2]
 mov ax, array-2

Structure Field
The structure operator (.) references a particular element of a structure or
“field,” to use C terminology:

 mov bx, structvar.field1

The address of the structure operand is the sum of the offsets of structvar
and field1. For more information about structures, see “Structures and
Unions” in Chapter 5.

Segment Override
The segment override operator (:) specifies a segment portion of the address
that is different from the default segment. When used with instructions, this
operator can apply to segment registers or segment names:

 mov ax, es:farvar ; Use segment override

The assembler will not generate a segment override if the default segment is
explicitly provided. Thus, the following two statements assemble in exactly the
same way:

 mov [bx], ax
 mov ds:[bx], ax

A segment name override or the segment override operator identifies the
operand as an address expression.

 mov WORD PTR FARSEG:0, ax ; Segment name override
 mov WORD PTR es:100h, ax ; Legal and equivalent
 mov WORD PTR es:[100h], ax ; expressions
; mov WORD PTR [100h], ax ; Illegal, not an address

As the example shows, a constant expression cannot be an address expression
unless it has a segment override.

Indirect Memory Operands
Like direct memory operands, indirect memory operands specify the contents of
a given address. However, the processor calculates the address at run time by
referring to the contents of registers. Since values in the registers can change at
run time, indirect memory operands provide dynamic access to memory.

66 Programmer’s Guide

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 66 of 14 Printed: 10/02/00 04:23 PM

Indirect memory operands make possible run-time operations such as pointer
indirection and dynamic indexing of array elements, including indexing of
multidimensional arrays.

Strict rules govern which registers you can use for indirect memory operands
under 16-bit versions of the 8086-based processors. The rules change
significantly for 32-bit processors starting with the 80386. However, the new
rules apply only to code that does not need to be compatible with earlier
processors.

This section covers features of indirect operands in either mode. The specific
16-bit rules and 32-bit rules are then explained separately.

Indirect Operands with 16- and 32-Bit Registers
Some rules and options for indirect memory operands always apply, regardless
of the size of the register. For example, you must always specify the register and
operand size for indirect memory operands. But you can use various syntaxes to
indicate an indirect memory operand. This section describes the rules that apply
to both 16-bit and 32-bit register modes.

Specifying Indirect Memory Operands
The index operator specifies the register or registers for indirect operands. The
processor uses the data pointed to by the register. For example, the following
instruction moves into AX the word value at the address in DS:BX.

 mov ax, WORD PTR [bx]

When you specify more than one register, the processor adds the contents of the
two addresses together to determine the effective address (the address of the
data to operate on):

 mov ax, [bx+si]

Specifying Displacements
You can specify an address displacement, which is a constant value added to the
effective address. A direct memory specifier is the most common displacement:

 mov ax, table[si]

In this relocatable expression, the displacement table is the base address of an
array; SI holds an index to an array element. The SI value is calculated at run
time, often in a loop. The element loaded into AX depends on the value of SI at
the time the instruction executes.

 Chapter 3 Using Addresses and Pointers 67

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 67 of 15 Printed: 10/02/00 04:23 PM

Each displacement can be an address or numeric constant. If there is more than
one displacement, the assembler totals them at assembly time and encodes the
total displacement. For example, in the statement

table WORD 100 DUP (0)
 .
 .
 .
 mov ax, table[bx][di]+6

both table and 6 are displacements. The assembler adds the value of 6 to
table to get the total displacement. However, the statement

 mov ax, mem1[si] + mem2

is not legal, because it attempts to use a single command to join the contents of
two different addresses.

Specifying Operand Size
You must give the size of an indirect memory operand in one of three ways:

u By the variable’s declared size

u With the PTR operator

u Implied by the size of the other operand

The following lines illustrate all three methods. Assume the size of the table
array is WORD, as declared earlier.

 mov table[bx], 0 ; 2 bytes - from size of table
 mov BYTE PTR table, 0 ; 1 byte - specified by BYTE
 mov ax, [bx] ; 2 bytes - implied by AX

Syntax Options
The assembler allows a variety of syntaxes for indirect memory operands.
However, all registers must be inside brackets. You can enclose each register in
its own pair of brackets, or you can place the registers in the same pair of
brackets separated by a plus operator (+). All the following variations are legal
and assemble the same way:

 mov ax, table[bx][di]
 mov ax, table[di][bx]
 mov ax, table[bx+di]
 mov ax, [table+bx+di]
 mov ax, [bx][di]+table

All of these statements move the value in table indexed by BX+DI into AX.

68 Programmer’s Guide

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 68 of 16 Printed: 10/02/00 04:23 PM

Scaling Indexes
The value of index registers pointing into arrays must often be adjusted for zero-
based arrays and scaled according to the size of the array items. For a word
array, the item number must be multiplied by two (shifted left by one place).
When using 16-bit registers, you must scale with separate instructions, as shown
here:

 mov bx, 5 ; Get sixth element (adjust for 0)
 shl bx, 1 ; Scale by two (word size)
 inc wtable[bx] ; Increment sixth element in table

When using 32-bit registers on the 80386/486 processor, you can include scaling
in the operand, as described in “Indirect Memory Operands with 32-Bit
Registers,” following.

Accessing Structure Elements
The structure member operator can be used in indirect memory operands to
access structure elements. In this example, the structure member operator loads
the year field of the fourth element of the students array into AL:

STUDENT STRUCT
 grade WORD ?
 name BYTE 20 DUP (?)
 year BYTE ?
STUDENT ENDS

students STUDENT < >
 .
 . ; Assume array is initialized
 mov bx, OFFSET students ; Point to array of students
 mov ax, 4 ; Get fourth element
 mov di, SIZE STUDENT ; Get size of STUDENT
 mul di ; Multiply size times
 mov di, ax ; elements to point DI
 ; to current element
 mov al, (STUDENT PTR[bx+di]).year

For more information on MASM structures, see “Structures and Unions” in
Chapter 5.

Indirect Memory Operands with 16-Bit Registers
For 8086-based computers and MS-DOS, you must follow the strict indexing
rules established for the 8086 processor. Only four registers are allowed — BP,
BX, SI, and DI — those only in certain combinations.

 Chapter 3 Using Addresses and Pointers 69

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 69 of 17 Printed: 10/02/00 04:23 PM

BP and BX are base registers. SI and DI are index registers. You can use either
a base or an index register by itself. But if you combine two registers, one must
be a base and one an index. Here are legal and illegal forms:

 mov ax, [bx+di] ; Legal
 mov ax, [bx+si] ; Legal
 mov ax, [bp+di] ; Legal
 mov ax, [bp+si] ; Legal
; mov ax, [bx+bp] ; Illegal - two base registers
; mov ax, [di+si] ; Illegal - two index registers

Table 3.1 shows the register modes in which you can specify indirect memory
operands.

Table 3.1 Indirect Addressing with 16-Bit Registers

Mode Syntax Effective Address

Register indirect [BX]
[BP]
[DI]
[SI]

Contents of register

Base or index displacement[BX]
displacement[BP]
displacement[DI]
displacement[SI]

Contents of register plus
displacement

Base plus index [BX][DI]
[BP][DI]
[BX][SI]
[BP][SI]

Contents of base register plus
contents of index register

Base plus index with
displacement

displacement[BX][DI]
displacement[BP][DI]
displacement[BX][SI]
displacement[BP][SI]

Sum of base register, index
register, and displacement

Different combinations of registers and displacements have different timings, as
shown in Reference.

Indirect Memory Operands with 32-Bit Registers
You can write instructions for the 80386/486 processor using either 16-bit or
32-bit segments. Indirect memory operands are different in each case.

In 16-bit real mode, the 80386/486 operates the same way as earlier 8086-based
processors, with one difference: you can use 32-bit registers. If the 80386/486
processor is enabled (with the .386 or .486 directive), 32-bit general-purpose
registers are available with either 16-bit or 32-bit segments. Thirty-two–bit

70 Programmer’s Guide

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 70 of 18 Printed: 10/02/00 04:23 PM

registers eliminate many of the limitations of 16-bit indirect memory operands.
You can use 80386/486 features to make your MS-DOS programs run faster
and more efficiently if you are willing to sacrifice compatibility with earlier
processors.

In 32-bit mode, an offset address can be up to 4 gigabytes. (Segments are still
represented in 16 bits.) This effectively eliminates size restrictions on each
segment, since few programs need 4 gigabytes of memory. Windows NT uses
32-bit mode and flat model, which spans all segments. XENIX 386 uses 32-bit
mode with multiple segments.

80386/486 Enhancements
On the 80386/486, the processor allows you to use any general-purpose 32-bit
register as a base or index register, except ESP, which can be a base but not an
index. However, you cannot combine 16-bit and 32-bit registers. Several
examples are shown here:

 add edx, [eax] ; Add double
 mov dl, [esp+10] ; Copy byte from stack
 dec WORD PTR [edx][eax] ; Decrement word
 cmp ax, array[ebx][ecx] ; Compare word from array
 jmp FWORD PTR table[ecx] ; Jump into pointer table

Scaling Factors
With 80386/486 registers, the index register can have a scaling factor of 1, 2, 4,
or 8. Any register except ESP can be the index register and can have a scaling
factor. To specify the scaling factor, use the multiplication operator (*) adjacent
to the register.

You can use scaling to index into arrays with different sizes of elements. For
example, the scaling factor is 1 for byte arrays (no scaling needed), 2 for word
arrays, 4 for doubleword arrays, and 8 for quadword arrays. There is no
performance penalty for using a scaling factor. Scaling is illustrated in the
following examples:

 mov eax, darray[edx*4] ; Load double of double array
 mov eax, [esi*8][edi] ; Load double of quad array
 mov ax, wtbl[ecx+2][edx*2] ; Load word of word array

Scaling is also necessary on earlier processors, but it must be done with separate
instructions before the indirect memory operand is used, as described in
“Indirect Memory Operands with 16-Bit Registers,” previous.

The default segment register is SS if the base register is EBP or ESP. However,
if EBP is scaled, the processor treats it as an index register with a value relative
to DS, not SS.

 Chapter 3 Using Addresses and Pointers 71

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 71 of 19 Printed: 10/02/00 04:23 PM

All other base registers are relative to DS. If two registers are used, only one can
have a scaling factor. The register with the scaling factor is defined as the index
register. The other register is defined as the base. If scaling is not used, the first
register is the base. If only one register is used, it is considered the base for
deciding the default segment unless it is scaled. The following examples illustrate
how to determine the base register:

 mov eax, [edx][ebp*4] ; EDX base (not scaled - seg DS)
 mov eax, [edx*1][ebp] ; EBP base (not scaled - seg SS)
 mov eax, [edx][ebp] ; EDX base (first - seg DS)
 mov eax, [ebp][edx] ; EBP base (first - seg SS)
 mov eax, [ebp] ; EBP base (only - seg SS)
 mov eax, [ebp*2] ; EBP*2 index (seg DS)

Mixing 16-Bit and 32-Bit Registers
Assembly statements can mix 16-bit and 32-bit registers. For example, the
following statement is legal for 16-bit and 32-bit segments:

 mov eax, [bx]

This statement moves the 32-bit value pointed to by BX into the EAX register.
Although BX is a 16-bit pointer, it can still point into a 32-bit segment.

However, the following statement is never legal, since you cannot use the CX
register as a 16-bit pointer:

; mov eax, [cx] ; illegal

Operands that mix 16-bit and 32-bit registers are also illegal:

; mov eax, [ebx+si] ; illegal

The following statement is legal in either 16-bit or 32-bit mode:

 mov bx, [eax]

This statement moves the 16-bit value pointed to by EAX into the BX register.
This works in 32-bit mode. However, in 16-bit mode, moving a 32-bit pointer
into a 16-bit segment is illegal. If EAX contains a 16-bit value (the top half of
the 32-bit register is 0), the statement works. However, if the top half of the
EAX register is not 0, the operand points into a part of the segment that doesn’t
exist, generating an error. If you use 32-bit registers as indexes in 16-bit mode,
you must make sure that the index registers contain valid 16-bit addresses.

The Program Stack
The preceding discussion on memory operands lays the groundwork for
understanding the important data area known as the “stack.”

72 Programmer’s Guide

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 72 of 20 Printed: 10/02/00 04:23 PM

A stack is an area of memory for storing data temporarily. Unlike other
segments that store data starting from low memory, the stack stores data starting
from high memory. Data is always pushed onto, or “popped” from the top of
the stack.

The stack gets its name from its similarity to the spring-loaded plate holders in
cafeterias. You add and remove plates from only the top of the stack. To
retrieve the third plate, you must remove — that is, “pop” — the first two plates.
Stacks are often referred to as LIFO buffers, from their last-in-first-out
operation.

A stack is an essential part of any nontrivial program. A program continually
uses its stack to temporarily store return addresses, procedure arguments,
memory data, flags, or registers.

The SP register serves as an indirect memory operand to the top of the stack. At
first, the stack is an uninitialized segment of a finite size. As your program adds
data to the stack, the stack grows downward from high memory to low
memory. When you remove items from the stack, it shrinks upward from low to
high memory.

Saving Operands on the Stack
The PUSH instruction stores a 2-byte operand on the stack. The POP
instruction retrieves the most recent pushed value. When a value is pushed onto
the stack, the assembler decreases the SP (Stack Pointer) register by 2. On
8086-based processors, the SP register always points to the top of the stack.
The PUSH and POP instructions use the SP register to keep track of the
current position.

When a value is popped off the stack, the assembler increases the SP register by
2. Since the stack always contains word values, the SP register changes in
multiples of two. When a PUSH or POP instruction executes in a 32-bit code
segment (one with USE32 use type), the assembler transfers a 4-byte value, and
ESP changes in multiples of four.

The 8086 and 8088 processors differ from later Intel processors in how
they push and pop the SP register. If you give the statement push sp with the
8086 or 8088, the word pushed is the word in SP after the push operation.

Note

 Chapter 3 Using Addresses and Pointers 73

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 73 of 21 Printed: 10/02/00 04:23 PM

Figure 3.1 illustrates how pushes and pops change the SP register.

Figure 3.1 Stack Status Before and After Pushes and Pops

On the 8086, PUSH and POP take only registers or memory expressions as
their operands. The other processors allow an immediate value to be an operand
for PUSH. For example, the following statement is legal on the 80186–80486
processors:

 push 7 ; 3 clocks on 80286

That statement is faster than these equivalent statements, which are required on
the 8088 or 8086:

 mov ax, 7 ; 2 clocks plus
 push ax ; 3 clocks on 80286

Words are popped off the stack in reverse order: the last item pushed is the first
popped. To return the stack to its original status, you do the same number of

74 Programmer’s Guide

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 74 of 22 Printed: 10/02/00 04:23 PM

pops as pushes. You can subtract the correct number of words from the SP
register if you want to restore the stack without using the values on it.

To reference operands on the stack, remember that the values pointed to by the
BP (Base Pointer) and SP registers are relative to the SS (Stack Segment)
register. The BP register is often used to point to the base of a frame of
reference (a stack frame) within the stack. This example shows how you can
access values on the stack using indirect memory operands with BP as the base
register.

 push bp ; Save current value of BP
 mov bp, sp ; Set stack frame
 push ax ; Push first; SP = BP - 2
 push bx ; Push second; SP = BP - 4
 push cx ; Push third; SP = BP - 6
 .
 .
 .
 mov ax, [bp-6] ; Put third word in AX
 mov bx, [bp-4] ; Put second word in BX
 mov cx, [bp-2] ; Put first word in CX
 .
 .
 .
 add sp, 6 ; Restore stack pointer
 ; (two bytes per push)
 pop bp ; Restore BP

If you often use these stack values in your program, you may want to give them
labels. For example, you can use TEXTEQU to create a label such as count
TEXTEQU <[bp-6]>. Now you can replace the mov ax, [bp - 6]
statement in the previous example with mov ax, count. For more information
about the TEXTEQU directive, see “Text Macros” in Chapter 9.

Saving Flags on the Stack
Your program can push and pop flags onto the stack with the PUSHF and
POPF instructions. These instructions save and then restore the status of the
flags. You can also use them within a procedure to save and restore the flag
status of the caller. The 32-bit versions of these instructions are PUSHFD and
POPFD.

This example saves the flags register before calling the systask procedure:

 pushf
 call systask
 popf

 Chapter 3 Using Addresses and Pointers 75

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 75 of 23 Printed: 10/02/00 04:23 PM

If you do not need to store the entire flags register, you can use the LAHF
instruction to manually load and store the status of the lower byte of the flag
register in the AH register. SAHF restores the value.

Saving Registers on the Stack (80186–80486 Only)
Starting with the 80186 processor, the PUSHA and POPA instructions push or
pop all the general-purpose registers with only one instruction. These
instructions save the status of all registers before a procedure call and restore
them after the return. Using PUSHA and POPA is significantly faster and takes
fewer bytes of code than pushing and popping each register individually.

The processor pushes the registers in the following order: AX, CX, DX, BX,
SP, BP, SI, and DI. The SP word pushed is the value before the first register is
pushed.

The processor pops the registers in the opposite order. The 32-bit versions of
these instructions are PUSHAD and POPAD.

Accessing Data with Pointers and Addresses
A pointer is simply a variable that contains an address of some other variable.
The address in the pointer “points” to the other object. Pointers are useful when
transferring a large data object (such as an array) to a procedure. The caller
places only the pointer on the stack, which the called procedure uses to locate
the array. This eliminates the impractical step of having to pass the entire array
back and forth through the stack.

There is a difference between a far address and a far pointer. A “far address” is
the address of a variable located in a far data segment. A “far pointer” is a
variable that contains the segment address and offset of some other data. Like
any other variable, a pointer can be located in either the default (near) data
segment or in a far segment.

Previous versions of MASM allow pointer variables but provide little support for
them. In previous versions, any address loaded into a variable can be considered
a pointer, as in the following statements:

Var BYTE 0 ; Variable
npVar WORD Var ; Near pointer to variable
fpVar DWORD Var ; Far pointer to variable

If a variable is initialized with the name of another variable, the initialized
variable is a pointer, as shown in this example. However, in previous versions of
MASM, the CodeView debugger recognizes npVar and fpVar as word and
doubleword variables. CodeView does not treat them as pointers, nor does it
recognize the type of data they point to (bytes, in the example).

76 Programmer’s Guide

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 76 of 24 Printed: 10/02/00 04:23 PM

The TYPEDEF directive and enhanced capabilities of ASSUME (introduced in
MASM 6.0) make it easier to manage pointers in registers and variables. The
rest of this chapter describes these directives and how they apply to basic
pointer operations.

Defining Pointer Types with TYPEDEF
The TYPEDEF directive can define types for pointer variables. A type so
defined is considered the same as the intrinsic types provided by the assembler
and can be used in the same contexts. When used to define pointers, the syntax
for TYPEDEF is:

typename TYPEDEF [[distance]] PTR qualifiedtype

The typename is the name assigned to the new type. The distance can be
NEAR, FAR, or any distance modifier. The qualifiedtype can be any
previously intrinsic or defined MASM type, or a type previously defined with
TYPEDEF. (For a full definition of qualifiedtype, see “Data Types” in Chapter
1.)

Here are some examples of user-defined types:

PBYTE TYPEDEF PTR BYTE ; Pointer to bytes
NPBYTE TYPEDEF NEAR PTR BYTE ; Near pointer to bytes
FPBYTE TYPEDEF FAR PTR BYTE ; Far pointer to bytes
PWORD TYPEDEF PTR WORD ; Pointer to words
NPWORD TYPEDEF NEAR PTR WORD ; Near pointer to words
FPWORD TYPEDEF FAR PTR WORD ; Far pointer to words

PPBYTE TYPEDEF PTR PBYTE ; Pointer to pointer to bytes
 ; (in C, an array of strings)
PVOID TYPEDEF PTR ; Pointer to any type of data

PERSON STRUCT ; Structure type
 name BYTE 20 DUP (?)
 num WORD ?
PERSON ENDS
PPERSON TYPEDEF PTR PERSON ; Pointer to structure type

The distance of a pointer can be set specifically or determined automatically by
the memory model (set by .MODEL) and the segment size (16 or 32 bits). If
you don’t use .MODEL, near pointers are the default.

In 16-bit mode, a near pointer is 2 bytes that contain the offset of the object
pointed to. A far pointer requires 4 bytes, and contains both the segment and
offset. In 32-bit mode, a near pointer is 4 bytes and a far pointer is 6 bytes,
since segments are

 Chapter 3 Using Addresses and Pointers 77

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 77 of 25 Printed: 10/02/00 04:23 PM

still word values in 32-bit mode. If you specify the distance with NEAR or
FAR, the processor uses the default distance of the current segment size. You
can use NEAR16, NEAR32, FAR16, and FAR32 to override the defaults set
by the current segment size. In flat model, NEAR is the default.

You can declare pointer variables with a pointer type created with TYPEDEF.
Here are some examples using these pointer types.

; Type declarations
Array WORD 25 DUP (0)
Msg BYTE "This is a string", 0
pMsg PBYTE Msg ; Pointer to string
pArray PWORD Array ; Pointer to word array
npMsg NPBYTE Msg ; Near pointer to string
npArray NPWORD Array ; Near pointer to word array
fpArray FPWORD Array ; Far pointer to word array
fpMsg FPBYTE Msg ; Far pointer to string

S1 BYTE "first", 0 ; Some strings
S2 BYTE "second", 0
S3 BYTE "third", 0
pS123 PBYTE S1, S2, S3, 0 ; Array of pointers to strings
ppS123 PPBYTE pS123 ; A pointer to pointers to strings

Andy PERSON <> ; Structure variable
pAndy PPERSON Andy ; Pointer to structure variable

 ; Procedure prototype

EXTERN ptrArray:PBYTE ; External variable
Sort PROTO pArray:PBYTE ; Parameter for prototype

; Parameter for procedure
Sort PROC pArray:PBYTE
 LOCAL pTmp:PBYTE ; Local variable
 .
 .
 .
 ret
Sort ENDP

Once defined, pointer types can be used in any context where intrinsic types are
allowed.

78 Programmer’s Guide

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 78 of 26 Printed: 10/02/00 04:23 PM

Defining Register Types with ASSUME
You can use the ASSUME directive with general-purpose registers to specify
that a register is a pointer to a certain size of object. For example:

 ASSUME bx:PTR WORD ; Assume BX is now a word pointer
 inc [bx] ; Increment word pointed to by BX
 add bx, 2 ; Point to next word
 mov [bx], 0 ; Word pointed to by BX = 0
 .
 . ; Other pointer operations with BX
 .
 ASSUME bx:NOTHING ; Cancel assumption

In this example, BX is specified as a pointer to a word. After a sequence of
using BX as a pointer, the assumption is canceled by assuming NOTHING.

Without the assumption to PTR WORD, many instructions need a size
specifier. The INC and MOV statements from the previous examples would
have to be written like this to specify the sizes of the memory operands:

 inc WORD PTR [bx]
 mov WORD PTR [bx], 0

When you have used ASSUME, attempts to use the register for other purposes
generate assembly errors. In this example, while the PTR WORD assumption is
in effect, any use of BX inconsistent with its ASSUME declaration generates an
error. For example,

; mov al, [bx] ; Can't move word to byte register

You can also use the PTR operator to override defaults:

 mov al, BYTE PTR [bx] ; Legal

Similarly, you can use ASSUME to prevent the use of a register as a pointer, or
even to disable a register:

 ASSUME bx:WORD, dx:ERROR
; mov al, [bx] ; Error - BX is an integer, not a pointer
; mov ax, dx ; Error - DX disabled

For information on using ASSUME with segment registers, refer to “Setting the
ASSUME Directive for Segment Registers” in Chapter 2.

 Chapter 3 Using Addresses and Pointers 79

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 79 of 27 Printed: 10/02/00 04:23 PM

Basic Pointer and Address Operations
A program can perform the following basic operations with pointers and
addresses:

u Initialize a pointer variable by storing an address in it.

u Load an address into registers, directly or from a pointer.

The sections in the rest of this chapter describe variations of these tasks with
pointers and addresses. The examples are used with the assumption that you
have previously defined the following pointer types with the TYPEDEF
directive:

PBYTE TYPEDEF PTR BYTE ; Pointer to bytes
NPBYTE TYPEDEF NEAR PTR BYTE ; Near pointer to bytes
FPBYTE TYPEDEF FAR PTR BYTE ; Far pointer to bytes

Initializing Pointer Variables
If the value of a pointer is known at assembly time, the assembler can initialize it
automatically so that no processing time is wasted on the task at run time. The
following example shows how to do this, placing the address of msg in the
pointer pmsg.

Msg BYTE "String", 0
pMsg PBYTE Msg

If a pointer variable can be conditionally defined to one of several constant
addresses, initialization must be delayed until run time. The technique is
different for near pointers than for far pointers, as shown here:

Msg1 BYTE "String1"
Msg2 BYTE "String2"
npMsg NPBYTE ?
fpMsg FPBYTE ?
 .
 .
 .
 mov npMsg, OFFSET Msg1 ; Load near pointer

 mov WORD PTR fpMsg[0], OFFSET Msg2 ; Load far offset
 mov WORD PTR fpMsg[2], SEG Msg2 ; Load far segment

If you know that the segment for a far pointer is in a register, you can load it
directly:

 mov WORD PTR fpMsg[2], ds ; Load segment of
 ; far pointer

80 Programmer’s Guide

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 80 of 28 Printed: 10/02/00 04:23 PM

Dynamic Addresses
Often a pointer must point to a dynamic address, meaning the address depends
on a run-time condition. Typical situations include memory allocated by MS-
DOS (see “Interrupt 21h Function 48h” in Help) and addresses found by the
SCAS or CMPS instructions (see “Processing Strings” in Chapter 5). The
following illustrates the technique for saving dynamic addresses:

; Dynamically allocated buffer
fpBuf FPBYTE 0 ; Initialize so offset will be zero
 .
 .
 .
 mov ah, 48h ; Allocate memory
 mov bx, 10h ; Request 16 paragraphs
 int 21h ; Call DOS
 jc error ; Return segment in AX
 mov WORD PTR fpBuf[2], ax ; Load segment
 . ; (offset is already 0)
 .
 .
error: ; Handle error

Copying Pointers
Sometimes one pointer variable must be initialized by copying from another.
Here are two ways to copy a far pointer:

fpBuf1 FPBYTE ?
fpBuf2 FPBYTE ?
 .
 .
 .
; Copy through registers is faster, but requires a spare register
 mov ax, WORD PTR fpBuf1[0]
 mov WORD PTR fpBuf2[0], ax
 mov ax, WORD PTR fpBuf1[2]
 mov WORD PTR fpBuf2[2], ax

; Copy through stack is slower, but does not use a register
 push WORD PTR fpBuf1[0]
 push WORD PTR fpBuf1[2]
 pop WORD PTR fpBuf2[2]
 pop WORD PTR fpBuf2[0]

 Chapter 3 Using Addresses and Pointers 81

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 81 of 29 Printed: 10/02/00 04:23 PM

Pointers as Arguments
Most high-level-language procedures and library functions accept arguments
passed on the stack. “Passing Arguments on the Stack” in Chapter 7 covers this
subject in detail. A pointer is passed in the same way as any other variable, as
this fragment shows:

; Push a far pointer (segment always pushed first)
 push WORD PTR fpMsg[2] ; Push segment
 push WORD PTR fpMsg[0] ; Push offset

Pushing an address has the same result as pushing a pointer to the address:

; Push a far address as a far pointer
 mov ax, SEG fVar ; Load and push segment
 push ax
 mov ax, OFFSET fVar ; Load and push offset
 push ax

On the 80186 and later processors, you can push a constant in one step:

 push SEG fVar ; Push segment
 push OFFSET fVar ; Push offset

Loading Addresses into Registers
Loading a near address into a register (or a far address into a pair of registers) is
a common task in assembly-language programming. To reference data pointed
to by a pointer, your program must first place the pointer into a register or pair
of registers.

Load far addresses as segment:offset pairs. The following pairs have specific
uses:

Segment:Offset Pair Standard Use

DS:SI Source for string operations

ES:DI Destination for string operations

DS:DX Input for certain DOS functions

ES:BX Output from certain DOS functions

Addresses from Data Segments
For near addresses, you need only load the offset; the segment is assumed as SS
for stack-based data and as DS for other data. You must load both segment and
offset for far pointers.

82 Programmer’s Guide

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 82 of 30 Printed: 10/02/00 04:23 PM

Here is an example of loading an address into DS:BX from a near data segment:

 .DATA
Msg BYTE "String"
 .
 .
 .
 mov bx, OFFSET Msg ; Load address to BX
 ; (DS already loaded)

Far data can be loaded like this:

.FARDATA
Msg BYTE "String"
 .
 .
 .
 mov ax, SEG Msg ; Load address to ES:BX
 mov es, ax
 mov bx, OFFSET Msg

You can also read a far address from a pointer in one step, using the LES and
LDS instructions described next.

Far Pointers
The LES and LDS instructions load a far pointer into a segment pair. The
instructions copy the pointer’s low word into either ES or DS, and the high
word into a given register. The following example shows how to load a far
pointer into ES:DI:

OutBuf BYTE 20 DUP (0)

fpOut FPBYTE OutBuf
 .
 .
 .
 les di, fpOut ; Load far pointer into ES:DI

 Chapter 3 Using Addresses and Pointers 83

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 83 of 31 Printed: 10/02/00 04:23 PM

Stack Variables
The technique for loading the address of a stack variable is significantly different
from the technique for loading near addresses. You may need to put the correct
segment value into ES for string operations. The following example illustrates
how to load the address of a local (stack) variable to ES:DI:

Task PROC
 LOCAL Arg[4]:BYTE

 push ss ; Since it's stack-based, segment is SS
 pop es ; Copy SS to ES
 lea di, Arg ; Load offset to DI

The local variable in this case actually evaluates to SS:[BP-4]. This is an offset
from the stack frame (described in “Passing Arguments on the Stack,” Chapter
7). Since you cannot use the OFFSET operator to get the offset of an indirect
memory operand, you must use the LEA (Load Effective Address) instruction.

Direct Memory Operands
To get the address of a direct memory operand, use either the LEA instruction
or the MOV instruction with OFFSET. Though both methods have the same
effect, the MOV instruction produces smaller and faster code, as shown in this
example:

 lea si, Msg ; Four byte instruction
 mov si, OFFSET Msg ; Three byte equivalent

Copying Between Segment Pairs
Copying from one register pair to another is complicated by the fact that you
cannot copy one segment register directly to another. Two copying methods are
shown here. Timings are for the 8088 processor.

; Copy DS:SI to ES:DI, generating smaller code
 push ds ; 1 byte, 14 clocks
 pop es ; 1 byte, 12 clocks
 mov di, si ; 2 bytes, 2 clocks

; Copy DS:SI to ES:DI, generating faster code
 mov di, ds ; 2 bytes, 2 clocks
 mov es, di ; 2 bytes, 2 clocks
 mov di, si ; 2 bytes, 2 clocks

84 Programmer’s Guide

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 84 of 32 Printed: 10/02/00 04:23 PM

Model-Independent Techniques
Often you may want to write code that is memory-model independent. If you
are writing libraries that must be available for different memory models, you can
use conditional assembly to handle different sizes of pointers. You can use the
predefined symbols @DataSize and @Model to test the current assumptions.

You can use conditional assembly to write code that works with pointer
variables that have no specified distance. The predefined symbol @DataSize
tests the pointer size for the current memory model:

Msg1 BYTE "String1"
pMsg PBYTE ?
 .
 .
 .
 IF @DataSize ; @DataSize > 0 for far
 mov WORD PTR pMsg[0], OFFSET Msg1 ; Load far offset
 mov WORD PTR pMsg[2], SEG Msg1 ; Load far segment
 ELSE ; @DataSize = 0 for near
 mov pMsg, OFFSET Msg1 ; Load near pointer
 ENDIF

In the following example, a procedure receives as an argument a pointer to a
word variable. The code inside the procedure uses @DataSize to determine
whether the current memory model supports far or near data. It loads and
processes the data accordingly:

; Procedure that receives an argument by reference
mul8 PROC arg:PTR WORD

 IF @DataSize
 les bx, arg ; Load far pointer to ES:BX
 mov ax, es:[bx] ; Load the data pointed to
 ELSE
 mov bx, arg ; Load near pointer to BX (assume DS)
 mov ax, [bx] ; Load the data pointed to
 ENDIF
 shl ax, 1 ; Multiply by 8
 shl ax, 1
 shl ax, 1
 ret
mul8 ENDP

 Chapter 3 Using Addresses and Pointers 85

Filename: LMAPGC03.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 85 of 33 Printed: 10/02/00 04:23 PM

If you have many routines, writing the conditionals for each case can be tedious.
The following conditional statements automatically generate the proper
instructions and segment overrides.

; Equates for conditional handling of pointers
 IF @DataSize
lesIF TEXTEQU <les>
ldsIF TEXTEQU <lds>
esIF TEXTEQU <es:>
 ELSE
lesIF TEXTEQU <mov>
ldsIF TEXTEQU <mov>
esIF TEXTEQU <>
 ENDIF

Once you define these conditionals, you can use them to simplify code that must
handle several types of pointers. This next example rewrites the above mul8
procedure to use conditional code.

mul8 PROC arg:PTR WORD

 lesIF bx, arg ; Load pointer to BX or ES:BX
 mov ax, esIF [bx] ; Load the data from [BX] or ES:[BX]
 shl ax, 1 ; Multiply by 8
 shl ax, 1
 shl ax, 1
 ret
mul8 ENDP

The conditional statements from these examples can be defined once in an
include file and used whenever you need to handle pointers.

