
 31

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 31 of 1 Printed: 10/02/00 04:23 PM

C H A P T E R 2

Understanding segments is an essential part of programming in assembly
language. In the family of 8086-based processors, the term segment has two
meanings:

u A block of memory of discrete size, called a “physical segment.” The
number of bytes in a physical memory segment is 64K for 16-bit processors
or 4 gigabytes for 32-bit processors.

u A variable-sized block of memory, called a “logical segment,” occupied by a
program’s code or data.

As you read this chapter, the distinction between the two definitions will become
clear. The adjectives “physical” and “logical” are not often used when speaking
of segments. The beginning programmer is left to infer from context which
definition applies. Fortunately, this is not difficult, and a distinction is often not
required.

This chapter begins with a close look at physical memory segments. This lays
the foundation for understanding logical segments, which form the subject of
most of the following sections.

The section “Using Simplified Segment Directives” explains how to begin, end,
and organize segments. It also explains how to access far data and code with
simplified segment directives.

The next section, “Using Full Segment Definitions,” describes how to order,
combine, and divide segments, and how to use the SEGMENT directive to
define full segments. It also explains how to create a segment group so that you
can use one segment address to access all the data.

Most of the information in this chapter also applies to writing modules to be
called from other programs. Exceptions are noted when they apply. For more
information about multiple-module programming, see Chapter 8, “Sharing Data
and Procedures Among Modules and Libraries.”

Organizing Segments

32 Programmer’s Guide

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 32 of 2 Printed: 10/02/00 04:23 PM

Physical Memory Segments
As explained in Chapter 1, a physical segment can begin only at memory
locations evenly divisible by 16, including address 0. Intel calls such locations
“paragraphs.” You can easily recognize a paragraph location because its
hexadecimal address always ends with 0, as in 10000h or 2EA70h. The
8086/286 processors allow segments 64K in size, the largest number 16 bits can
represent. The 80386/486 processors still adhere to the 64K limit when running
in real mode. In protected mode, however, they use 32-bit registers that can
hold addresses up to 4 gigabytes.

Segmented architecture presents certain hurdles for the assembly-language
programmer. For small programs, the limitations lose importance. Code and data
each occupy less than 64K and reside in individual segments. A simple offset
locates each variable or instruction within a segment.

Larger programs, however, must contend with problems of segmented memory
areas. If data occupies two or more segments, the program must specify both
segment and offset to access a variable. When the data forms a continuous
stream across segments — such as the text in a word processor’s workspace —
the problems become more acute. Whenever it adds or deletes text in the first
segment, the word processor must seamlessly move data back and forth over
the boundaries of each following segment.

The problem of segment boundaries disappears in the so-called flat address
space of 32-bit protected mode. Although segments still exist, they easily hold all
the code and data of the largest programs. Even a very large program becomes
in effect a small application, able to reach all code and data with a single offset
address.

Logical Segments
Logical segments contain the three components of a program: code, data, and
stack. MASM organizes the three parts for you so they occupy physical
segments of memory. The segment registers CS, DS, and SS contain the
addresses of the physical memory segments where the logical segments reside.

You can define segments in two ways: with simplified segment directives and
with full segment definitions. You can also use both kinds of segment definitions
in the same program.

Simplified segment directives hide many of the details of segment definition and
assume the same conventions used by Microsoft high-level languages. (See the
following section, “Using Simplified Segment Directives.”) The simplified
segment directives generate necessary code, specify segment attributes, and
arrange segment order.

 Chapter 2 Organizing Segments 33

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 33 of 3 Printed: 10/02/00 04:23 PM

Full segment definitions require more complex syntax but provide more
complete control over how the assembler generates segments. (See “Using Full
Segment Definitions” later in this chapter.) If you use full segment definitions,
you must write code to handle all the tasks performed automatically by the
simplified segment directives.

Using Simplified Segment Directives
Structuring a MASM program using simplified segments requires use of several
directives to assign standard names, alignment, and attributes to the segments in
your program. These directives define the segments in such a way that linking
with Microsoft high-level languages is easy.

The simplified segment directives are .MODEL, .CODE, .CONST, .DATA,
.DATA?, .FARDATA, .FARDATA?, .STACK, .STARTUP, and .EXIT. The
following sections discuss these directives and the arguments they take.

MASM programs consist of modules made up of segments. Every program
written only in MASM has one main module, where program execution begins.
This main module can contain code, data, or stack segments defined with all of
the simplified segment directives. Any additional modules should contain only
code and data segments. Every module that uses simplified segments must,
however, begin with the .MODEL directive.

The following example shows the structure of a main module using simplified
segment directives. It uses the default processor (8086) and the default stack
distance (NEARSTACK). Additional modules linked to this main program
would use only the .MODEL, .CODE, and .DATA directives and the END
statement.

34 Programmer’s Guide

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 34 of 4 Printed: 10/02/00 04:23 PM

; This is the structure of a main module
; using simplified segment directives

 .MODEL small, c ; This statement is required before you
 ; can use other simplified segment directives

 .STACK ; Use default 1-kilobyte stack

 .DATA ; Begin data segment

 ; Place data declarations here

 .CODE ; Begin code segment
 .STARTUP ; Generate start-up code

 ; Place instructions here

 .EXIT ; Generate exit code
 END

The .DATA and .CODE statements do not require any separate statements to
define the end of a segment. They close the preceding segment and then open a
new segment. The .STACK directive opens and closes the stack segment but
does not close the current segment. The END statement closes the last segment
and marks the end of the source code. It must be at the end of every module.

Defining Basic Attributes with .MODEL
The .MODEL directive defines the attributes that affect the entire module:
memory model, default calling and naming conventions, operating system, and
stack type. This directive enables use of simplified segments and controls the
name of the code segment and the default distance for procedures.

You must place .MODEL in your source file before any other simplified
segment directive. The syntax is:

.MODEL memorymodel [[, modeloptions]]

The memorymodel field is required and must appear immediately after the
.MODEL directive. The use of modeloptions, which define the other attributes,
is optional. The modeloptions must be separated by commas. You can also use
equates passed from the ML command line to define the modeloptions.

The following list summarizes the memorymodel field and the modeloptions
fields, which specify language and stack distance:

 Chapter 2 Organizing Segments 35

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 35 of 5 Printed: 10/02/00 04:23 PM

Field Description

Memory model TINY, SMALL, COMPACT, MEDIUM, LARGE, HUGE, or
FLAT. Determines size of code and data pointers. This field is
required.

Language C, BASIC, FORTRAN, PASCAL, SYSCALL, or STDCALL. Sets
calling and naming conventions for procedures and public symbols.

Stack distance NEARSTACK or FARSTACK. Specifying NEARSTACK groups
the stack segment into a single physical segment (DGROUP) along with
data. SS is assumed to equal DS. FARSTACK does not group the
stack with DGROUP; thus SS does not equal DS.

36 Programmer’s Guide

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 36 of 6 Printed: 10/02/00 04:23 PM

You can use no more than one reserved word from each field. The following
examples show how you can combine various fields:

 .MODEL small ; Small memory model
 .MODEL large, c, farstack ; Large memory model,
 ; C conventions,
 ; separate stack
 .MODEL medium, pascal ; Medium memory model,
 ; Pascal conventions,
 ; near stack (default)

The next four sections give more detail on each field.

Defining the Memory Model
MASM supports the standard memory models used by Microsoft high-level
languages — tiny, small, medium, compact, large, huge, and flat. You specify the
memory model with attributes of the same name placed after the .MODEL
directive. With the exception of the flat model, which requires instructions
specific to the 80386/486, your choice of a memory model does not limit the
kind of instructions you can write. The memory model does, however, control
segment defaults and determine whether data and code are near or far by
default, as indicated in the following table.

Table 2.1 Attributes of Memory Models

Memory
Model

Default
Code

Default
Data

Operating
System

Data and Code
Combined

Tiny Near Near MS-DOS Yes

Small Near Near MS-DOS, Windows No

Medium Far Near MS-DOS, Windows No

Compact Near Far MS-DOS, Windows No

Large Far Far MS-DOS, Windows No

Huge Far Far MS-DOS, Windows No

Flat Near Near Windows NT Yes

When writing assembler modules for a high-level language, you should use the
same memory model as the calling language. Choose the smallest memory
model available that can contain your data and code, since near references
operate more efficiently than far references.

The predefined symbol @Model returns the memory model, encoding memory
models as integers 1 through 7. For more information on predefined symbols,
see “Predefined Symbols” in Chapter 1. For an example of how to use them,
see Help.

 Chapter 2 Organizing Segments 37

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 37 of 7 Printed: 10/02/00 04:23 PM

The seven memory models supported by MASM 6.1 fall into three groups,
described in the following paragraphs.

Small, Medium, Compact, Large, and Huge Models
The traditional memory models recognized by many languages are small,
medium, compact, large, and huge. Small model supports one data segment and
one code segment. All data and code are near by default. Large model supports
multiple code and multiple data segments. All data and code are far by default.
Medium and compact models are in-between. Medium model supports multiple
code and single data segments; compact model supports multiple data segments
and a single code segment.

Huge model implies individual data items larger than a single segment, but the
implementation of huge data items must be coded by the programmer. Since the
assembler provides no direct support for this feature, huge model is essentially
the same as large model.

In each of these models, you can override the default. For example, you can
make large data items far in small model, or internal procedures near in large
model.

Tiny Model
Tiny-model programs run only under MS-DOS. Tiny model places all data and
code in a single segment. Therefore, the total program file size can occupy no
more than 64K. The default is near for code and static data items; you cannot
override this default. However, you can allocate far data dynamically at run time
using MS-DOS memory allocation services.

Tiny model produces MS-DOS .COM files. Specifying .MODEL tiny
automatically sends the /TINY argument to the linker. Therefore, the /AT
argument is not necessary with .MODEL tiny. However, /AT does not insert a
.MODEL directive. It only verifies that there are no base or pointer fixups, and
sends /TINY to the linker.

Flat Model
The flat memory model is a nonsegmented configuration available in 32-bit
operating systems. It is similar to tiny model in that all code and data go in a
single 32-bit segment.

To write a flat model program, specify the .386 or .486 directive before
.MODEL FLAT. All data and code (including system resources) are in a single
32-bit segment. The operating system automatically initializes segment registers
at load time; you need to modify them only when mixing 16-bit and 32-bit
segments in a single application. CS, DS, ES, and SS all occupy the supergroup
FLAT. Addresses and pointers passed to system services are always 32-bit near
addresses and pointers.

38 Programmer’s Guide

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 38 of 8 Printed: 10/02/00 04:23 PM

Choosing the Language Convention
The language option facilitates compatibility with high-level languages by
determining the internal encoding for external and public symbol names, the
code generated for procedure initialization and cleanup, and the order that
arguments are passed to a procedure with INVOKE. It also facilitates
compatibility with high-level – language modules. The PASCAL, BASIC, and
FORTRAN conventions are identical. C and SYSCALL have the same calling
convention but different naming conventions. Functions in the Windows API
use the Pascal calling convention.

Procedure definitions (PROC) and high-level procedure calls (INVOKE)
automatically generate code consistent with the calling convention of the
specified language. The PROC, INVOKE, PUBLIC, and EXTERN directives
all use the naming convention of the language. These directives follow the
default language conventions from the .MODEL directive unless you
specifically override the default. Use of these directives is explained in
“Controlling Program Flow,” Chapter 7. You can also use the OPTION
directive to set the language type. (See “Using the OPTION Directive” in
Chapter 1.) Not specifying a language type in either the .MODEL, OPTION,
EXTERN, PROC, INVOKE, or PROTO statement causes the assembler to
generate an error.

The predefined symbol @Interface provides information about the language
parameters. For a description of the bit flags, see Help.

For more information on calling and naming conventions, see Chapter 12,
“Mixed-Language Programming.” For information about writing procedures and
prototypes, see Chapter 7, “Controlling Program Flow.” For information on
multiple-module programming, refer to Chapter 8, “Sharing Data and
Procedures Among Modules and Libraries.”

Setting the Stack Distance
The NEARSTACK keyword places the stack segment in the group DGROUP
along with the data segment. The .STARTUP directive then generates code to
adjust SS:SP so that SS (Stack Segment register) holds the same address as DS
(Data Segment register). If you do not use .STARTUP, you must make this
adjustment or your program may fail to run. (For information about startup
code, see “Starting and Ending Code with .STARTUP and .EXIT,” later in this
chapter.) In this case, you can use DS to access stack items (including
parameters and local variables) and SS to access near data. Furthermore, since
stack items share the same segment address as near data, you can reliably pass
near pointers to stack items.

The FARSTACK setting gives the stack a segment of its own. That is, SS does
not equal DS. The default stack type, NEARSTACK, is a convenient setting for

 Chapter 2 Organizing Segments 39

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 39 of 9 Printed: 10/02/00 04:23 PM

most programs. Use FARSTACK for special cases such as memory-resident
programs

40 Programmer’s Guide

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 40 of 10 Printed: 10/02/00 04:23 PM

and dynamic-link libraries (discussed in Chapters 10 and 11) when you cannot
assume that the caller’s stack is near. You can use the predefined symbol
@Stack to determine if the stack location is DGROUP (for near stacks) or
STACK (for far stacks).

Specifying a Processor and Coprocessor
MASM supports a set of directives for selecting processors and coprocessors.
Once you select a processor, you must use only the instruction set for that
processor. The default is the 8086 processor. If you always want your code to
run on this processor, you do not need to add any processor directives.

To enable a different processor mode and the additional instructions available on
that processor, use the directives .186, .286, .386, and .486. The instruction
timings on a listing (see Appendix C, “Generating and Reading Assembly
Listings”) correspond to whichever processor directive you select.

The .286P, .386P, and .486P directives enable the instructions available only at
higher privilege levels in addition to the normal instruction set for the given
processor. Generally, you don’t need privileged instructions unless you are
writing operating-systems code or device drivers.

In addition to enabling different instruction sets, the processor directives also
affect the behavior of extended language features. For example, the INVOKE
directive pushes arguments onto the stack. If the .286 directive is in effect,
INVOKE takes advantage of operations possible only on 80286 and later
processors.

Use the directives .8087 (the default), .287, .387, and .NO87 to select a math
coprocessor instruction set. The .NO87 directive turns off assembly of all
coprocessor instructions. Note that .486 also enables assembly of all
coprocessor instructions because the 80486 processor has a complete set of
coprocessor registers and instructions built into the chip. The processor
instructions imply the corresponding coprocessor directive. The coprocessor
directives are provided to override the defaults.

Creating a Stack
The stack is the section of memory used for pushing or popping registers and
storing the return address when a subroutine is called. The stack often holds
temporary and local variables.

If your main module is written in a high-level language, that language handles
the details of creating a stack. Use the .STACK directive only when you write a
main module in assembly language.

 Chapter 2 Organizing Segments 41

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 41 of 11 Printed: 10/02/00 04:23 PM

The .STACK directive creates a stack segment. By default, the assembler
allocates 1K of memory for the stack. This size is sufficient for most small
programs.

42 Programmer’s Guide

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 42 of 12 Printed: 10/02/00 04:23 PM

To create a stack of a size other than the default size, give .STACK a single
numeric argument indicating stack size in bytes:

.STACK 2048 ; Use 2K stack

For a description of how stack memory is used with procedure calls and local
variables, see Chapter 7, “Controlling Program Flow.”

Creating Data Segments
Programs can contain both near and far data. In general, you should place
important and frequently used data in the near data area, where data access is
faster. This area can get crowded, however, because in 16-bit operating systems
the total amount of all near data in all modules cannot exceed 64K. Therefore,
you may want to place infrequently used or particularly large data items in a far
data segment.

The .DATA, .DATA?, .CONST, .FARDATA, and .FARDATA? directives
create data segments. You can access the various segments within DGROUP
without reloading segment registers (see “Defining Segment Groups,” later in
this chapter). These five directives also prevent instructions from appearing in
data segments by assuming CS to ERROR.

Near Data Segments
The .DATA directive creates a near data segment. This segment contains the
frequently used data for your program. It can occupy up to 64K in MS-DOS or
512 megabytes under flat model in Windows NT. It is placed in a special group
identified as DGROUP, which is also limited to 64K.

When you use .MODEL, the assembler automatically defines DGROUP for
your near data segment. The segments in DGROUP form near data, which can
normally be accessed directly through DS or SS.

You can also define the .DATA? and .CONST segments that go into DGROUP
unless you are using flat model. Although all of these segments (along with the
stack) are eventually grouped together and handled as data segments, .DATA?
and .CONST enhance compatibility with Microsoft high-level languages. In
Microsoft languages, .CONST is used to define constant data such as strings
and floating-point numbers that must be stored in memory. The .DATA?
segment is used for storing uninitialized variables. You can follow this
convention if you want. If you use C startup code, .DATA? is initialized to 0.

You can use @data to determine the group of the data segment and
@DataSize to determine the size of the memory model set by the .MODEL
directive. The predefined symbols @WordSize and @CurSeg return the size
attribute and name of the current segment, respectively. See “Predefined
Symbols” in Chapter 1.

 Chapter 2 Organizing Segments 43

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 43 of 13 Printed: 10/02/00 04:23 PM

Far Data Segments
The compact, large, and huge memory models use far data addresses by default.
With these memory models, however, you can still construct data segments
using .DATA, .DATA?, and .CONST. The effect of these directives does not
change from one memory model to the next. They always contribute segments
to the default data area, DGROUP, which has a total limit of 64K.

When you use .FARDATA or .FARDATA? in the small and medium memory
models, the assembler creates far data segments FAR_DATA and FAR_BSS,
respectively. You can access variables with:

 mov ax, SEG farvar2
 mov ds, ax

For more information on far data, see “Near and Far Addresses” in Chapter 3.

Creating Code Segments
Whether you are writing a main module or a module to be called from another
module, you can have both near and far code segments. This section explains
how to use near and far code segments and how to use the directives and
predefined equates that relate to code segments.

Near Code Segments
The small memory model is often the best choice for assembly programs that
are not linked to modules in other languages, especially if you do not need more
than 64K of code. This memory model defaults to near (two-byte) addresses for
code and data, which makes the program run faster and use less memory.

When you use .MODEL and simplified segment directives, the .CODE
directive in your program instructs the assembler to start a code segment. The
next segment directive closes the previous segment; the END directive at the
end of your program closes remaining segments. The example at the beginning
of “Using Simplified Segment Directives,” earlier in this chapter, shows how to
do this.

You can use the predefined symbol @CodeSize to determine whether code
pointers default to NEAR or FAR.

Far Code Segments
When you need more than 64K of code, use the medium, large, or huge
memory model to create far segments.

The medium, large, and huge memory models use far code addresses by
default. In the larger memory models, the assembler creates a different code
segment for each module. If you use multiple code segments in the small,

44 Programmer’s Guide

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 44 of 14 Printed: 10/02/00 04:23 PM

compact, or tiny model, the linker combines the .CODE segments for all
modules into one segment.

For far code segments, the assembler names each code segment
MODNAME_TEXT, in which MODNAME is the name of the module. With
near code, the assembler names every code segment _TEXT, causing the linker
to concatenate these segments into one. You can override the default name by
providing an argument after .CODE. (For a complete list of segment names
generated by MASM, see Appendix E, “Default Segment Names.”)

With far code, a single module can contain multiple code segments. The .CODE
directive takes an optional text argument that names the segment. For instance,
the following example creates two distinct code segments, FIRST_TEXT and
SECOND_TEXT.

 .CODE FIRST
 .
 . ; First set of instructions here
 .
 .CODE SECOND
 .
 . ; Second set of instructions here
 .

Whenever the processor executes a far call or jump, it loads CS with the new
segment address. No special action is necessary other than making sure that you
use far calls and jumps. See “Near and Far Addresses” in Chapter 3.

The assembler always assumes that the CS register contains the address
of the current code segment or group.

Starting and Ending Code with .STARTUP and .EXIT
The easiest way to begin and end an MS-DOS program is to use the
.STARTUP and .EXIT directives in the main module. The main module
contains the starting point and usually the termination point. You do not need
these directives in a module called by another module.

These directives make MS-DOS programs easy to maintain. They automatically
generate code appropriate to the stack distance specified with .MODEL.
However, they do not apply to flat-model programs written for 32-bit operating
systems. Thus, you should not use .STARTUP or .EXIT in programs written
for Windows NT.

Note

 Chapter 2 Organizing Segments 45

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 45 of 15 Printed: 10/02/00 04:23 PM

To start a program, place the .STARTUP directive where you want execution to
begin. Usually, this location immediately follows the .CODE directive:

 .CODE
 .STARTUP
 .
 . ; Place executable code here
 .
 .EXIT
 END

Note that .EXIT generates executable code, while END does not. The END
directive informs the assembler that it has reached the end of the module. All
modules must end with the END directive whether you use simplified or full
segments.

If you do not use .STARTUP, you must give the starting address as an
argument to the END directive. For example, the following fragment shows how
to identify a program’s starting instruction with the label start:

 .CODE
start:
 .
 . ; Place executable code here
 .
 END start

Only the END directive for the module with the starting instruction should have
an argument. When .STARTUP is present, the assembler ignores any argument
to END.

For the default NEARSTACK attribute, .STARTUP points DS to DGROUP
and sets SS:SP relative to DGROUP, generating the following code:

46 Programmer’s Guide

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 46 of 16 Printed: 10/02/00 04:23 PM

@Startup:
 mov dx, DGROUP
 mov ds, dx
 mov bx, ss
 sub bx, dx
 shl bx, 1 ; If .286 or higher, this is
 shl bx, 1 ; shortened to shl bx, 4
 shl bx, 1
 shl bx, 1
 cli ; Not necessary in .286 or higher
 mov ss, dx
 add sp, bx
 sti ; Not necessary in .286 or higher
 .
 .
 .
 END @Startup

An MS-DOS program with the FARSTACK attribute does not need to adjust
SS:SP, so .STARTUP just initializes DS, like this:

@Startup:
 mov dx, DGROUP
 mov ds, dx
 .
 .
 .
 END @Startup

When the program terminates, you can return an exit code to the operating
system. Applications that check exit codes usually assume that an exit code of 0
means no problem occurred, and that an exit code of 1 means an error
terminated the program. The .EXIT directive accepts a 1-byte exit code as its
optional argument:

 .EXIT 1 ; Return exit code 1

.EXIT generates the following code that returns control to MS-DOS, thus
terminating the program. The return value, which can be a constant, memory
reference, or 1-byte register, goes into AL:

 mov al, value
 mov ah, 04Ch
 int 21h

If your program does not specify a return value, .EXIT returns whatever value
happens to be in AL.

 Chapter 2 Organizing Segments 47

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 47 of 17 Printed: 10/02/00 04:23 PM

Using Full Segment Definitions
If you need complete control over segments, you can fully define the segments
in your program. This section explains segment definitions, including how to
order segments and how to define the segment types.

If you write a program under MS-DOS without .MODEL and .STARTUP, you
must initialize registers yourself and use the END directive to indicate the
starting address. The Windows operating system does not require you to
initialize registers, as described in Chapter 3. For a description of typical startup
code, see “Controlling the Segment Order,” later in this chapter.

Defining Segments with the SEGMENT Directive
A defined segment begins with the SEGMENT directive and ends with the
ENDS directive:

name SEGMENT [[align]] [[READONLY]] [[combine]] [[use]] [[’class’]]
statements
name ENDS

The name defines the name of the segment. Within a module, all segment
definitions with the same name are treated as though they reference the same
segment. The linker also combines identically named segments from different
modules unless the combine type is PRIVATE. In addition, segments can be
nested.

The optional types that follow the SEGMENT directive give the linker and the
assembler instructions on how to set up and combine segments. The optional
types, which are explained in detail in the following sections, include:

Type Description

align Defines the memory boundary on which a new segment begins.

READONLY Tells the assembler to report an error if it detects an instruction
modifying any item in a READONLY segment.

combine Determines how the linker combines segments from different modules
when building executable files.

use (80386/486 only) Determines the size of a segment. USE16 indicates that offsets in the
segment are 16 bits wide. USE32 indicates 32-bit offsets.

class Provides a class name for the segment. The linker automatically
groups segments of the same class in memory.

Types can be specified in any order. You can specify only one attribute from
each of these fields; for example, you cannot have two different align types.

48 Programmer’s Guide

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 48 of 18 Printed: 10/02/00 04:23 PM

You can close a segment and reopen it later with another SEGMENT directive.
When you reopen a segment, you need only give the segment name. You
cannot change the attributes of a segment once you have defined it.

The PAGE align type and the PUBLIC combine type are distinct from
the PAGE and PUBLIC directives. The assembler distinguishes them by means
of context.

Aligning Segments
The optional align type in the SEGMENT directive defines the range of
memory addresses from which a starting address for the segment can be
selected. The align type can be any of the following:

Align Type Starting Address

BYTE Next available byte address.

WORD Next available word address.

DWORD Next available doubleword address.

PARA Next available paragraph address (16 bytes per paragraph). Default.

PAGE Next available page address (256 bytes per page).

The linker uses the alignment information to determine the relative starting
address for each segment. The operating system calculates the actual starting
address when the program is loaded.

Making Segments Read-Only
The optional READONLY attribute is helpful when creating read-only code
segments for protected mode, or when writing code to be placed in read-only
memory (ROM). It protects against illegal self-modifying code.

The READONLY attribute causes the assembler to check for instructions that
modify the segment and to generate an error if it finds any. The assembler
generates an error if you attempt to write directly to a read-only segment.

Combining Segments
The optional combine type in the SEGMENT directive defines how the linker
combines segments having the same name but appearing in different modules.

Note

 Chapter 2 Organizing Segments 49

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 49 of 19 Printed: 10/02/00 04:23 PM

The combine type controls linker behavior, not assembler behavior. The
combine types, which are described in full detail in Help, include:

Combine Type Linker Action

PRIVATE Does not combine the segment with segments from other modules,
even if they have the same name. Default.

PUBLIC Concatenates all segments having the same name to form a single,
contiguous segment.

STACK Concatenates all segments having the same name and causes the
operating system to set SS:00 to the bottom and SS:SP to the top
of the resulting segment. Data initialization is unreliable, as
discussed following.

COMMON Overlaps segments. The length of the resulting area is the length of
the largest of the combined segments. Data initialization is
unreliable, as discussed following.

MEMORY Used as a synonym for the PUBLIC combine type.

AT address Assumes address as the segment location. An AT segment cannot
contain any code or initialized data, but is useful for defining
structures or variables that correspond to specific far memory
locations, such as a screen buffer or low memory.
You cannot use the AT combine type in protected-mode
programs.

Do not place initialized data in STACK or COMMON segments. With these
combine types, the linker overlays initialized data for each module at the
beginning of the segment. The last module containing initialized data writes over
any data from other modules.

Normally, you should provide at least one stack segment (having STACK
combine type) in a program. If no stack segment is declared, LINK displays a
warning message. You can ignore this message if you have a specific reason for
not declaring a stack segment. For example, you would not have a separate
stack segment in a MS-DOS tiny model (.COM) program, nor would you need
a separate stack in a DLL that uses the caller’s stack.

Setting Segment Word Sizes (80386/486 Only)
The use type in the SEGMENT directive specifies the segment word size on the
80386/486 processors. Segment word size determines the default operand and
address size of all items in a segment.

The size attribute can be USE16, USE32, or FLAT. If you specify the .386 or
.486 directive before the .MODEL directive, USE32 is the default. This
attribute specifies that items in the segment are addressed with a 32-bit offset
rather than a

Note

50 Programmer’s Guide

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 50 of 20 Printed: 10/02/00 04:23 PM

16-bit offset. If .MODEL precedes the .386 or .486 directive, USE16 is the
default. To make USE32 the default, put .386 or .486 before .MODEL. You
can override the USE32 default with the USE16 attribute, or vice versa.

Programs written for MS-DOS must not specify USE32. Mixing 16-bit
and 32-bit segments in the same program is possible but usually applies only to
systems programming.

Setting Segment Order with Class Type
The optional class type in the SEGMENT directive helps control segment
ordering. Two segments with the same name are not combined if their class is
different. The linker arranges segments so that all segments identified with a
given class type are next to each other in the executable file. However, within a
particular class, the linker arranges segments in the order encountered. The
.ALPHA, .SEQ, or .DOSSEG directive determines this order in each .OBJ file.
The most common method for specifying a class type is to place all code
segments first in the executable file.

Controlling the Segment Order
The assembler normally positions segments in the object file in the order in
which they appear in source code. The linker, in turn, processes object files in
the order in which they appear on the command line. Within each object file, the
linker outputs segments in the order they appear, subject to any group, class,
and .DOSSEG requirements.

You can usually ignore segment ordering. However, it is important whenever
you want certain segments to appear at the beginning or end of a program or
when you make assumptions about which segments are next to each other in
memory. For tiny model (.COM) programs, code segments must appear first in
the executable file, because execution must start at the address 100h.

Segment Order Directives
You can control the order in which segments appear in the executable program
with three directives. The default, .SEQ, arranges segments in the order in
which you declare them.

The .ALPHA directive specifies alphabetical segment ordering within a module.
.ALPHA is provided for compatibility with early versions of the IBM
assembler. If you have trouble running code from older books on assembly
language, try using .ALPHA.

The .DOSSEG directive specifies the MS-DOS segment-ordering convention. It
places segments in the standard order required by Microsoft languages. Do not
use .DOSSEG in a module to be called from another module.

Note

 Chapter 2 Organizing Segments 51

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 51 of 21 Printed: 10/02/00 04:23 PM

The .DOSSEG directive orders segments as follows:

 1. Code segments

 2. Data segments, in this order:

 a. Segments not in class BSS or STACK

 b. Class BSS segments

 c. Class STACK segments

When you declare two or more segments to be in the same class, the linker
automatically makes them contiguous. This rule overrides the segment-ordering
directives. (For more about segment classes, see “Setting Segment Order with
Class Type” in the previous section.)

Linker Control
Most of the segment-ordering techniques (class names, .ALPHA, and .SEQ)
control the order in which the assembler outputs segments. Usually, you are
more interested in the order in which segments appear in the executable file. The
linker controls this order.

The linker processes object files in the order in which they appear on the
command line. Within each module, it then outputs segments in the order given
in the object file. If the first module defines segments DSEG and STACK and
the second module defines CSEG, then CSEG is output last. If you want to
place CSEG first, there are two ways to do so.

The simpler method is to use .DOSSEG. This directive is output as a special
record to the object file linker, and it tells the linker to use the Microsoft
segment-ordering convention. This convention overrides command-line order of
object files, and it places all segments of class 'CODE' first. (See “Defining
Segments with the SEGMENT Directive,” previous.)

The other method is to define all the segments as early as possible (in an include
file, for example, or in the first module). These definitions can be “dummy
segments” — that is, segments with no content. The linker observes the segment
ordering given, then later combines the empty segments with segments in other
modules that have the same name.

52 Programmer’s Guide

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 52 of 22 Printed: 10/02/00 04:23 PM

For example, you might include the following at the start of the first module of
your program or in an include file:

_TEXT SEGMENT WORD PUBLIC 'CODE'
_TEXT ENDS
_DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS
CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS
STACK SEGMENT PARA STACK 'STACK'
STACK ENDS

Later in the program, the order in which you write _TEXT, _DATA, or other
segments does not matter because the ultimate order is controlled by the
segment order defined in the include file.

Setting the ASSUME Directive for Segment Registers
Many of the assembler instructions assume a default segment. For example,
JMP assumes the segment associated with the CS register, PUSH and POP
assume the segment associated with the SS register, and MOV instructions
assume the segment associated with the DS register.

When the assembler needs to reference an address, it must know what segment
contains the address. It finds this by using the default segment or group
addresses assigned with the ASSUME directive. The syntax is:

ASSUME segregister : seglocation [, segregister : seglocation]]
ASSUME dataregister : qualifiedtype [, dataregister : qualifiedtype]
ASSUME register : ERROR [, register : ERROR]
ASSUME [register :] NOTHING [, register : NOTHING]
ASSUME register : FLAT [, register : FLAT]

The seglocation must be the name of the segment or group that is to be
associated with segregister. Subsequent instructions that assume a default
register for referencing labels or variables automatically assume that if the
default segment is segregister, the label or variable is in the seglocation. MASM
6.1 automatically gives CS the address of the current code segment. Therefore,
you do not need to include

 ASSUME CS : MY_CODE

at the beginning of your program if you want the current segment associated
with CS.

 Chapter 2 Organizing Segments 53

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 53 of 23 Printed: 10/02/00 04:23 PM

Using the ASSUME directive to tell the assembler which segment to
associate with a segment register is not the same as telling the processor. The
ASSUME directive affects only assembly-time assumptions. You may need to
use instructions to change run-time conditions. Initializing segment registers at
run time is discussed in “Informing the Assembler About Segment Values,”
Chapter 3.

The ASSUME directive can define a segment for each of the segment registers.
The segregister can be CS, DS, ES, or SS (and FS and GS on the 80386/486).
The seglocation must be one of the following:

u The name of a segment defined in the source file with the SEGMENT
directive.

u The name of a group defined in the source file with the GROUP directive.

u The keyword NOTHING, ERROR, or FLAT.

u A SEG expression (see “Immediate Operands” in Chapter 3).

u A string equate (text macro) that evaluates to a segment or group name (but
not a string equate that evaluates to a SEG expression).

It is legal to combine assumes to FLAT with assumes to specific segments.
Combinations might be necessary in operating-system code that handles both
16- and 32-bit segments.

The keyword NOTHING cancels the current segment assumptions. For
example, the statement ASSUME NOTHING cancels all register assumptions
made by previous ASSUME statements.

Usually, a single ASSUME statement defines all four segment registers at the
start of the source file. However, you can use the ASSUME directive at any
point to change segment assumptions.

Using the ASSUME directive to change segment assumptions is often equivalent
to changing assumptions with the segment-override operator (:). See “Direct
Memory Operands” in Chapter 3. The segment-override operator is more
convenient for one-time overrides. The ASSUME directive may be more
convenient if previous assumptions must be overridden for a sequence of
instructions.

However, in either case, your program must explicitly load a segment register
with a segment address before accessing data within the segment. ASSUME
only tells the assembler to assume that the register is correctly initialized; it does
not by itself generate any code to load the register.

Note

54 Programmer’s Guide

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 54 of 24 Printed: 10/02/00 04:23 PM

You can also prevent the use of a register with:

 ASSUME SegRegister : ERROR

The assembler generates an ASSUME CS:ERROR when you use simplified
directives to create data segments, effectively preventing instructions or code
labels from appearing in a data segment.

For more information about ASSUME, refer to “Defining Register Types with
ASSUME” in Chapter 3.

Defining Segment Groups
A group is a collection of segments totalling not more than 64K in 16-bit mode.
A program addresses a code or data item in the group relative to the beginning
of the group.

A group lets you develop separate logical segments for different kinds of data
and then combine these into one segment (a group) for all the data. Using a
group can save you from having to continually reload segment registers to
access different segments. As a result, the program uses fewer instructions and
runs faster.

The most common example of a group is the specially named group for near
data, DGROUP. In the Microsoft segment model, several segments (_DATA,
_BSS, CONST, and STACK) are combined into a single group called
DGROUP. Microsoft high-level languages place all near data segments in this
group. (By default, the stack is placed here, too.) The .MODEL directive
automatically defines DGROUP. The DS register normally points to the
beginning of the group, giving you relatively fast access to all data in DGROUP.

The syntax of the group directive is:

name GROUP segment [[, segment]]...

The name labels the group. It can refer to a group that was previously defined.
This feature lets you add segments to a group one at a time. For example, if
MYGROUP was previously defined to include ASEG and BSEG, then the
statement

MYGROUP GROUP CSEG

is perfectly legal. It simply adds CSEG to the group MYGROUP; ASEG and BSEG
are not removed.

Each segment can be any valid segment name (including a segment defined later
in source code), with one restriction: a segment cannot belong to more than one
group.

 Chapter 2 Organizing Segments 55

Filename: LMAPGC02.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 55 of 25 Printed: 10/02/00 04:23 PM

The GROUP directive does not affect the order in which segments of a group
are loaded. You can place any number of 16-bit segments in a group as long as
the total size does not exceed 65,536 bytes. If the processor is in 32-bit mode,
the maximum size is 4 gigabytes. You need to make sure that non-grouped
segments do not get placed between grouped segments in such a way that the
size of the group exceeds 64K or 4 gigabytes. Neither can you place a 16-bit and
a 32-bit segment in the same group.

