
 xiii

Filename: LMAPGINT.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 33 Page: 13 of 1 Printed: 10/02/00 04:20 PM

Introduction
The Microsoft® Macro Assembler Programmer’s Guide provides the
information you need to write and debug assembly-language programs with the
Microsoft Macro Assembler (MASM), version 6.1. This book documents
enhanced features of the language and the programming environment for
MASM 6.1.

This Programmer’s Guide is written for experienced programmers who know
assembly language and are familiar with an assembler. The book does not teach
the basics of assembly language; it does explain Microsoft-specific features. If
you want to learn or review the basics of assembly language, refer to “Books for
Further Reading” in this introduction.

This book teaches you how to write efficient code with the new and advanced
features of MASM. Getting Started explains how to set up MASM 6.1.
Environment and Tools introduces the integrated development environment
called the Programmer’s WorkBench (PWB). It also includes a detailed
reference to Microsoft tools and utilities such as Microsoft ® CodeView ®,
LINK, and NMAKE. The Microsoft Macro Assembler Reference provides a full
listing of all MASM instructions, directives, statements, and operators, and it
serves as a quick reference to utility commands.

For more information on these same topics, see the online Microsoft Advisor,
which is a complete reference to Macro Assembler language topics, to the
utilities, and to PWB. You should be able to find most of the information you
need in the Microsoft Advisor.

New and Extended Features in MASM 6.1
MASM 6.1 continues the break with tradition established by version 6.0. It
incorporates conveniences of high-level languages while offering all the
traditional advantages of assembly-language programming.

For example, MASM 6.1 includes the Programmer’s WorkBench, which
provides the same integrated software development environment enjoyed by
programmers of Microsoft high-level languages such as C and Basic. From
within PWB you can edit, build, debug, or run a program. You can perform
most of these operations with either menu selections or keyboard commands.
You can also customize PWB to suit your individual programming and editing
requirements and preferences.

xiv Programmer’s Guide

Filename: LMAPGINT.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 33 Page: 14 of 2 Printed: 10/02/00 04:20 PM

MASM Features New Since Version 5.1
MASM 6.1 includes several features designed to make programming more
efficient and productive. The following list briefly describes how MASM 6.1
improves on the language features of the popular version 5.1.

u MASM 6.1 has many enhancements related to types. You can now use the
same type specifiers in initializations as in other contexts (BYTE instead of
DB). You can also define your own types, including pointer types, with the
new TYPEDEF directive. See Chapter 3, “Using Addresses and Pointers,”
and Chapter 4, “Defining and Using Simple Data Types.”

u The syntax for defining and using structures and records has been enhanced
since version 5.1. You can also define unions with the new UNION
directive. See Chapter 5, “Defining and Using Complex Data Types.”

u MASM now generates complete CodeView information for all types. See
Chapter 3, “Using Addresses and Pointers,” and Chapter 4, “Defining and
Using Simple Data Types.”

u New control-flow directives let you use high-level – language constructs such
as loops and if-then-else blocks defined with .REPEAT and .UNTIL (or
.UNTILCXZ); .WHILE and .ENDW; and .IF, .ELSE, and .ELSEIF. The
assembler generates the appropriate code to implement the control structure.
See Chapter 7, “Controlling Program Flow.”

u MASM now has more powerful features for defining and calling procedures.
The extended PROC syntax for generating stack frames has been enhanced
since version 5.1. You can also use the PROTO directive to prototype a
procedure, which you can then call with the INVOKE directive. INVOKE
automatically generates code to pass arguments (converting them to a related
type, if appropriate) and makes the call according to the specified calling
convention. See Chapter 7, “Controlling Program Flow.”

u MASM optimizes jumps by automatically determining the most efficient
coding for a jump and then generating the appropriate code. See Chapter 7,
“Controlling Program Flow.”

u Maintaining multiple-module programs is easier in MASM 6.1 than in version
5.1. The EXTERNDEF and PROTO directives make it easy to maintain all
global definitions in include files shared by all the source modules of a
project. See Chapter 8, “Sharing Data and Procedures Among Modules and
Libraries.”

The assembler has many new macro features that make complex macros clearer
and easier to write:

u You can specify default values for macro arguments or mark arguments as
required. And with the VARARG keyword, one parameter can accept a
variable number of arguments.

 Introduction xv

Filename: LMAPGINT.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 33 Page: 15 of 3 Printed: 10/02/00 04:20 PM

u You can implement loops inside of macros in various ways. For example, the
new WHILE directive expands the statements in a macro body while an
expression is not zero.

u You can define macro functions, which return text macros. Several
predefined text macros are also provided for processing strings. Macro
operators and other features related to processing text macros and macro
arguments have been enhanced. For more information on all these macro
features, see Chapter 9, “Using Macros.”

MASM 6.1 has other improved capabilities, such as:

u The .STARTUP and .EXIT directives automatically generate appropriate
startup and exit code for your assembly-language programs. See Chapter 2,
“Organizing Segments.”

u MASM 6.1 supports flat memory model, available with the new Microsoft ®
Windows NT ™ operating system. Flat model allows segments as large as 4
gigabytes instead of 64K (kilobytes). Offsets are 32 bits instead of 16 bits.
See Chapter 2, “Organizing Segments.”

u The program H2INC.EXE converts C include files to MASM include files
and translates data structures and declarations. See Chapter 20 in
Environment and Tools.

u MASM 6.1 provides a library of assembly routines that let you create a
terminate-and-stay-resident program (TSR) in a high-level language.

MASM 6.1 includes many other minor new features as well as extensive support
for features of earlier versions of MASM. For a complete list of enhancements,
refer to Appendix A, “Differences between MASM 6.1 and 5.1.” The cross-
references in Appendix A guide you to the chapters where the new features are
described in detail.

MASM Features New Since Version 6.0
MASM 6.1 offers several new features:

u ML now runs in 32-bit protected mode under MS-DOS, giving it direct
access to extended memory for assembling very large source files.

u A collection of tools lets you write a dynamic-link library (DLL) for the
Microsoft ® Windows ™ operating system without the Windows Software
Development Kit. The LIBW.LIB library provides access to all functions in
the Windows application programming interface (API), so your DLL can
display menus, dialog boxes, and scroll bars. Chapter 10, “Writing a
Dynamic-Link Library for Windows,” shows you how.

xvi Programmer’s Guide

Filename: LMAPGINT.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 33 Page: 16 of 4 Printed: 10/02/00 04:20 PM

u Program listings now show instruction timings. The number of required
processor cycles appears adjacent to each instruction in the listing, based on
the selected processor. For an example listing and instructions on how to use
this feature, see Appendix C, “Generating and Reading Assembly Listings.”

u All utilities have been updated for version 6.1. Documentation is clearer and
better arranged, with a new Environment and Tools reference book.

u Version 6.1 generates debugging information for CodeView version 4.0 and
later.

u MASM 6.1 provides even greater compatibility with version 5.1 than does
MASM 6.0. Many programs written with version 5.1 will assemble
unchanged under MASM 6.1.

ML and MASM Command Lines
MASM 6.1 provides an updated version of the command-line driver, ML,
introduced in version 6.0. ML is more powerful and flexible than the MASM
driver of version 5.1. ML assembles and links with one command. It recognizes
all the old MASM driver command syntax, however, to support existing batch
files and makefiles that use MASM command lines.

The name MASM has traditionally referred to the Microsoft Macro
Assembler. It is used in that context throughout this book. However, MASM
also refers to MASM.EXE, which has been replaced by ML.EXE. In MASM
6.1, MASM.EXE is a small utility that translates command-line options to those
accepted by ML.EXE, and then calls ML.EXE. The distinction between
ML.EXE and MASM.EXE is made whenever necessary. Otherwise, MASM
refers to the assembler and its features.

Compatibility with Earlier Versions of MASM
MASM 6.1 is fully compatible with version 6.0 and, in many cases, with version
5.1. Code written for MASM 5.1 will often assemble correctly without
modification under MASM 6.1. However, MASM 6.1 provides the OPTION
directive to let you selectively modify the assembly process. In particular, you
can use the M510 argument with OPTION or the /Zm command-line option to
set most features to be compatible with version 5.1 code.

For information about obsolete features that will not assemble correctly under
MASM 6.1, see Appendix A, “Differences Between MASM 6.1 and 5.1.” The
appendix also explains how to update code to use the new features.

Note

 Introduction xvii

Filename: LMAPGINT.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 33 Page: 17 of 5 Printed: 10/02/00 04:20 PM

A Word About Instruction Timings
As an assembly-language programmer, whether novice or expert, you are
probably interested in producing lightning-fast code. After all, one of the main
reasons to program in assembly is to take advantage of its ability to streamline
execution speeds to the limit of the processor. This book will help you write
efficient and fast programs.

When discussing the speed of individual instructions, the chapters in this book
often speak of “timing,” which is the number of processor cycles required to
carry out an instruction. The Reference lists instruction timings for processors in
the 8086 family. It is tempting to use timing as the only criterion when judging
an instruction’s actual execution speed, but the world within the processor is not
so simple.

The clock for instruction timing does not begin ticking until the processor has
read and begins to execute an instruction. When you read about instruction
timings (in this book or any other), keep in mind that other factors also influence
the real speed of an instruction: the instruction’s size, whether it resides in cache
memory, whether it accesses memory, its position in the processor’s prefetch
queue, and the processor type. These factors make it impossible to say precisely
how fast an instruction executes. Accept the references to timing in this book as
guidelines, but use these simple rules to write fast code:

u Whenever possible, use registers rather than constant values, and constant
values rather than memory.

u Minimize changes in program flow.

u Smaller is often better. For example, the instructions
 dec bx
 sub bx, 1

accomplish the same thing and have the same timings on 80386/486
processors. But the first instruction is 3 bytes smaller than the second, and so
may reach the processor faster.

• When possible, use the string instructions described in Chapter 5, “Defining
and Using Complex Data Types.”

xviii Programmer’s Guide

Filename: LMAPGINT.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 33 Page: 18 of 6 Printed: 10/02/00 04:20 PM

Books for Further Reading
The following books may help you learn to program in assembly language or
write specialized programs. These books are listed only for your convenience.
Microsoft makes no specific recommendations concerning any of these books.

Books About Programming in Assembly Language
Abrash, Michael. Zen of Assembly Language. Glenview, IL: Scott, Foresman
and Co., 1990. Out of print.

Duntemann, Jeff. Assembly Language from Square One: For the PC AT and
Compatibles. Glenview, IL: Scott, Foresman and Co., 1990. Out of print.

Fernandez, Judi N., and Ruth Ashley. Assembly Language Programming for
the 80386. New York: McGraw-Hill, 1990.

Miller, Alan R. DOS Assembly Language Programming. San Francisco:
SYBEX, 1988. Out of print.

Scanlon, Leo J. 80286 Assembly Language Programming on MS-DOS
Computers. New York: Brady Communications, 1986. Out of print.

Turley, James L. Advanced 80386 Programming Techniques. Berkeley, CA:
Osborne McGraw-Hill, 1988.

Books About MS-DOS and BIOS
“Terminate-and-Stay-Resident Utilities.” MS-DOS Encyclopedia. Redmond,
WA: Microsoft Press, 1989.

Duncan, Ray. Advanced MS-DOS Programming: The Microsoft Guide for
Assembly Language and C Programmers. 2d ed. Redmond, WA: Microsoft
Press, 1988.

Duncan, Ray. Extending DOS: Programmer’s Guide to Protected-Mode DOS.
Redding, MA: Addison-Wesley. 1991.

Jourdain, Robert. Programmer’s Problem Solver for the IBM PC, XT and AT.
New York: Brady Communications, 1985. Out of print.

Microsoft MS-DOS Programmer’s Reference. Redmond, WA: Microsoft Press,
1991.

Norton, Peter and Richard Wilton. The New Peter Norton Programmer’s Guide
to the IBM PC and PS/2. Redmond, WA: Microsoft Press, 1988.

Wilton, Richard. Programmer’s Guide to PC & PS/2 Video Systems: Maximum
Video Performance from the EGA, VGA, HGC, and MCGA. Redmond, WA:
Microsoft Press, 1987. Out of print.

 Introduction xix

Filename: LMAPGINT.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 33 Page: 19 of 7 Printed: 10/02/00 04:20 PM

Books and Articles About Windows
Kauler, Barry. Windows Assembly Language & Systems Programming: Object-
Oriented & Systems Programming in Assembly Language for Windows 3.0
and 3.1. New York, NY: Prentice Hall, 1993.

Klein, Mike. Windows Programmer’s Guide to DLLs & Memory Management.
Carmel, IN: Sams, 1992.

Petzold, Charles. Programming Windows. 3d ed. Redmond, WA: Microsoft
Press, 1992.

Petzold, Charles. “Environments.” PC Magazine. New York, NY: Ziff-Davis
Publishing Company, June 1990–1992.

Programmer’s Reference. 4 vols. Microsoft Windows Software Development
Kit (SDK). Redmond, WA: Microsoft Press, 1992.

Books About Other Topics
Nelson, Ross P. The 80386/80486 Programming Guide. 2d ed. Redmond, WA:
Microsoft Press, 1991.

Startz, Richard. 8087/80287/80387 for the IBM PC and Compatibles:
Applications and Programming with Intel’s Math Coprocessors. Bowie, MD:
Robert J. Brady Co., 1988. Out of print.

Document Conventions
The following document conventions are used throughout this manual:

Example of
Convention

Description

SAMPLE2.ASM Uppercase letters indicate filenames, segment names, registers, and
terms used at the command level.

.MODEL Boldface type indicates assembly-language directives, instructions,
type specifiers, and predefined macros, as well as keywords in other
programming languages.

placeholder Italic letters indicate placeholders for information you must supply,
such as a filename. Italics are used occasionally for emphasis in the
text.

target This font is used to indicate example programs, user input, and screen
output.

; A semicolon in the first column of an example signals illegal code. A
semicolon also marks a comment.

xx Programmer’s Guide

Filename: LMAPGINT.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 33 Page: 20 of 8 Printed: 10/02/00 04:20 PM

SHIFT Small capital letters signify names of keys on the keyboard. Notice
that a plus (+) indicates a combination of keys. For example, CTRL+E
means to hold down the CTRL key while pressing the E key.

[[argument]] Items inside double square brackets are optional.

{register|memory} Braces and a vertical bar indicate a choice between two or more
items. You must choose one of the items unless double square
brackets surround the braces.

Repeating elements... A horizontal ellipsis (...) following an item indicates that more items
having the same form may appear.

Program
.
.
.
Fragment

A vertical ellipsis tells you that part of a program has been intentionally
omitted.

Getting Assistance and Reporting Problems
If you need help or think you have discovered a problem in the software, please
provide the following information to help us locate the source of the problem:

u The version of MS-DOS or Windows you run.

u Your system configuration: the type of machine you use, its total memory,
and its total free memory at assembler execution time, as well as any other
information you think might be useful.

u The command line you used for the assembler, linker, or other MASM tool
that was running when the problem occurred.

u Any object files or libraries you linked with if the problem occurred at link
time.

If your program is very large, reduce it to the smallest possible program that still
produces the problem.

Note the circumstances of the error and notify Microsoft Corporation by
following the instructions in the section “Microsoft Support Services” in the
introduction to Environment and Tools. If you have comments or suggestions
regarding any of the books accompanying this product, please indicate them on
the Document Feedback page at the back of this book and send it to Microsoft.

If you have not yet registered your copy of the Macro Assembler, you should
fill out and return the Registration Card. This enables Microsoft to keep you
informed of updates and other information about the assembler.

