
1

Conditional Processing

COE 205
Computer Organization and Assembly Language

Computer Engineering Department

King Fahd University of Petroleum and Minerals

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 2

Presentation Outline

Boolean and Comparison Instructions

Conditional Jumps

Conditional Loop Instructions

Translating Conditional Structures

Indirect Jump and Table-Driven Selection

Application: Sorting an Integer Array

2

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 3

AND Instruction
Bitwise AND between each pair of matching bits
AND destination, source

Following operand combinations are allowed
AND reg, reg
AND reg, mem
AND reg, imm
AND mem, reg
AND mem, imm

AND instruction is
often used to
clear selected bits

AND

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 1

AND

unchangedcleared

Operands can be
8, 16, or 32 bits

and they must be
of the same size

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 4

Converting Characters to Uppercase
AND instruction can convert characters to uppercase

'a' = 0 1 1 0 0 0 0 1 'b' = 0 1 1 0 0 0 1 0

'A' = 0 1 0 0 0 0 0 1 'B'= 0 1 0 0 0 0 1 0

Solution: Use the AND instruction to clear bit 5

mov ecx, LENGTHOF mystring

mov esi, OFFSET mystring

L1: and BYTE PTR [esi], 11011111b ; clear bit 5

inc esi

loop L1

3

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 5

OR Instruction
Bitwise OR operation between each pair of matching bits
OR destination, source

Following operand combinations are allowed
OR reg, reg
OR reg, mem
OR reg, imm
OR mem, reg
OR mem, imm

OR instruction is
often used to
set selected bits

0 0 1 1 1 0 1 1
1 1 1 1 0 0 0 0

1 1 1 1 1 0 1 1

OR

unchangedset

Operands can be
8, 16, or 32 bits

and they must be
of the same size

OR

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 6

Converting Characters to Lowercase
OR instruction can convert characters to lowercase

'A' = 0 1 0 0 0 0 0 1 'B'= 0 1 0 0 0 0 1 0

'a' = 0 1 1 0 0 0 0 1 'b' = 0 1 1 0 0 0 1 0

Solution: Use the OR instruction to set bit 5

mov ecx, LENGTHOF mystring

mov esi, OFFSET mystring

L1: or BYTE PTR [esi], 20h ; set bit 5

inc esi

loop L1

4

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 7

Converting Binary Digits to ASCII
OR instruction can convert a binary digit to ASCII

0 = 0 0 0 0 0 0 0 0 1 = 0 0 0 0 0 0 0 1

'0' = 0 0 1 1 0 0 0 0 '1' = 0 0 1 1 0 0 0 1

Solution: Use the OR instruction to set bits 4 and 5

or al,30h ; Convert binary digit 0 to 9 to ASCII

What if we want to convert an ASCII digit to binary?

Solution: Use the AND instruction to clear bits 4 to 7

and al,0Fh ; Convert ASCII '0' to '9' to binary

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 8

XOR Instruction
Bitwise XOR between each pair of matching bits
XOR destination, source

Following operand combinations are allowed
XOR reg, reg
XOR reg, mem
XOR reg, imm
XOR mem, reg
XOR mem, imm

XOR instruction is
often used to
invert selected bits

0 0 1 1 1 0 1 1
1 1 1 1 0 0 0 0

1 1 0 0 1 0 1 1

XOR

unchangedinverted

Operands can be
8, 16, or 32 bits

and they must be
of the same size

XOR

5

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 9

Affected Status Flags

The six status flags are affected

1. Carry Flag: Cleared by AND, OR, and XOR

2. Overflow Flag: Cleared by AND, OR, and XOR

3. Sign Flag: Copy of the sign bit in result

4. Zero Flag: Set when result is zero

5. Parity Flag: Set when parity in least-significant byte is even

6. Auxiliary Flag: Undefined by AND, OR, and XOR

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 10

String Encryption Program
Tasks:

Input a message (string) from the user

Encrypt the message

Display the encrypted message

Decrypt the message

Display the decrypted message

Sample Output

Enter the plain text: Attack at dawn.

Cipher text: «¢¢Äîä-Ä¢-ïÄÿü-Gs

Decrypted: Attack at dawn.

6

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 11

Encrypting a String
KEY = 239 ; Can be any byte value
BUFMAX = 128
.data
buffer BYTE BUFMAX+1 DUP(0)
bufSize DWORD BUFMAX

The following loop uses the XOR instruction to
transform every character in a string into a new value

mov ecx, bufSize ; loop counter
mov esi, 0 ; index 0 in buffer

L1:
xor buffer[esi], KEY ; translate a byte
inc esi ; point to next byte
loop L1

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 12

TEST Instruction
Bitwise AND operation between each pair of bits

TEST destination, source

The flags are affected similar to the AND Instruction

However, TEST does NOT modify the destination operand

TEST instruction can check several bits at once
Example: Test whether bit 0 or bit 3 is set in AL

Solution: test al, 00001001b ; test bits 0 & 3

We only need to check the zero flag

; If zero flag => both bits 0 and 3 are clear

; If Not zero => either bit 0 or 3 is set

7

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 13

NOT Instruction
Inverts all the bits in a destination operand

NOT destination

Result is called the 1's complement

Destination can be a register or memory

NOT reg

NOT mem

None of the Flags is affected by the NOT instruction

NOT

0 0 1 1 1 0 1 1

1 1 0 0 0 1 0 0

NOT

inverted

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 14

CMP Instruction
CMP (Compare) instruction performs a subtraction
Syntax: CMP destination, source

Computes: destination – source

Destination operand is NOT modified

All six flags: OF, CF, SF, ZF, AF, and PF are affected

CMP uses the same operand combinations as AND
Operands can be 8, 16, or 32 bits and must be of the same size

Examples: assume EAX = 5, EBX = 10, and ECX = 5

cmp eax, ebx
cmp eax, ecx

; OF=0, CF=1, SF=1, ZF=0
; OF=0, CF=0, SF=0, ZF=1

8

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 15

Unsigned Comparison
CMP can perform unsigned and signed comparisons

The destination and source operands can be unsigned or signed

For unsigned comparison, we examine ZF and CF flags

CMP does a subtraction and CF is the borrow flag

CF = 1 if and only if unsigned destination < unsigned source

Assume AL = 5 and BL = -1 = FFh
cmp al, bl ; Sets carry flag CF = 1

01destination = source
00unsigned destination > unsigned source
10unsigned destination < unsigned source

CFZFUnsigned Comparison To check for
equality, it is
enough to

check ZF flag

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 16

Signed Comparison
For signed comparison, we examine SF, OF, and ZF

Recall for subtraction, the overflow flag is set when …
Operands have different signs and result sign ≠ destination sign

CMP AL, BL (consider the four cases shown below)

ZF = 1destination = source
SF = OF, ZF = 0signed destination > signed source
SF ≠ OFsigned destination < signed source

FlagsSigned Comparison

Case 1 AL = 80 BL = 50 OF = 0 SF = 0 AL > BL
Case 2 AL = -80 BL = -50 OF = 0 SF = 1 AL < BL
Case 3 AL = 80 BL = -50 OF = 1 SF = 1 AL > BL
Case 4 AL = -80 BL = 50 OF = 1 SF = 0 AL < BL

9

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 17

Next . . .

Boolean and Comparison Instructions

Conditional Jumps

Conditional Loop Instructions

Translating Conditional Structures

Indirect Jump and Table-Driven Selection

Application: Sorting an Integer Array

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 18

Conditional Structures
No high-level control structures in assembly language

Comparisons and conditional jumps are used to …
Implement conditional structures such as IF statements

Implement conditional loops

Types of Conditional Jump Instructions
Jumps based on specific flags

Jumps based on equality

Jumps based on the value of CX or ECX

Jumps based on unsigned comparisons

Jumps based on signed comparisons

10

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 19

Jumps Based on Specific Flags
Conditional Jump Instruction has the following syntax:
Jcond destination ; cond is the jump condition

Destination
Destination Label

Prior to 386
Jump must be within
–128 to +127 bytes
from current location

IA-32
32-bit offset permits
jump anywhere in
memory

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 20

Jumps Based on Equality

jecxz L2 ; exit loop

L1: . . . ; loop body

loop L1

L2:

JE is equivalent to JZ JNE is equivalent to JNZ

JECXZ
Checked once at the beginning

Terminate a loop if ECX is zero

11

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 21

Examples of Jump on Zero
Task: Check whether integer value in EAX is even

Solution: TEST whether the least significant bit is 0

If zero, then EAX is even, otherwise it is odd

Task: Jump to label L1 if bits 0, 1, and 3 in AL are all set

Solution:

test eax, 1 ; test bit 0 of eax
jz EvenVal ; jump if Zero flag is set

and al,00001011b ; clear bits except 0,1,3
cmp al,00001011b ; check bits 0,1,3
je L1 ; all set? jump to L1

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 22

Jumps Based on Unsigned Comparison

cmp eax, ebx
jb IsBelow

Task: Jump to a label if unsigned EAX is less than EBX

Solution: JB condition
CF = 1

12

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 23

Jumps Based on Signed Comparisons

cmp eax, ebx
jl IsLess

Task: Jump to a label if signed EAX is less than EBX

Solution: JL condition
OF ≠ SF

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 24

Jump to L1 if unsigned EAX is greater than Var1

Solution:

Compare and Jump Examples

cmp eax, Var1
ja L1

JA condition
CF = 0, ZF = 0

Jump to L1 if signed EAX is greater than Var1

Solution: cmp eax, Var1
jg L1

JG condition
OF = SF, ZF = 0

Jump to L1 if signed EAX is greater than or equal to Var1

Solution: cmp eax, Var1
jge L1

JGE condition
OF = SF

13

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 25

Computing the Max and Min

mov Max, eax ; assume Max = eax
cmp Max, ebx
jae done
mov Max, ebx ; Max = ebx

done:

Compute the Max of unsigned EAX and EBX

Solution:

mov Min, eax ; assume Min = eax
cmp Min, ebx
jle done
mov Min, ebx ; Min = ebx

done:

Compute the Min of signed EAX and EBX

Solution:

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 26

Application: Sequential Search
; Receives: esi = array address
; ecx = array size
; eax = search value
; Returns: esi = address of found element

search PROC USES ecx
jecxz notfound

L1:
cmp [esi], eax ; array element = search value?
je found ; yes? found element
add esi, 4 ; no? point to next array element
loop L1

notfound:
mov esi, 0 ; if not found then esi = 0

found:
ret ; if found, esi = element address

search ENDP

14

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 27

BT Instruction
BT = Bit Test Instruction

Syntax:

BT r/m16, r16

BT r/m32, r32

BT r/m16, imm8

BT r/m32, imm8

Copies bit n from an operand into the Carry flag

Example: jump to label L1 if bit 9 is set in AX register

bt AX, 9 ; CF = bit 9
jc L1 ; jump if Carry to L1

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 28

Next . . .

Boolean and Comparison Instructions

Conditional Jumps

Conditional Loop Instructions

Translating Conditional Structures

Indirect Jump and Table-Driven Selection

Application: Sorting an Integer Array

15

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 29

LOOPZ and LOOPE
Syntax:

LOOPE destination

LOOPZ destination

Logic:

ECX = ECX – 1

if ECX > 0 and ZF=1, jump to destination

Useful when scanning an array for the first element that
does not match a given value.

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 30

LOOPNZ and LOOPNE
Syntax:

LOOPNZ destination

LOOPNE destination

Logic:
ECX ← ECX – 1;

if ECX > 0 and ZF=0, jump to destination

Useful when scanning an array for the first element that
matches a given value.

16

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 31

LOOPZ Example
The following code finds the first negative value in an array
.data
array SWORD 17,10,30,40,4,-5,8
.code

mov esi, OFFSET array – 2 ; start before first
mov ecx, LENGTHOF array ; loop counter

L1:
add esi, 2 ; point to next element
test WORD PTR [esi], 8000h ; test sign bit
loopz L1 ; ZF = 1 if value >= 0
jnz found ; found negative value

notfound:
. . . ; ESI points to last array element

found:
. . . ; ESI points to first negative value

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 32

Your Turn . . .
Locate the first zero value in an array

If none is found, let ESI point to last array element
.data
array SWORD -3,7,20,-50,10,0,40,4
.code

mov esi, OFFSET array – 2 ; start before first
mov ecx, LENGTHOF array ; loop counter

L1:
add esi, 2 ; point to next element
cmp WORD PTR [esi], 0 ; check for zero
loopne L1 ; continue if not zero
jz found ; found zero

notfound:
. . . ; ESI points to last array value

found:
. . . ; ESI points to first zero value

17

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 33

Next . . .

Boolean and Comparison Instructions

Conditional Jumps

Conditional Loop Instructions

Translating Conditional Structures

Indirect Jump and Table-Driven Selection

Application: Sorting an Integer Array

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 34

Block-Structured IF Statements
IF statement in high-level languages (such as C or Java)

Boolean expression (evaluates to true or false)

List of statements performed when the expression is true

Optional list of statements performed when expression is false

Task: Translate IF statements into assembly language

Example:
mov eax,var1
cmp eax,var2
jne elsepart
mov X,1
jmp next

elsepart:
mov X,2

next:

if(var1 == var2)
X = 1;

else
X = 2;

18

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 35

Your Turn . . .
Translate the IF statement to assembly language

All values are unsigned

cmp ebx,ecx
ja next
mov eax,5
mov edx,6

next:

if(ebx <= ecx)
{
eax = 5;
edx = 6;

}

There can be multiple correct solutions

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 36

Your Turn . . .
Implement the following IF in assembly language

All variables are 32-bit signed integers

mov eax,var1
cmp eax,var2
jle ifpart
mov var3,6
mov var4,7
jmp next

ifpart:
mov var3,10

next:

if (var1 <= var2) {
var3 = 10;

}
else {
var3 = 6;
var4 = 7;

}

There can be multiple correct solutions

19

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 37

Compound Expression with AND
HLLs use short-circuit evaluation for logical AND

If first expression is false, second expression is skipped

if ((al > bl) && (bl > cl)) {X = 1;}

; One Possible Implementation ...
cmp al, bl ; first expression ...
ja L1 ; unsigned comparison
jmp next

L1: cmp bl,cl ; second expression ...
ja L2 ; unsigned comparison
jmp next

L2: mov X,1 ; both are true
next:

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 38

Better Implementation for AND

cmp al,bl ; first expression...
jbe next ; quit if false
cmp bl,cl ; second expression...
jbe next ; quit if false
mov X,1 ; both are true

next:

The following implementation uses less code
By reversing the relational operator, We allow the program to
fall through to the second expression

Number of instructions is reduced from 7 to 5

if ((al > bl) && (bl > cl)) {X = 1;}

20

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 39

Your Turn . . .
Implement the following IF in assembly language

All values are unsigned

cmp ebx,ecx
ja next
cmp ecx,edx
jbe next
mov eax,5
mov edx,6

next:

if ((ebx <= ecx) &&
(ecx > edx))

{
eax = 5;
edx = 6;

}

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 40

Application: IsDigit Procedure

IsDigit PROC
cmp al,'0' ; AL < '0' ?
jb L1 ; yes? ZF=0, return
cmp al,'9' ; AL > '9' ?
ja L1 ; yes? ZF=0, return
test al, 0 ; ZF = 1

L1: ret
IsDigit ENDP

Receives a character in AL

Sets the Zero flag if the character is a decimal digit

if (al >= '0' && al <= '9') {ZF = 1;}

21

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 41

Compound Expression with OR
HLLs use short-circuit evaluation for logical OR

If first expression is true, second expression is skipped

Use fall-through to keep the code as short as possible

if ((al > bl) || (bl > cl)) {X = 1;}

cmp al,bl ; is AL > BL?
ja L1 ; yes, execute if part
cmp bl,cl ; no: is BL > CL?
jbe next ; no: skip if part

L1: mov X,1 ; set X to 1
next:

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 42

WHILE Loops

while(eax < ebx) { eax = eax + 1; }

A WHILE loop can be viewed as
IF statement followed by
The body of the loop, followed by
Unconditional jump to the top of the loop

top: cmp eax,ebx ; eax < ebx ?
jae next ; false? then exit loop
inc eax ; body of loop
jmp top ; repeat the loop

next:

This is a possible implementation:

22

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 43

Your Turn . . .

top: cmp ebx,var1 ; ebx <= var1?
ja next ; false? exit loop
add ebx,5 ; execute body of loop
dec var1
jmp top ; repeat the loop

next:

while (ebx <= var1) {
ebx = ebx + 5;
var1 = var1 - 1

}

Implement the following loop, assuming unsigned integers

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 44

Yet Another Solution for While

cmp ebx,var1 ; ebx <= var1?
ja next ; false? exit loop

top: add ebx,5 ; execute body of loop
dec var1
cmp ebx, var1 ; ebx <= var1?
jbe top ; true? repeat the loop

next:

while (ebx <= var1) {
ebx = ebx + 5;
var1 = var1 - 1

}

Check the loop condition at the end of the loop
No need for JMP, loop body is reduced by 1 instruction

23

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 45

Next . . .

Boolean and Comparison Instructions

Conditional Jumps

Conditional Loop Instructions

Translating Conditional Structures

Indirect Jump and Table-Driven Selection

Application: Sorting an Integer Array

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 46

Indirect Jump
Direct Jump: Jump to a Labeled Destination

Destination address is a constant
Address is encoded in the jump instruction

Address is an offset relative to EIP (Instruction Pointer)

Indirect jump
Destination address is a variable

Address is stored in memory

Address is absolute

Syntax: JMP mem32
32-bit absolute address is stored in mem32 for FLAT memory

Indirect jump is used to implement switch statements

24

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 47

Switch Statement
Consider the following switch statement:
Switch (ch) {

case '0': exit();
case '1': count++; break;
case '2': count--; break;
case '3': count += 5; break;
case '4': count -= 5; break;
default : count = 0;

}

How to translate above statement into assembly code?

We can use a sequence of compares and jumps

A better solution is to use the indirect jump

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 48

Implementing the Switch Statement
case0:

exit
case1:

inc count
jmp exitswitch

case2:
dec count
jmp exitswitch

case3:
add count, 5
jmp exitswitch

case4:
sub count, 5
jmp exitswitch

default:
mov count, 0

exitswitch:

There are many case
labels. How to jump
to the correct one?

Answer: Define a
jump table and use

indirect jump to jump
to the correct label

25

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 49

Jump Table and Indirect Jump
Jump Table is an array of double words

Contains the case labels of the switch statement

Can be defined inside the same procedure of switch statement
jumptable DWORD case0,

case1,
case2,
case3,
case4

Indirect jump uses jump table to jump to selected label
movzx eax, ch ; move ch to eax
sub eax, '0' ; convert ch to a number
cmp eax, 4 ; eax > 4 ?
ja default ; default case
jmp jumptable[eax*4] ; Indirect jump

Assembler converts
labels to addresses

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 50

Next . . .

Boolean and Comparison Instructions

Conditional Jumps

Conditional Loop Instructions

Translating Conditional Structures

Indirect Jump and Table-Driven Selection

Application: Sorting an Integer Array

26

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 51

Bubble Sort
Consider sorting an array of 5 elements: 5 1 3 2 4
First Pass (4 comparisons) 5 1 3 2 4

Compare 5 with 1 and swap: 1 5 3 2 4 (swap)
Compare 5 with 3 and swap: 1 3 5 2 4 (swap)
Compare 5 with 2 and swap: 1 3 2 5 4 (swap)
Compare 5 with 4 and swap: 1 3 2 4 5 (swap)

Second Pass (3 comparisons)
Compare 1 with 3 (No swap): 1 3 2 4 5 (no swap)
Compare 3 with 2 and swap: 1 2 3 4 5 (swap)
Compare 3 with 4 (No swap): 1 2 3 4 5 (no swap)

Third Pass (2 comparisons)
Compare 1 with 2 (No swap): 1 2 3 4 5 (no swap)
Compare 2 with 3 (No swap): 1 2 3 4 5 (no swap)

No swapping during 3rd pass ⇒ array is now sorted

largest

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 52

Bubble Sort Algorithm
Algorithm: Sort array of given size

bubbleSort(array, size) {
comparisons = size
do {

comparisons--;
sorted = true; // assume initially
for (i = 0; i<comparisons; i++) {

if (array[i] > array[i+1]) {
swap(array[i], array[i+1]);
sorted = false;

}
}

} while (! sorted)
}

27

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 53

Bubble Sort Procedure – Slide 1 of 2
;---
; bubbleSort: Sorts a DWORD array in ascending order
; Uses the bubble sort algorithm
; Receives: ESI = Array Address
; ECX = Array Length
; Returns: Array is sorted in place
;---

bubbleSort PROC USES eax ecx edx
outerloop:

dec ECX ; ECX = comparisons
jz sortdone ; if ECX == 0 then we are done
mov EDX, 1 ; EDX = sorted = 1 (true)
push ECX ; save ECX = comparisons
push ESI ; save ESI = array address

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 54

Bubble Sort Procedure – Slide 2 of 2
innerloop:

mov EAX,[ESI]
cmp EAX,[ESI+4] ; compare [ESI] and [ESI+4]
jle increment ; [ESI]<=[ESI+4]? don’t swap
xchg EAX,[ESI+4] ; swap [ESI] and [ESI+4]
mov [ESI],EAX
mov EDX,0 ; EDX = sorted = 0 (false)

increment:
add ESI,4 ; point to next element
loop innerloop ; end of inner loop
pop ESI ; restore ESI = array address
pop ECX ; restore ECX = comparisons
cmp EDX,1 ; sorted == 1?
jne outerloop ; No? loop back

sortdone:
ret ; return

bubbleSort ENDP

28

Conditional Processing COE 205 – KFUPM © Muhamed Mudawar – slide 55

Summary
Bitwise instructions (AND, OR, XOR, NOT, TEST)

Manipulate individual bits in operands

CMP: compares operands using implied subtraction
Sets condition flags for later conditional jumps and loops

Conditional Jumps & Loops
Flag values: JZ, JNZ, JC, JNC, JO, JNO, JS, JNS, JP, JNP

Equality: JE(JZ), JNE (JNZ), JCXZ, JECXZ

Signed: JG (JNLE), JGE (JNL), JL (JNGE), JLE (JNG)

Unsigned: JA (JNBE), JAE (JNB), JB (JNAE), JBE (JNA)

LOOPZ (LOOPE), LOOPNZ (LOOPNE)

Indirect Jump and Jump Table

