Basic Instructions
Addressing Modes

COE 205

Computer Organization and Assembly Language

Computer Engineering Department

King Fahd University of Petroleum and Minerals

Presentation Outline

% Operand Types

+ Data Transfer Instructions
+ Addition and Subtraction

+ Addressing Modes

+« Jump and Loop Instructions
+ Copying a String

% Summing an Array of Integers

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar — slide 2

Three Basic Types of Operands

+ Immediate
<~ Constant integer (8, 16, or 32 bits)

<> Constant value is stored within the instruction

+ Register

<- Name of a register is specified

< Register number is encoded within the instruction

s Memory

< Reference to a location in memory

< Memory address is encoded within the instruction, or

< Reqgister holds the address of a memory location

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar — slide 3

Instruction Operand Notation

Operand Description
r8 8-bit general-purpose register: AH, AL, BH, BL, CH, CL, DH, DL
rl6 16-bit general-purpose register: AX, BX, CX, DX, Sl, DI, SP, BP
r32 32-bit general-purpose register: EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP
reg Any general-purpose register
sreg 16-bit segment register: CS, DS, SS, ES, FS, GS
imm 8-, 16-, or 32-bit immediate value
imm8 8-bit immediate byte value
imm16 16-bit immediate word value
imm32 32-bit immediate doubleword value
r/m8 8-bit operand which can be an 8-bit general-purpose register or memory byte
r/m16 16-bit operand which can be a 16-bit general-purpose register or memory word
r/m32 32-bit operand which can be a 32-bit general register or memory doubleword
mem 8-, 16-, or 32-bit memory operand

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar — slide 4

Next . ..

% Operand Types

+ Data Transfer Instructions
+ Addition and Subtraction

+ Addressing Modes

+« Jump and Loop Instructions
+ Copying a String

% Summing an Array of Integers

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar — slide 5

MOV Instruction

+» Move source operand to destination
mov destination, source

++ Source and destination operands can vary

mov reg, reg
mov mem, reg Rules

mov reg, mem » Both operands must be of same size
mov mem, imm + No memory to memory moves

mov reg, imm « Destination cannot be CS, EIP, or IP
mov r/ml6, sreg |. Noimmediate to segment moves

mov sreg, r/ml6

% Programs running in protected mode should not modify
the segment registers

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar — slide 6

MOV Examples

.DATA
count BYTE 100
bval BYTE 20
wval WORD 2
dval DWORD 5
.CODE
mov bl, count
mov ax, wVal
mov count,al
mov eax, dval

bl = count = 100

ax = wval = 2

count = al = 2

eax = dval = 5

; Assembler will not accept the following moves — why?
immediate move to DS not permitted
size mismatch

EIP cannot be the destination
immediate value cannot be destination
memory-to-memory move not permitted

mov ds, 45
mov esi, wval
mov eip, dval
mov 25, bval
mov bVal,count

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar — slide 7

Zero Extension

s MOVZX Instruction
<~ Fills (extends) the upper part of the destination with zeros
< Used to copy a small source into a larger destination
< Destination must be a register
movzx r32, r/m8
movzx r32, r/ml6
movzx rl6, r/m8

0 10001111 Source

mov bl, 8Fh
00000000 | 10001111 | Destination movzx ax, bl

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar — slide 8

Sign Extension

< MOVSX Instruction

<~ Fills (extends) the upper part of the destination register with a

copy of the source operand's sign bit

< Used to copy a small source into a larger destination

movsx r32, r/m8
movsx r32, r/ml6
movsx rl6, r/m8

10001111 Source

11111111 10001111 Destination

Basic Instructions & Addressing Modes COE 205 - KFUPM

mov bl, 8Fh
movsx ax, bl

© Muhamed Mudawar — slide 9

XCHG Instruction

s+ XCHG exchanges the values of two operands

xchg reg, reg
xchg reg, mem
xchg mem, reg

varl DWORD 10000000h

Rules

» Operands must be of the same size
* At least one operand must be a register
-DATA » No immediate operands are permitted

var2 DWORD 20000000h

.CODE

xchg ah, al ; exchange 8-bit regs
xchg ax, bx ; exchange 16-bit regs
xchg eax, ebx ; exchange 32-bit regs
xchg varl,ebx ; exchange mem, reg

xchg varl,var2 ; error: two memory operands

Basic Instructions & Addressing Modes COE 205 - KFUPM

© Muhamed Mudawar — slide 10

Direct Memory Operands

+ Variable names are references to locations in memory
++ Direct Memory Operand:

Named reference to a memory location
+ Assembler computes address (offset) of named variable

-DATA

varl BYTE 10h

CODE Direct Memory Operand

mov al, varl ; AL = varl = 10h
mov al,[v%rl] ; AL = varl = 10h

[
Alternate Format

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 11

Direct-Offset Operands

+» Direct-Offset Operand: Constant offset is added to a
named memory location to produce an effective address

<~ Assembler computes the effective address

% Lets you access memory locations that have no name

-DATA

arrayB BYTE 10h,20h,30h,40h

-CODE

mov al, arrayB+1 ; AL = 20h

mov al, [arrayB+1] ; alternative notation
mov al, arrayB[1] ; yet another notation

Q: Why doesn't arrayB+1 produce 11h?

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 12

Direct-Offset Operands - Examples

-DATA

arrayW WORD 1020h, 3040h, 5060h

arrayD DWORD 1, 2, 3, 4

-CODE

mov ax, arrayW+2 ; AX = 3040h

mov ax, arrayW[4] ; AX = 5060h

mov eax, [arrayD+4] ; EAX = 00000002h

mov eax, [arrayD-3] ; EAX = 01506030h

mov ax, [arrayW+9] ; AX = 0200h

mov ax, [arrayD+3] ; Error: Operands are not same size
mov ax, [arrayW-2] ; AX = ? Out-of-range address

mov eax, [arrayD+16] ; EAX = ? MASM does not detect error

[1020 | 3040 | 5060 | 1 | 2 | 3 | 4 |
[20]10]40[30]60[50[01]00]00]00]02]00]00]00]03]00[00[00[04]00]00]00]
r &+ + & 7 ¥ + * * * * * £ * % % f & & 7%

+1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15
arrayWw arrayD

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 13

Your Turn. ..

Given the following definition of arrayD

-DATA
arrayD DWORD 1,2,3

Rearrange the three values in the array as: 3, 1, 2

Solution:
; Copy first array value into EAX
mov eax, arrayD ; EAX = 1

; Exchange EAX with second array element

xchg eax, arrayD[4] ; EAX = 2, arrayD = 1,1,3
; Exchange EAX with third array element

xchg eax, arrayD[8] ; EAX = 3, arrayD = 1,1,2
; Copy value iIn EAX to first array element

mov arrayD, eax ; arrayD = 3,1,2

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 14

Next . ..

% Operand Types

+ Data Transfer Instructions
+ Addition and Subtraction

+ Addressing Modes

+« Jump and Loop Instructions
+ Copying a String

% Summing an Array of Integers

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 15

ADD and SUB Instructions

«+ ADD destination, source
destination = destination + source
+ SUB destination, source
destination = destination — source
+» Destination can be a register or a memory location
%+ Source can be a register, memory location, or a constant
¢ Destination and source must be of the same size

% Memory-to-memory arithmetic is not allowed

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 16

Evaluate this . ..

Write a program that adds the following three words:

-DATA
array WORD 890Fh,1276h,0AF5Bh

Solution: Accumulate the sum in the AX register

mov ax, array
add ax, [array+2]
add ax, [array+4] ; what if sum cannot fit in AX?

Solution 2: Accumulate the sum in the EAX register

movzx eax, array ; error to say: mov eax,array
movzx ebx, array[2] ; use movsx for signed integers
add eax, ebx ; error to say: add eax,array[2]
movzx ebx, array[4]

add eax, ebx

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 17

Flags Affected

FLAGS

1 11 1 1 11

6 54 3 2 1 098 7 6 5 4 3 210
R N

F|9T

1w |o]o[1 [T[s]= Al C
HHEAEEBAREECECHOE
EFLAGS

ADD and SUB affect all the six status flags:

2 2
2 1

3
1

1
[o[e[e[o]o]o[o[o[o]o] 5[i}

< eN
| o=

11
8 7
AV
o |M

Carry Flag: Set when unsigned arithmetic result is out of range
Overflow Flag: Set when signed arithmetic result is out of range
Sign Flag: Copy of sign bit, set when result is negative

Zero Flag: Set when result is zero

Auxiliary Carry Flag: Set when there is a carry from bit 3 to bit 4

2B o

Parity Flag: Set when parity in least-significant byte is even

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 18

More on Carry and Overflow

+ Addition: A+ B
< The Carry flag is the carry out of the most significant bit
<~ The Overflow flag is only set when . . .
= Two positive operands are added and their sum is negative
= Two negative operands are added and their sum is positive
= Qverflow cannot occur when adding operands of opposite signs
% Subtraction: A - B
< For Subtraction, the carry flag becomes the borrow flag
< Carry flag is set when A has a smaller unsigned value than B
< The Overflow flag is only set when . . .
= A and B have different signs and sign of result # sign of A
= Overflow cannot occur when subtracting operands of the same sign

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 19

Hardware Viewpoint

+ CPU cannot distinguish signed from unsigned integers
< YOU, the programmer, give a meaning to binary numbers

+» How the ADD instruction modifies OF and CF:
< CF
< OF

(carry out of the MSB) «—| MSB = Most Significant Bit |
(carry out of the MSB) XOR (carry into the MSB)
% Hardware does SUB by ... T—{ XOR = eXclusive-OR operation ‘

<~ ADDing destination to the 2's complement of the source operand
+ How the SUB instruction modifies OF and CF:
< Negate (2's complement) the source and ADD it to destination

< OF = (carry out of the MSB) XOR (carry into the MSB)
< CF =INVERT (carry out of the MSB)

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 20

10

ADD and SUB Examples

For each of the following marked entries, show the values
of the destination operand and the six status flags:

mov al,0FFh ; AL=-1

add al,1 ; AL=00h CF=1 OF=0 SF=0 ZF=1 AF=1 PF=1
sub al,1 ; AL=FFh CF=1 OF=0 SF=1 ZF=0 AF=1 PF=1
mov al,+127 ; AL=7Fh

add al,1 ; AL=-128 CF=0 OF=1 SF=1 ZF=0 AF=1 PF=0

mov al,26h

sub al,95h ;45Efglb——~*CF:% OF=1 SF=1 ZF=0, AF=0 PF=0

0o 1 (oyo 0 1 ()1 1 0 1 1 1 o
(ojof1/0]o]1]1/0]26h@38) |o|o|1]0|0o|1]1]0]26n(8
_‘1‘0‘0‘1‘0‘1‘0‘1‘95h(-107) of1)1]0]1]0]1]1]|eBn(107)
1]olol1]o]ofol1]etnerty [1]ofol1]0lo]o]1]ethean

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 21

INC, DEC, and NEG Instructions

% INC destination

< destination = destination + 1

< More compact (uses less space) than: ADD destination, 1
% DEC destination

< destination = destination — 1

< More compact (uses less space) than: SUB destination, 1
% NEG destination

< destination = 2's complement of destination
+» Destination can be 8-, 16-, or 32-bit operand

< In memory or a register

< NO immediate operand

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 22

11

Affected Flags

+ INC and DEC affect five status flags
< Overflow, Sign, Zero, Auxiliary Carry, and Parity
< Carry flag is NOT modified

s NEG affects all the six status flags

<~ Any nonzero operand causes the carry flag to be set

-DATA
B SBYTE -1 ; OFFh
C SBYTE 127 ; 7Fh

-CODE
inc B ; B=0 OF=0 SF=0 ZF=1 AF=1 PF=1
dec B ; B=-1 OF=0 SF=1 ZF=0 AF=1 PF=1
inc C ; C=-128=80h OF=1 SF=1 ZF=0 AF=1 PF=0
neg C ; W=-128 CF=1 OF=1 SF=1 ZF=0 AF=0 PF=0

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 23

ADC and SBB Instruction

s+ ADC Instruction: Addition with Carry
ADC destination, source
destination = destination + source + CF
++ SBB Instruction: Subtract with Borrow
SBB destination, source
destination = destination - source - CF
¢+ Destination can be a register or a memory location
¢+ Source can be a register, memory location, or a constant
¢ Destination and source must be of the same size

% Memory-to-memory arithmetic is not allowed

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 24

12

Extended Arithmetic

% ADC and SBB are useful for extended arithmetic
< Example: 64-bit addition
< Assume first 64-bit integer operand is stored in EBX:EAX
< Second 64-bit integer operand is stored in EDX:ECX

% Solution:
add eax, ecx ;add lower 32 bits
adc ebx, edx ;add upper 32 bits + carry
64-bit result is in EBX:EAX

% STC and CLC Instructions
<~ Used to Set and Clear the Carry Flag

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 25

Next . ..

% Operand Types

+ Data Transfer Instructions
+ Addition and Subtraction

+ Addressing Modes

+« Jump and Loop Instructions
+ Copying a String

% Summing an Array of Integers

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 26

13

Addressing Modes

% Two Basic Questions
<~ Where are the operands?

< How memory addresses are computed?

¢ Intel IA-32 supports 3 fundamental addressing modes
< Register addressing: operand is in a register
< Immediate addressing: operand is stored in the instruction itself

< Memory addressing: operand is in memory

+ Memory Addressing
< Variety of addressing modes
< Direct and indirect addressing

< Support high-level language constructs and data structures

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 27

Register and Immediate Addressing

¢ Register Addressing
< Most efficient way of specifying an operand: no memory access
< Shorter Instructions: fewer bits are needed to specify register

< Compilers use registers to optimize code

+ Immediate Addressing
< Used to specify a constant
< Immediate constant is part of the instruction
<~ Efficient: no separate operand fetch is needed
s Examples
mov eax, ebx ; register-to-register move
add eax, 5 ; 5 Is an immediate constant

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 28

14

Direct Memory Addressing

+ Used to address simple variables in memory

< Variables are defined in the data section of the program

< We use the variable name (label) to address memory directly

<~ Assembler computes the offset of a variable

< The variable offset is specified directly as part of the instruction
s Example

.data

varl DWORD 100

var2 DWORD 200
sum DWORD ?

-code
mov eax, varl
add eax. var? varl, var2, and sum are
mov sum. eax direct memory operands

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 29

Register Indirect Addressing

¢ Problem with Direct Memory Addressing
< Causes problems in addressing arrays and data structures
= Does not facilitate using a loop to traverse an array
< Indirect memory addressing solves this problem
+ Register Indirect Addressing
<> The memory address is stored in a register
< Brackets [] used to surround the register holding the address
< For 32-bit addressing, any 32-bit register can be used
s Example

mov ebx, OFFSET array ; ebx contains the address
mov eax, [ebx] ; [ebx] used to access memory

EBX contains the address of the operand, not the operand itself

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 30

15

Array Sum Example

+ Indirect addressing is ideal for traversing an array

.data
array DWORD 10000h,20000h,30000h

-.code
mov esi, OFFSET array ; esi = array address
mov eax, [esi] ; eax = [array] = 10000h
add esi,4 ; why 47
add eax, [esi] ; eax = eax + [array+4]
add esi,4 ; why 47
add eax, [esi] ; eax = eax + [array+8]

+ Note that ESI register is used as a pointer to array

<~ ESI must be incremented by 4 to access the next array element

= Because each array element is 4 bytes (DWORD) in memory

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 31

Ambiguous Indirect Operands

++ Consider the following instructions:
mov [EBX], 100
add [ESI1], 20
inc [EDI]
<~ Where EBX, ESI, and EDI contain memory addresses
< The size of the memory operand is not clear to the assembler
= EBX, ESI, and EDI can be pointers to BYTE, WORD, or DWORD
+ Solution: use PTR operator to clarify the operand size
mov BYTE PTR [EBX], 100 ; BYTE operand in memory
add WORD PTR [ESI], 20 ; WORD operand in memory
inc DWORD PTR [EDI] ; DWORD operand in memory

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 32

16

Indexed Addressing

% Combines a variable's name with an index register
< Assembler converts variable's name into a constant offset

<~ Constant offset is added to register to form an effective address

< Syntax: [name + index] or name [index]

.data
array DWORD 10000h,20000h,30000h
.code
mov esi, O ; esi = array index
mov eax,arrayl[esi] ; eax = array[0] = 10000h
add esi,4
add eax,array[esi] ; eax = eax + array[4]
add esi,4
add eax, [array+esi] ; eax = eax + array[8]

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 33

Index Scaling

+ Useful to index array elements of size 2, 4, and 8 bytes
<~ Syntax: [name + index * scale] or name [index * scale]
+» Effective address is computed as follows:

<~ Name's offset + Index register * Scale factor

.DATA
arrayB BYTE 10h,20h,30h,40h
arrayW WORD 100h,200h,300h,400h
arrayD DWORD 10000h,20000h,30000h,40000h

-CODE
mov esi, 2
mov al, arrayB[esi] ; AL = 30h
mov ax, arrayW[esi*2] ; AX = 300h
mov eax, arrayD[esi*4] ; EAX = 30000h

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 34

17

Based Addressing

“ Syntax: [Base + Offset]
< Effective Address = Base register + Constant Offset
++ Useful to access fields of a structure or an object

<- Base Register — points to the base address of the structure
< Constant Offset — relative offset within the structure

-DATA mystruct is a structure
mystruct WORD 12 consisting of 3 fields:
DWORD 1985 a word, a double
BYTE *M*" word, and a byte
.CODE
mov ebx, OFFSET mystruct
mov eax, [ebx+2] ; EAX = 1985
mov al, [ebx+6] ; AL = *wm*

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 35

Based-Indexed Addressing

« Syntax: [Base + (Index * Scale) + Offset]

<~ Scale factor is optional and can be 1, 2, 4, or 8

¢ Useful in accessing two-dimensional arrays
< Offset: array address => we can refer to the array by name
<~ Base register: holds row address => relative to start of array
< Index register: selects an element of the row => column index
< Scaling factor: when array element size is 2, 4, or 8 bytes

+ Useful in accessing arrays of structures (or objects)
< Base register: holds the address of the array
< Index register: holds the element address relative to the base

< Offset: represents the offset of a field within a structure

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 36

18

Based-Indexed Examples

.data
matrix DWORD O, 1, 2, 3, 4 ; 4 rows, 5 cols
DWORD 10,11,12,13,14
DWORD 20,21,22,23,24
DWORD 30,31,32,33,34

ROWSIZE EQU SIZEOF matrix ; 20 bytes per row

.code
mov ebx, 2*ROWSIZE ; row index = 2
mov esi, 3 ; col index = 3

mov eax, matrix[ebx+esi*4] EAX = matrix[2][3]
row index = 3
col index 1
EAX = matrix[3][1]

mov ebx, 3*ROWSIZE
mov esi, 1
mov eax, matrix[ebx+esi*4]

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 37

LEA Instruction

“ LEA = Load Effective Address
LEA r32, mem (Flat-Memory)
LEA rl16, mem (Real-Address Mode)

< Calculate and load the effective address of a memory operand
< Flat memory uses 32-bit effective addresses
< Real-address mode uses 16-bit effective addresses

«» LEA is similar to MOV ... OFFSET, except that:
<~ OFFSET operator is executed by the assembler
= Used with named variables: address is known to the assembler
< LEA instruction computes effective address at runtime
= Used with indirect operands: effective address is known at runtime

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 38

19

LEA Examples

.data
array WORD 1000 DUP(?)

.code ; Equivalent to
lea eax, array ; mov eax, OFFSET array
lea eax, array[esi] ; mov eax, esi

; add eax, OFFSET array

lea eax, array[esi*2] ; mov eax, esi
; add eax, eax
; add eax, OFFSET array

lea eax, [ebx+esi*2] ; mov eax, esi
; add eax, eax
; add eax, ebx

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 39

Summary of Addressing Modes

Addressing Modes Assembler converts a variable name into a
/ \ constant offset (called also a displacement)
Register Immediate ~ Memory For indirect addressing, a base/index
/ \ register contains an address/index
Direct Indirect CPU computes the effective
[disp] / N’rass of a memory operand
Register Indirect Based Indexed Based-Indexed
[Base] [Base + disp] [(Indlex « scale) + disp] / \
Based-Indexed Based-Indexed
with no scale factor with scale factor

[Base + Index + disp] [Base + (Index scale) + disp]

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 40

20

Registers Used in 32-Bit Addressing

+ 32-bit addressing modes use the following 32-bit registers

Base + (Index * Scale) + displacement

EAX EAX 1 no displacement

EBX EBX 2 8-bit displacement

ECX ECX 4 32-bit displacement

EDX EDX 8

ESI ESI Only the index register can

have a scale factor

EDI EDI

EBP EBP ESP can be used as a base
register, but not as an index

ESP

16-bit Memory Addressing

OId 16-bit Memory | Used with real-address mode |

addressin
mode g / \ | Only 16-bit registers are used |

Direct Indirect

[diso] // \\ | No Scale Factor |
N T

Register Indirect Based Indexed Based-Indexed
[BX] [BF] [81] [DI] [BX + disp] (51 +disp]
[BP + disp] (D! + disp] / \

Based-Indexea Based-ndexed
with no displacement with displacement

| Only BX or BP can be the base register | [BX + 1] [BP + 8] [BX + 81 + disp]
_ , [BX +DI] [BP +DI] [BX + DI + disp]

| Only Sl or DI can be the index register | [BP + 1 + disp]
(BP + DI + disp]

| Displacement can be 0, 8, or 16 bits |

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 42

21

Default Segments

« When 32-bit register indirect addressing is used ...
<~ Address in EAX, EBX, ECX, EDX, ESI, and EDI is relative to DS
< Address in EBP and ESP is relative to SS
< In flat-memory model, DS and SS are the same segment
= Therefore, no need to worry about the default segment
“ When 16-bit register indirect addressing is used ...
< Address in BX, SI, or Dl is relative to the data segment DS
<~ Address in BP is relative to the stack segment SS
< In real-address mode, DS and SS can be different segments
% We can override the default segment using segment prefix
< mov ax, ss:[bx] ;address in bx is relative to stack segment

< mov ax, ds:[bp] ;addressin bp is relative to data segment

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 43

Next . ..

% Operand Types

+ Data Transfer Instructions
+ Addition and Subtraction

+ Addressing Modes

+« Jump and Loop Instructions
+ Copying a String

% Summing an Array of Integers

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 44

22

JMP Instruction

+ JMP is an unconditional jump to a destination instruction
% Syntax: JMP destination
s JMP causes the modification of the EIP register

EIP « destination address

« A label is used to identify the destination address

s Example: top:

Jmp top

+ JMP provides an easy way to create a loop

< Loop will continue endlessly unless we find a way to terminate it

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 45

LOOP Instruction

% The LOOP instruction creates a counting loop
% Syntax: LOOP destination
* Logic: ECX « ECX -1
if ECX != 0, jump to destination label
s ECX register is used as a counter to count the iterations

s Example: calculate the sum of integers from 1 to 100

mov eax, O ; sum = eax
mov ecx, 100 ; count = ecx
L1:
add eax, ecx ; accumulate sum in eax
loop L1 ; decrement ecx until O

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 46

23

Your turn . ..

mov eax,6

What will be the final value of EAX? mov ecx,4
Solution: 10 L1z
INC eax
loop L1

How many times will the loop execute?
mov eax,l1

Solution: 232 = 4,294 ,967,296 mov ecx,0
. . L2:
What will be the final value of EAX? dec eax
Solution: same value 1 loop L2

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 47

Nested Loop

If you need to code a loop within a loop, you must
save the outer loop counter's ECX value

-DATA

count DWORD ?
-CODE

mov ecx, 100 ; set outer loop count to 100
L1:

mov count, ecx

mov ecx, 20

save outer loop count
set inner loop count to 20

L2: .
loop L2 ; repeat the inner loop
mov ecx, count ; restore outer loop count
loop L1 ; repeat the outer loop

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 48

24

Next . ..

% Operand Types

+ Data Transfer Instructions
+ Addition and Subtraction

+ Addressing Modes

+« Jump and Loop Instructions
+» Copying a String

% Summing an Array of Integers

Basic Instructions & Addressing Modes COE 205 - KFUPM

© Muhamed Mudawar — slide 49

Copying a String

The following code copies a string from source to target

-DATA

source BYTE "This is the source string",0
target BYTE SIZEOF source DUP(0)
.CODE
main PROC |Good use of SIZEOF|

mov esi,0 ; Index register
mov ecx, SIZEOF source ; loop counter

L1:
mov al,source[esi] ; get char from source
mov target[esi],al ; store it in the target
inc esi 1 ; Increment index
loop L1 ESlis used to ; loop for entire string
exit index source &

main ENDP target strings

END main

Basic Instructions & Addressing Modes COE 205 - KFUPM

© Muhamed Mudawar — slide 50

25

Summing an Integer Array

This program calculates the sum of an array of 16-bit integers

-DATA
intarray WORD 100h,200h,300h,400h,500h,600h
.CODE
main PROC
mov esi, OFFSET intarray
mov ecx, LENGTHOF intarray
mov ax, O

address of intarray
loop counter
zero the accumulator

L1:
add ax, [esi] ; accumulate sum in ax
add esi, 2 ; point to next integer
loop L1 ; repeat until ecx = 0
exit

main ENDP esi is used as a pointer

END main | contains the address of an array element

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 51

Summing an Integer Array - cont'd

This program calculates the sum of an array of 32-bit integers

-DATA
intarray DWORD 10000h,20000h,30000h,40000h,50000h,60000h
.CODE
main PROC
mov esi, O
mov ecx, LENGTHOF intarray
mov eax, O

index of intarray
loop counter
zero the accumulator

L1:
add eax, intarray[esi*4] ; accumulate sum in eax
inc esi ; Increment index
loop L1 ; repeat until ecx = 0
exit

main ENDP esi is used as a scaled index

END main

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 52

26

PC-Relative Addressing

The following loop calculates the sum: 1 to 1000

Offset Machine Code Source Code

00000000 B8 00000000 mov eax, O
00000005 B9 000003E8 mov ecx, 1000
O000000A L1:

0O000000A 03 C1 add eax, ecx
0000000C E2 FC loop L1
0000000E - e .

When LOOP is assembled, the label L1 in LOOP is translated as FC
which is equal to —4 (decimal). This causes the loop instruction to
jump 4 bytes backwards from the offset of the next instruction. Since
the offset of the next instruction = 0000000E, adding —4 (FCh) causes
a jump to location 0000000A. This jump is called PC-relative.

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 53

PC-Relative Addressing - cont'd

Assembler:

Calculates the difference (in bytes), called PC-relative offset, between
the offset of the target label and the offset of the following instruction

Processor:
Adds the PC-relative offset to EIP when executing LOOP instruction

If the PC-relative offset is encoded in a single signed byte,
(a) what is the largest possible backward jump?
(b) what is the largest possible forward jump?

Answers: (a) —128 bytes and (b) +127 bytes

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 54

27

Summary

+ Data Transfer
< MOV, MOVSX, MOVZX, and XCHG instructions
¢ Arithmetic
< ADD, SUB, INC, DEC, NEG, ADC, SBB, STC, and CLC
< Carry, Overflow, Sign, Zero, Auxiliary and Parity flags
+» Addressing Modes
< Register, immediate, direct, indirect, indexed, based-indexed
< Load Effective Address (LEA) instruction
< 32-bit and 16-bit addressing
% JMP and LOOP Instructions
< Traversing and summing arrays, copying strings
< PC-relative addressing

Basic Instructions & Addressing Modes COE 205 - KFUPM © Muhamed Mudawar - slide 55

28

