
1

Basic Concepts

COE 205
Computer Organization and Assembly Language

Computer Engineering Department

King Fahd University of Petroleum and Minerals

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 2

Overview
Welcome to COE 205

Assembly-, Machine-, and High-Level Languages

Assembly Language Programming Tools

Programmer’s View of a Computer System

Data Representation

2

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 3

Welcome to COE 205
Course Web Page:

http://www.ccse.kfupm.edu.sa/~mudawar/coe205/index.htm

Course Lab Page
http://www.ccse.kfupm.edu.sa/~mudawar/coe205/lab/index.htm

Check with the Lab Instructor for more information about the
new lab experiments

Software Tools
Microsoft Macro Assembler (MASM) version 6.15

Link Libraries provided by Author (Irvine32.lib and Irivine16.lib)

Microsoft Windows debugger

ConTEXT Editor

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 4

Textbook
Kip Irvine: Assembly Language for Intel-Based Computers

4th edition (2003) is now available in the bookstore

5th edition (2007) is coming soon but not available this semester

Read the textbook!
Key for learning
and obtaining a
good grade

3

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 5

Goals and Required Background
Goals: broaden student’s interest and knowledge in …

Basic organization of a computer system

Intel IA-32 processor architecture

How to write assembly language programs

How high-level languages translate into assembly language

Interaction between the assembly language programs, libraries,
the operating system, and the hardware

How interrupts, system calls, and handlers work

How to debug a program at the machine level

Required Background
The student should already be able to program confidently in at
least one high-level programming language, such as Java or C.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 6

Grading Policy

Laboratory 20%

Assignments and Quizzes 25%

Midterm Exam I 15%

Midterm Exam II 20%

Final Exam 20%

4

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 7

Next …
Welcome to COE 205

Assembly-, Machine-, and High-Level Languages

Assembly Language Programming Tools

Programmer’s View of a Computer System

Data Representation

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 8

Some Important Questions to Ask

What is Assembly Language?

Why Learn Assembly Language?

What is Machine Language?

How is Assembly related to Machine Language?

What is an Assembler?

How is Assembly related to High-Level Language?

Is Assembly Language portable?

5

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 9

A Hierarchy of Languages

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 10

Assembly and Machine Language
Machine language

Native to a processor: executed directly by hardware

Instructions consist of binary code: 1s and 0s

Assembly language
Slightly higher-level language

Readability of instructions is better than machine language

One-to-one correspondence with machine language instructions

Assemblers translate assembly to machine code

Compilers translate high-level programs to machine code
Either directly, or

Indirectly via an assembler

6

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 11

Compiler and Assembler

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 12

Translating Languages

English: D is assigned the sum of A times B plus 10.

High-Level Language: D = A * B + 10

Intel Assembly Language:
mov eax, A
mul B
add eax, 10
mov D, eax

Intel Machine Language:
A1 00404000
F7 25 00404004
83 C0 0A
A3 00404008

A statement in a high-level language is translated
typically into several machine-level instructions

7

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 13

Advantages of High-Level Languages

Program development is faster
High-level statements: fewer instructions to code

Program maintenance is easier
For the same above reasons

Programs are portable
Contain few machine-dependent details

Can be used with little or no modifications on different machines

Compiler translates to the target machine language

However, Assembly language programs are not portable

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 14

Why Learn Assembly Language?
Two main reasons:

Accessibility to system hardware

Space and time efficiency

Accessibility to system hardware
Assembly Language is useful for implementing system software

Also useful for small embedded system applications

Space and Time efficiency
Understanding sources of program inefficiency

Tuning program performance

Writing compact code

8

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 15

Assembly vs High-Level Languages
Some representative types of applications:

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 16

Next …
Welcome to COE 205

Assembly-, Machine-, and High-Level Languages

Assembly Language Programming Tools

Programmer’s View of a Computer System

Data Representation

9

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 17

Assembler
Software tools are needed for editing, assembling,
linking, and debugging assembly language programs

An assembler is a program that converts source-code
programs written in assembly language into object files
in machine language

Popular assemblers have emerged over the years for the
Intel family of processors. These include …

TASM (Turbo Assembler from Borland)

NASM (Netwide Assembler for both Windows and Linux), and

GNU assembler distributed by the free software foundation

You will use MASM (Macro Assembler from Microsoft)

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 18

Linker and Link Libraries
You need a linker program to produce executable files

It combines your program's object file created by the
assembler with other object files and link libraries, and
produces a single executable program

LINK32.EXE is the linker program provided with the
MASM distribution for linking 32-bit programs

We will also use a link library for input and output

Called Irvine32.lib developed by Kip Irvine

Works in Win32 console mode under MS-Windows

10

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 19

Debugger
Allows you to trace the execution of a program

Allows you to view code, memory, registers, etc.

You will use the 32-bit Windows debugger

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 20

Editor
Allows you to create assembly language source files

Some editors provide syntax highlighting features and
can be customized as a programming environment

11

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 21

Next …
Welcome to COE 205

Assembly-, Machine-, and High-Level Languages

Assembly Language Programming Tools

Programmer’s View of a Computer System

Data Representation

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 22

Programmer’s View of a Computer System

Application Programs
High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic Level 0

Level 1

Level 2

Level 3

Level 4

Level 5
Increased level
of abstraction

Each level
hides the

details of the
level below it

12

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 23

Programmer's View – 2
Application Programs (Level 5)

Written in high-level programming languages
Such as Java, C++, Pascal, Visual Basic . . .
Programs compile into assembly language level (Level 4)

Assembly Language (Level 4)
Instruction mnemonics are used
Have one-to-one correspondence to machine language
Calls functions written at the operating system level (Level 3)
Programs are translated into machine language (Level 2)

Operating System (Level 3)
Provides services to level 4 and 5 programs
Translated to run at the machine instruction level (Level 2)

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 24

Programmer's View – 3
Instruction Set Architecture (Level 2)

Specifies how a processor functions

Machine instructions, registers, and memory are exposed

Machine language is executed by Level 1 (microarchitecture)

Microarchitecture (Level 1)
Controls the execution of machine instructions (Level 2)

Implemented by digital logic (Level 0)

Digital Logic (Level 0)
Implements the microarchitecture

Uses digital logic gates

Logic gates are implemented using transistors

13

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 25

Next …
Welcome to COE 205

Assembly-, Machine-, and High-Level Languages

Assembly Language Programming Tools

Programmer’s View of a Computer System

Data Representation

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 26

Data Representation
Binary Numbers

Hexadecimal Numbers

Base Conversions

Integer Storage Sizes

Binary and Hexadecimal Addition

Signed Integers and 2's Complement Notation

Binary and Hexadecimal subtraction

Carry and Overflow

Character Storage

14

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 27

Binary Numbers

Digits are 1 and 0
1 = true

0 = false

MSB – most significant bit

LSB – least significant bit

Bit numbering:

015

1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0
MSB LSB

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 28

Binary Numbers

Each digit (bit) is either 1 or 0

Each bit represents a power of 2:

1 1 1 1 1 1 1 1

27 26 25 24 23 22 21 20

Every binary
number is a
sum of powers
of 2

15

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 29

Converting Binary to Decimal

Weighted positional notation shows how to calculate the
decimal value of each binary bit:

Decimal = (dn-1 × 2n-1) + (dn-2 × 2n-2) + ... + (d1 × 21) + (d0 × 20)

d = binary digit

binary 00001001 = decimal 9:

(1 × 23) + (1 × 20) = 9

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 30

Convert Unsigned Decimal to Binary
Repeatedly divide the decimal integer by 2. Each
remainder is a binary digit in the translated value:

37 = 100101
stop when

quotient is zero

least significant bit

most significant bit

16

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 31

Hexadecimal Integers
Binary values are represented in hexadecimal.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 32

Converting Binary to Hexadecimal
• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer
000101101010011110010100 to hexadecimal:

17

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 33

Converting Hexadecimal to Decimal

Multiply each digit by its corresponding power of 16:

Decimal = (d3 × 163) + (d2 × 162) + (d1 × 161) + (d0 × 160)

d = hexadecimal digit

Examples:

Hex 1234 = (1 × 163) + (2 × 162) + (3 × 161) + (4 × 160) =

Decimal 4,660

Hex 3BA4 = (3 × 163) + (11 * 162) + (10 × 161) + (4 × 160) =

Decimal 15,268

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 34

Converting Decimal to Hexadecimal

Decimal 422 = 1A6 hexadecimal

stop when
quotient is zero

least significant digit

most significant digit

Repeatedly divide the decimal integer by 16. Each
remainder is a hex digit in the translated value:

18

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 35

Integer Storage Sizes
byte

16

8

32

word

doubleword

64quadword

What is the largest unsigned integer that may be stored in 20 bits?

Standard sizes:

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 36

Binary Addition
Start with the least significant bit (rightmost bit)

Add each pair of bits

Include the carry in the addition, if present

0 0 0 0 0 1 1 1

0 0 0 0 0 1 0 0

+

0 0 0 0 1 0 1 1

1

(4)

(7)

(11)

carry:

01234bit position: 567

19

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 37

Hexadecimal Addition

Divide the sum of two digits by the number base (16).
The quotient becomes the carry value, and the
remainder is the sum digit.

36 28 28 6A
42 45 58 4B
78 6D 80 B5

11

21 / 16 = 1, remainder 5

Important skill: Programmers frequently add and subtract the
addresses of variables and instructions.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 38

Signed Integers
Several ways to represent a signed number

Sign-Magnitude

Biased

1's complement

2's complement

Divide the range of values into 2 equal parts
First part corresponds to the positive numbers (≥ 0)

Second part correspond to the negative numbers (< 0)

Focus will be on the 2's complement representation
Has many advantages over other representations

Used widely in processors to represent signed integers

20

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 39

Two's Complement Representation

+12612601111110

+2200000010

.

-125511111111

-225411111110

.

-12712910000001

-12812810000000

+12712701111111

+1100000001
0000000000

Signed
value

Unsigned
value

8-bit Binary
value

Positive numbers
Signed value = Unsigned value

Negative numbers
Signed value = Unsigned value – 2n

n = number of bits

Negative weight for MSB
Another way to obtain the signed
value is to assign a negative weight
to most-significant bit

= -128 + 32 + 16 + 4 = -76

1 0 1 1 0 1 0 0

-128 64 32 16 8 4 2 1

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 40

Forming the Two's Complement

Sum of an integer and its 2's complement must be zero:
00100100 + 11011100 = 00000000 (8-bit sum) ⇒ Ignore Carry

The easiest way to obtain the 2's complement of a
binary number is by starting at the LSB, leaving all the

0s unchanged, look for the first occurrence of a 1. Leave
this 1 unchanged and complement all the bits after it.

00100100 = +36starting value

11011011step1: reverse the bits (1's complement)

11011100 = -36sum = 2's complement representation

+ 1step 2: add 1 to the value from step 1

21

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 41

Sign Bit
Highest bit indicates the sign. 1 = negative, 0 = positive

1 1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

sign bit

Negative

Positive

If highest digit of a hexadecimal is > 7, the value is negative

Examples: 8A and C5 are negative bytes

A21F and 9D03 are negative words

B1C42A00 is a negative double-word

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 42

Sign Extension
Step 1: Move the number into the lower-significant bits

Step 2: Fill all the remaining higher bits with the sign bit

This will ensure that both magnitude and sign are correct

Examples
Sign-Extend 10110011 to 16 bits

Sign-Extend 01100010 to 16 bits

Infinite 0s can be added to the left of a positive number

Infinite 1s can be added to the left of a negative number

10110011 = -77 11111111 10110011 = -77

01100010 = +98 00000000 01100010 = +98

22

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 43

Two's Complement of a Hexadecimal
To form the two's complement of a hexadecimal

Subtract each hexadecimal digit from 15

Add 1

Examples:
2's complement of 6A3D = 95C2 + 1 = 95C3

2's complement of 92F0 = 6D0F + 1 = 6D10

2's complement of FFFF = 0000 + 1 = 0001

No need to convert hexadecimal to binary

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 44

Binary Subtraction
When subtracting A – B, convert B to its 2's complement

Add A to (–B)

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 (2's complement)

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 (same result)

Carry is ignored, because
Negative number is sign-extended with 1's

You can imagine infinite 1's to the left of a negative number

Adding the carry to the extended 1's produces extended zeros

Practice: Subtract 00100101 from 01101001.

– +

23

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 45

Hexadecimal Subtraction
When a borrow is required from the digit to the left,
add 16 (decimal) to the current digit's value

Last Carry is ignored

Practice: The address of var1 is 00400B20. The address of the next
variable after var1 is 0040A06C. How many bytes are used by var1?

C675
A247
242E

-1

-

16 + 5 = 21

C675
5DB9 (2's complement)
242E (same result)

1

+

1

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 46

Ranges of Signed Integers
The unsigned range is divided into two signed ranges for positive
and negative numbers

Practice: What is the range of signed values that may be stored in 20 bits?

24

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 47

Carry and Overflow
Carry is important when …

Adding or subtracting unsigned integers

Indicates that the unsigned sum is out of range

Either < 0 or >maximum unsigned n-bit value

Overflow is important when …
Adding or subtracting signed integers

Indicates that the signed sum is out of range

Overflow occurs when
Adding two positive numbers and the sum is negative

Adding two negative numbers and the sum is positive

Can happen because of the fixed number of sum bits

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 48

0 1 0 0 0 0 0 0

0 1 0 0 1 1 1 1
+

1 0 0 0 1 1 1 1

79

64

143
(-113)

Carry = 0 Overflow = 1

1

1 0 0 1 1 1 0 1

1 1 0 1 1 0 1 0
+

0 1 1 1 0 1 1 1

218 (-38)

157 (-99)

119

Carry = 1 Overflow = 1

111

Carry and Overflow Examples
We can have carry without overflow and vice-versa
Four cases are possible

1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 0 0 1 1 1

15

245 (-8)

7

Carry = 1 Overflow = 0

11111

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 1 0 1 1 1

15

8

23

Carry = 0 Overflow = 0

1

25

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 49

Character Storage
Character sets

Standard ASCII: 7-bit character codes (0 – 127)

Extended ASCII: 8-bit character codes (0 – 255)

Unicode: 16-bit character codes (0 – 65,535)

Unicode standard represents a universal character set
Defines codes for characters used in all major languages

Used in Windows-XP: each character is encoded as 16 bits

UTF-8: variable-length encoding used in HTML
Encodes all Unicode characters

Uses 1 byte for ASCII, but multiple bytes for other characters

Null-terminated String
Array of characters followed by a NULL character

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 50

Printable ASCII Codes

DEL~}|{zyxwvutsrqp7
onmlkjihgfedcba`6

_^]\[ZYXWVUTSRQP5

ONMLKJIHGFEDCBA@4
?>=<;:98765432103
/.-,+*)('&%$#"!space2
FEDCBA9876543210

Examples:
ASCII code for space character = 20 (hex) = 32 (decimal)

ASCII code for 'L' = 4C (hex) = 76 (decimal)

ASCII code for 'a' = 61 (hex) = 97 (decimal)

26

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 51

Control Characters
The first 32 characters of ASCII table are used for control
Control character codes = 00 to 1F (hex)

Not shown in previous slide

Examples of Control Characters
Character 0 is the NULL character ⇒ used to terminate a string
Character 9 is the Horizontal Tab (HT) character
Character 0A (hex) = 10 (decimal) is the Line Feed (LF)
Character 0D (hex) = 13 (decimal) is the Carriage Return (CR)
The LF and CR characters are used together

They advance the cursor to the beginning of next line

One control character appears at end of ASCII table
Character 7F (hex) is the Delete (DEL) character

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 52

Terminology for Data Representation
Binary Integer

Integer stored in memory in its binary format

Ready to be used in binary calculations

ASCII Digit String
A string of ASCII digits, such as "123"

ASCII binary
String of binary digits: "01010101"

ASCII decimal
String of decimal digits: "6517"

ASCII hexadecimal
String of hexadecimal digits: "9C7B"

27

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM © Muhamed Mudawar – slide 53

Summary
Assembly language helps you learn how software is constructed at
the lowest levels

Assembly language has a one-to-one relationship with machine
language

An assembler is a program that converts assembly language
programs into machine language

A linker combines individual files created by an assembler into a
single executable file

A debugger provides a way for a programmer to trace the execution of
a program and examine the contents of memory and registers

A computer system can be viewed as consisting of layers. Programs
at one layer are translated or interpreted by the next lower-level layer

Binary and Hexadecimal numbers are essential for programmers
working at the machine level.

