
COE 205 Lab Manual Lab 8: Integer Arithmetic and Bit Manipulation - Page 78

Prepared by Dr. Muhamed Mudawar © KFUPM – September 2006

Lab 8: Integer Arithmetic and Bit Manipulation

Contents
8.1. Bitwise Logical Instructions
8.2. Shift and Rotate Instructions
8.3. Integer Multiplication and Division
8.4. Multiword Arithmetic

8.1 Bitwise Logical Instructions
The IA-32 instruction set contains the AND, OR, XOR, NOT, and TEST instructions that
implement bitwise logical operations. The source and destination operands can be bytes,
words, or double words, and they must be of the same size. These instructions are listed in the
table shown below:

Instruction Description

AND destination, source
Bitwise AND: Result bit is 1 if both bits are 1.
Modifies ZF, SF, and PF flags according to the result value.
Always clear the CF and OF flags

OR destination, source
Bitwise OR: Result bit is 1 if at least one bit is 1.
Modifies ZF, SF, and PF flags according to the result value.
Always clear the CF and OF flags.

XOR destination, source
Bitwise XOR: Result bit is 1 if one bit is 1 and the other bit is 0.
Modifies ZF, SF, and PF flags according to the result value.
Always clear the CF and OF flags.

NOT destination
Bitwise NOT: Toggles all bits in an operand (1’s complement).
No flags are affected by the NOT instruction.

TEST destination, source
Bitwise TEST: does an AND, but does not write destination.
Modifies ZF, SF, and PF flags in accordance to the AND instruction.
Always clear the CF and OF flags.

8.1.1 The CPU Flags
Recall from Lab 4 (Basic Instructions) the zero flag (ZF), the sign flag (SF) the carry flag
(CF), the overflow flag (OF), and the parity flag (PF):

• The Zero flag is set when the result of an operation is zero.
• The Sign flag is set when the high bit of the destination operand is 1 (or negative).
• The Carry flag is set when the unsigned result is out of range.
• The Overflow flag is set when the signed result is out of range.
• The Parity flag is set when an even number of 1 bits exist in the low byte of the result.

8.1.2 Converting the Letter Case
Compare the ASCII codes of capital ‘A’ and lowercase ‘a’. Only bit 5 is different.
0 1 0 0 0 0 0 1 = 41h = ‘A’

0 1 1 0 0 0 0 1 = 61h = ‘a’

The AND instruction provides a simple way to change a letter to uppercase:
AND AL, 11011111b ; clear bit 5 of AL

COE 205 Lab Manual Lab 8: Integer Arithmetic and Bit Manipulation - Page 79

Prepared by Dr. Muhamed Mudawar © KFUPM – September 2006

The OR instruction provides a simple way to change a letter to lowercase:
OR AL, 00100000b ; set bit 5 of AL

The XOR instruction toggles the letter case (from uppercase to lowercase and vice versa):
XOR AL, 00100000b ; toggle bit 5 of AL

The AND instruction is used to clear selected bits of a destination operand, the OR is used to
set selected bits, and the XOR instruction is used to complement selected bits.

8.1.3 Cutting and Pasting Bits
The AND and OR instructions can be used together to “cut and paste” selected bits from two
or more operands. The following code creates a new byte in the AL register by combining
even bits from AL with odd bits from the BL register:
AND AL, 55h ; Clear odd bits of AL (55h = 01010101b)
AND BL, 0AAh ; Clear even bits of BL (0AAh = 10101010b)
OR AL, BL ; Paste them together

8.1.4 Practice on Bitwise Logical Instructions
Show the value of EAX and flags where indicated:
mov eax, 8A4B401Ch
and eax, 7C3F89D6h ; EAX =

mov eax, 8A4B401Ch
or eax, 7C3F89D6h ; EAX =

mov eax, 8A4B401Ch
xor eax, 7C3F89D6h ; EAX =

mov eax, 8A4B401Ch
not eax ; EAX =

mov eax, 8A4B401Ch
test eax, 0FEh ; SF = ZF = PF =

mov eax, 8A4B401Ch
bt eax, 10 ; CF = EAX =

To verify your answers write the above instructions in a program and trace its execution.

8.1.5 String Encryption
The XOR instruction provides an easy way to perform data encryption. A string entered by
the user is transformed into an unintelligible string (called cipher text) using a key. The cipher
text can be stored or transmitted to a remote location without unauthorized persons being able
to read it. The intended viewer uses a program to decrypt the cipher text and produce the
original plain text.

The following encrypt procedure uses a technique called symmetric encryption, which means
that the same key is used for both encryption and decryption. The encrypt procedure uses the
XOR instruction to perform the encryption and decryption of characters in a string. The
following example demonstrates the encryption and decryption of character ‘T’.

Encryption

01010100 = Original character ‘T’
00010010 = Encryption Key

01000110 = Encrypted character ‘F’

XOR

Decryption

01000110 = Encrypted character ‘F’
00010010 = Encryption Key

01010100 = Original character ‘T’

XOR

COE 205 Lab Manual Lab 8: Integer Arithmetic and Bit Manipulation - Page 80

Prepared by Dr. Muhamed Mudawar © KFUPM – September 2006

encrypt PROC
 push ecx ; save registers
 push edx
L1:
 xor [edx], AL ; encrypt char pointed by edx
 inc edx ; point to next character
 loop L1

 pop edx ; restore register values
 pop ecx
 ret ; return
encrypt ENDP

8.1.6 Assemble, Link, and Trace the Execution of Program encrypt.asm
Show the encryption of string “Top Secret Message!” if the encryption key = 00010010b:

Show the encryption of string “Attack at dawn.” if the encryption key = 00010010b:

Show the encryption of string “Attack at dawn.” if the encryption key = 00011010b:

8.2 Shift and Rotate Instructions
Shifting is to move bits left and right inside an operand. There are two basic ways to shift the
bits. The first, called a logical shift, fills the newly created bit position with zero. In the
following diagram, a byte is logically shifted one position to the right. The highest bit is
assigned 0 and the bit which is shifted out is stored in the carry flag.

The other type of shift is called an arithmetic shift. The newly created bit position is filled
with a copy of the original number’s sign bit. It works only with shift arithmetic right.

A drawback of the shift instructions is that the bits that are shifted out are lost, except that the
last bit shifted out is stored in the carry flag. There may be situations where we want to keep
these bits. The rotate instructions can be used instead. They are divided into two types: the
normal rotate, and the rotate through the carry flag.

An example of a rotate instruction is ROL (rotate left). This instruction shifts each bit to the
left according to a specific count. The highest bit rotates left to become the lowest bit. The
last highest bit that was rotated left is stored in the carry flag.

The rotate through carry flag includes the carry flag in the rotation process. For example, the
RCL (rotate carry left) instruction rotates the carry flag to become the lowest bit. You can
think of the carry flag as an extra bit attached to the number, as if it were the highest bit.

 CF

 CF 0

 CF

 CF

COE 205 Lab Manual Lab 8: Integer Arithmetic and Bit Manipulation - Page 81

Prepared by Dr. Muhamed Mudawar © KFUPM – September 2006

The shift and rotate instructions are listed in the following table. The destination can be an 8,
16, or 32-bit operand stored either in a register or in memory. The count operand specifies the
number of bit positions to be shifted. The count can be given as an 8-bit constant value or in
the CL register. These instructions modify the Zero, Sign, and Parity flags according to the
result value. They modify the Carry flag according to the bit that was last shifted out. They
set the Overflow flag for a single-bit shift or rotate if the sign bit has changed. The Overflow
flag is undefined if the count is greater than 1.

Instruction Description
SHL destination, count Shift left (logical). Zero is inserted from the right.

SHR destination, count Shift right (logical). Zero is inserted from the left.

SAL destination, count Shift arithmetic left. Same as SHL.

SAR destination, count Shift arithmetic right. Sign bit is inserted from the left.

ROL destination, count Rotate left.

ROR destination, count Rotate right.

RCL destination, count Rotate carry left.

RCR destination, count Rotate carry right.

8.2.1 SHLD and SHRD Instructions
The SHLD and SHRD are double precision shift instructions that operate on three operands.
The destination and source operands can be 16 or 32 bits, and they must be of the same size.
The count can be an 8-bit constant or the CL register.

SHLD destination, source, count
SHRD destination, source, count

The SHLD/SHRD instructions shift a destination operand a given number of bits specified by
count. The source operand supplies the bits that have to be shifted into the destination
operand. However, the source operand is not modified. The last bit shifted out is stored in the
Carry flag. The destination can be a register or memory, but the source should be a register.

8.2.2 Practice on Shift and Rotate Instructions
Show the value of CF and EAX after each shift/rotate instruction has executed:
mov eax, 8A4B401Ch
shl eax, 1 ; CF = EAX =

mov eax, 8A4B401Ch
shr eax, 1 ; CF = EAX =

mov eax, 8A4B401Ch
sar eax, 1 ; CF = EAX =

mov eax, 8A4B401Ch
rol eax, 4 ; CF = EAX =

mov eax, 8A4B401Ch
ror eax, 8 ; CF = EAX =

stc ; set carry flag
mov eax, 8A4B401Ch
rcl eax, 1 ; CF = EAX =

destinationCF source

destination CFsource

COE 205 Lab Manual Lab 8: Integer Arithmetic and Bit Manipulation - Page 82

Prepared by Dr. Muhamed Mudawar © KFUPM – September 2006

stc ; set carry flag
mov eax, 8A4B401Ch
rcr eax, 4 ; CF = EAX =

mov eax, 8A4B401Ch
mov ebx, 7C3F89D6h
shld eax, ebx, 8 ; CF = EAX =

mov eax, 8A4B401Ch
mov ebx, 7C3F89D6h
shrd eax, ebx, 12 ; CF = EAX =

To verify your answers write the above instructions in a program and trace its execution.

8.2.3 Binary Multiplication and Division
Shift operations are very effective in multiplying or dividing binary numbers by a power of 2.
In the binary number system, if we want to multiply a number by 2, we simply append a 0 to
the right, which is analogous to shifting left by 1 bit. In general, shifting an integer n bits to
the left multiplies it by 2n.

Similarly, division by 2 is analogous to shifting right by 1 bit. In general, shifting an integer n
bits to the right divides it by 2n. This division process corresponds to integer division, which
discards any fractional part of the result. For signed integers, we use shift arithmetic right
instead of shift right to preserve the sign of the integer. The following are examples:

SHL AL = 00001011 = +11 AL = 11110101 = –11

SHL AL, 1
SHL AL, 2
SHL AL, 3

AL = 00010110 = +22
AL = 00101100 = +44
AL = 01011000 = +88

AL = 11101010 = –22
AL = 11010100 = –44
AL = 10101000 = –88

SAR AL = 01010000 = +80 AL = 10110000 = –80

SAR AL, 1
SAR AL, 2
SAR AL, 3

AL = 00101000 = +40
AL = 00010100 = +20
AL = 00001010 = +10

AL = 11011000 = –40
AL = 11101100 = –20
AL = 11110110 = –10

8.2.4 Practice on Binary Multiplication and Division
Write instructions that calculate EAX × 24, using binary multiplication. Hint: 24 = 24 + 23.

Write instructions that calculate EAX × 15, using binary multiplication. Hint: 15 = 24 – 20.

Write an instruction that calculates EAX / 16, using signed binary division.

COE 205 Lab Manual Lab 8: Integer Arithmetic and Bit Manipulation - Page 83

Prepared by Dr. Muhamed Mudawar © KFUPM – September 2006

8.2.5 Converting a Number to ASCII Hexadecimal Format
The following procedure converts a 32-bit number stored in the EAX register into ASCII
hexadecimal format. It stores the hexadecimal characters in a string passed by reference. The
address of the string is passed as a parameter in the EDX register.

A loop is used to traverse all the bits of the EAX register. At the beginning of the loop
iteration, the upper 4 bits of EAX are rotated left to become the lowest 4 bits. The ROL
instruction is used for this purpose. Then, the AND instruction keeps only the lower 4 bits in
EBX by clearing all the remaining bits. These 4 bits are used to index hexarray, which
converts them into a hexadecimal character. After repeating the loop 8 iterations, all the bits
of EAX are traversed and converted. Because the ROL instruction is used in loop L1, the
value of the EAX register is brought back to its initial value at the end of the loop.
Convert2Hex PROC
 push ebx ; save registers
 push ecx
 push edx
 mov ecx, 8 ; 8 iterations
L1:
 rol eax, 4 ; rotate upper 4 bits of eax
 mov ebx, eax
 and ebx, 15 ; keep lower 4 bits in ebx
 mov bl, hexarray[ebx] ; convert 4 bits to Hex character
 mov [edx], bl ; store Hex char in string
 add edx, 1 ; point to next char in string
 loop L1

 mov BYTE PTR [edx], 0 ; Terminate string with a NULL char
 pop edx ; restore register values
 pop ecx
 pop ebx
 ret ; return
 hexarray BYTE "0123456789ABCDEF"
Convert2Hex ENDP

8.2.6 Lab Work: Assemble, Link, and Trace Program convert.asm
What is the return string of Convert2Hex when EAX = 123456789? ..

What is the return string of Convert2Hex when EAX = 987654321? ..

8.2.7 Lab Work: Complete the Convert2Bin Procedure
Complete the writing of the Convert2Bin procedure that converts a number in EAX to ASCII
binary format. Test your procedure by calling it from the main procedure.

8.3 Integer Multiplication and Division
The Intel instruction set lets you multiply and divide 8-bit, 16-bit, and 32-bit integers using
the MUL, IMUL, DIV, and IDIV instructions.

8.3.1 MUL and IMUL Instructions
The MUL (unsigned multiply) instruction multiplies an 8-bit, 16-bit, or 32-bit operand by
AL, AX, or EAX. This instruction takes only one operand, which is the multiplier. The
multiplicand defaults to the AL, AX, or EAX register. It has the following format:

MUL multiplier ; Multiplicand is AL, AX, or EAX depending on size of multiplier

COE 205 Lab Manual Lab 8: Integer Arithmetic and Bit Manipulation - Page 84

Prepared by Dr. Muhamed Mudawar © KFUPM – September 2006

The product is twice the size of the multiplicand and multiplier and is stored in the AX,
DX:AX, or EDX:EAX registers respectively. The following table shows the details:

The r/m32 notation means that the multiplier should be a 32-bit register or memory operand.
MUL sets the Carry and Overflow flags if the upper half of the product is not equal to zero.

The IMUL (integer multiply) instruction performs signed integer multiplication. It has the
same syntax and uses the same operands as the MUL instruction. What is different is that it
preserves the sign of the product. IMUL sets the Carry and Overflow flags if the upper half of
the product is not a sign extension of the lower half.

The IMUL instruction provides two more general-purpose formats:
IMUL destination, source
IMUL destination, source, constant

In the two- and three-operand formats, the source and destination must be both either 16-bit
or 32-bit operands. In the two-operand format, the result of destination × source is stored in
destination. In the three-operand format, the result of source × constant is stored in
destination. The result is of the same length as the operands. While source can be either in a
register or memory, the destination must be a register.

8.3.2 Lab Work: Practice on MUL and IMUL Instructions
Guess and show the values of the specified registers and flags:
mov al, -4 ; AL = 0FCh = 252
mov bl, 4
mul bl ; CF = AX =

mov al, -4
mov bl, 4
imul bl ; OF = AX =

mov ax, 2000h
mov bx, 100h
mul bx ; CF = DX = AX =

mov eax, 12345h
mov ebx, 1000h
mul ebx ; CF = EDX = EAX =

mov ecx, -16
mov edx, -20
imul ecx, edx ; OF = ECX =

mov ecx, 12345h
imul ebx, ecx, 200h ; OF = EBX =

To verify your answers, assemble, link, and trace the execution of program mul.asm.

8.3.3 DIV and IDIV Instructions
The DIV (unsigned divide) instruction performs 8-bit, 16-bit, and 32-bit division on unsigned
operands. A single register or memory operand is supplied which is assumed to be the

EAX

r/m32

EAX EDX

×

EAX
AX
AL

Multiplicand

r/m32
r/m16
r/m8

Multiplier

EDX:EAX
DX:AX

AX

Product

COE 205 Lab Manual Lab 8: Integer Arithmetic and Bit Manipulation - Page 85

Prepared by Dr. Muhamed Mudawar © KFUPM – September 2006

divisor. The dividend is implicit and stored in the AX, DX:AX, or EDX:EAX register and
depends on the size of the divisor. The instruction format is given below:
DIV divisor ; Dividend is either AX, DX:AX, or EDX:EAX

The integer division results in a quotient and a remainder. The quotient is stored in the AL,
AX, or EAX register and the remainder is stored in the AH, DX, or EDX register. The
quotient and remainder are determined according to the size of the divisor as shown below:

The following diagram shows the operation of DIV when a 32-bit divisor is used:

The IDIV (integer divide) instruction performs signed integer division, using the same format
and operands as the DIV instruction. For both DIV and IDIV, all the arithmetic flags are
undefined after the operation.

8.3.4 CBW, CWD, and CDQ Instructions
Before doing signed integer division, the sign of a register must be extended into another
register. The CBW (Convert Byte to Word) instruction extends the sign bit of AL into the AH
register. The CWD (Convert Word to Double-word) instruction extends the sign bit of AX
into the DX register. The CDQ (Convert Double-word to Quad-word) instruction extends the
sign bit of EAX into the EDX register.

8.3.5 Lab Work: Practice on Integer Division
Guess and show the values of the specified registers and flags:
mov ax, 0A85h
mov bl, 10h
div bl ; AL = AH =

mov ax, -211
cwd
mov bx, 2
idiv bx ; AX = DX =

mov edx, 90h
mov eax, 12345678h
mov ecx, 1000h
div ecx ; EAX = EDX =

mov eax, -500003
cdq
mov ebx, 5
idiv ebx ; EAX = EDX =

To verify your answers, assemble, link, and trace the execution of program div.asm.

EDX:EAX
DX:AX

AX

Dividend

r/m32
r/m16
r/m8

Divisor

EAX
AX
AL

Quotient

EDX
DX
AH

Remainder

= EDX (remainder) EAX (quotient)
EDX EAX

r/m32

COE 205 Lab Manual Lab 8: Integer Arithmetic and Bit Manipulation - Page 86

Prepared by Dr. Muhamed Mudawar © KFUPM – September 2006

8.3.6 Divide Overflow
If a division operand produces a quotient that is too large to fit in the destination register, a
divide overflow condition results. This causes a CPU interrupt, and the current program halts.
For example, the following instructions generate a divide overflow because the quotient
(500h) cannot fit in the AL register.
mov ax, 1000h
mov bl, 2
div bl ; Divide overflow: AL cannot hold 500h

8.3.7 Converting an Unsigned Integer to ASCII Decimal Format
To convert an unsigned integer to ASCII decimal format, we should divide it by 10 and find
the remainder. The remainder will be a number between 0 and 9. It represents the least
significant digit. We convert the digit to ASCII format by adding the character ‘0’. We repeat
the DIV instruction until the quotient becomes zero. We collect the digits one by one and
store them in a string. Since the least significant digit is computed first and the most
significant digit is computed last, we push them on the stack to avoid storing them in the
string in reverse order. A second loop is used to pop the digit characters off the stack and
store them in the string, as shown in the following Convert2Dec procedure:
Convert2Dec PROC
 pushad ; save all general-purpose registers
 mov esi, edx ; ESI = string address
 mov ecx, 0 ; counts decimal digits
 mov ebx, 10 ; divisor = 10
L1:
 mov edx, 0 ; dividend = EDX:EAX
 div ebx ; EDX = remainder digit = 0 to 9 (stored in DL)
 add dl, '0' ; convert DL to ASCII digit
 push dx ; save digit on the stack
 inc ecx ; count digit
 cmp eax, 0
 jnz L1 ; loop back if EAX != 0
L2:
 pop dx ; last digit pushed is the most significant
 mov [esi], dl ; save ASCII digit in string
 inc esi
 loop L2

 mov BYTE PTR [esi], 0 ; Terminate string with a NULL char
 popad ; restore all general-purpose registers
 ret ; return
Convert2Dec ENDP

8.3.8 Lab Work: Complete the Convert2Int Procedure
The Convert2Dec procedure is written in the convert.asm program. Add instructions to the
main procedure to call and test Convert2Dec. Also, complete the writing of the Convert2Int
procedure that converts a signed integer in EAX to ASCII format prefixed with sign. Also,
test the Convert2Int procedure by calling it from the main procedure. To simplify your task,
let Convert2Int call Convert2Dec after checking the sign of EAX. If the number is negative,
use the NEG instruction to convert it to positive before calling Convert2Dec.

COE 205 Lab Manual Lab 8: Integer Arithmetic and Bit Manipulation - Page 87

Prepared by Dr. Muhamed Mudawar © KFUPM – September 2006

8.4 Multiword Arithmetic
The arithmetic instructions like add, sub, and mul operate on 8-, 16-, and 32-bit operands.
What if a program requires number larger than 32 bits? Such program requires arithmetic to
be done on multiword operands.

8.4.1 Extended Addition and Subtraction
The ADC (add with carry) instruction adds both a source operand and the content of the
carry flag to a destination operand. The SBB (subtract with borrow) instruction subtracts
both a source operand and the value of the carry flag from a destination operand. All the
arithmetic flags are affected by both instructions.

Instruction Description
ADC destination, source destination = destination + source + carry

SBB destination, source destination = destination – source – carry

The procedure add64 performs addition of two 64-bit numbers in EBX:EAX and EDX:ECX.
The result is returned in EBX:EAX. Carry/Overflow conditions are indicated by CF and OF.
add64 PROC
 add eax, ecx
 adc ebx, edx
 ret
add64 ENDP

The 64-bit subtraction is also simple and similar to the 64-bit addition.

8.4.2 Lab Work: Complete the extadd Procedure in extadd.asm
The extadd procedure in extadd.asm generalizes extended addition by operating on arrays of
double-words. The procedure receives the address of the source array in ESI, the address of
the destination array in EDI, and their length in ECX. Addition should proceed from the least
significant double-word, stored as the first array element, to the most significant one, stored
as the last array element. The result should be stored in the destination array. Complete the
writing of the extadd procedure and test its execution by calling it from the main procedure.

Review Questions
1. Which instruction sets the upper 8 bits of eax without modifying the remaining bits?
2. Which instruction clears the lower 16 bits of eax without modifying the remaining bits?
3. Which instruction reverses the lower 10 bits of eax without modifying the remaining bits?
4. Which instruction sets the Zero flag if eax is even and clears it if eax is odd?
5. Using the AND and OR instructions, cut the upper 4 bits of AL and the lower 4 bits of BL

and paste them into the BL register.
6. Suppose that the Intel instruction set did not support the NOT instruction. How do you

implement NOT using the XOR instruction?
7. How is the IMUL instruction different from MUL in the way it generates a product?
8. When does the IMUL instruction set the Carry and Overflow flags?
9. When BX is the divisor in a DIV instruction, which register holds the quotient?
10. Write the instructions that shift three memory words to the left by 1 bit position:
 wordarray WORD 810Dh, 0C064h, 93ABh

COE 205 Lab Manual Lab 8: Integer Arithmetic and Bit Manipulation - Page 88

Prepared by Dr. Muhamed Mudawar © KFUPM – September 2006

Programming Exercises
1. Write a procedure that multiplies any two 16-bit unsigned integers using shifting and

addition. The parameters should be passed on the stack. The result should be 32 bits
returned in the EAX register. Test your procedure by calling it from the main procedure.

2. Write a procedure that shifts an array of double-word integers using the SHRD
instruction. The procedure should receive the address of the array, the length of the array,
and the shift amount as parameters. Test your procedure by calling it from main.

3. Suppose that we use a 16-bit word to represent a date in binary as follows:
 Bits 0 – 4 are used to represent the day: 1 – 31,
 Bits 5 – 8 are used to represent the month: 1 – 12,
 Bits 9 – 15 are used to represent the year relative to 1980.
 For example, the date September 17, 2006 is represented as:
 2006 is represented as 26 in the year field, relative to 1980.
 Write a procedure that receives a data in binary in the AX register, converts, and returns

the date as a string. The string address should be passed as a second parameter.
4. Write a procedure to convert temperature from Celsius to Fahrenheit. The formula is:

 32
5
9

+×= CF

5. Write a program to read the length L, width W, and height H of a box from input and
displays the volume and surface area of the box:

 Volume = L × W × H, Surface Area = 2 × (L × H + L × W + W × H)
6. Write a procedure to perform ASCII decimal to binary number conversion. The procedure

should receive as parameter the address of a string containing the number in ASCII
decimal format. It should convert the string to a binary number and return it in EAX.

7. Challenge: Write a procedure to perform 64-bit unsigned multiplication. The first 64-bit
number is received in the EBX:EAX registers and the second number in the EDX:ECX
registers. The 128-bit result should be returned in the EDX:ECX:EBX:EAX registers.
Use the MUL instruction for 32-bit unsigned multiplication and accumulate the sum using
the ADD and ADC instructions.

day month year
0011010 1001 10001

