
COE 205 Lab Manual Lab 6: Conditional Processing – Page 56 

Prepared by Dr. Muhamed Mudawar © KFUPM –Revised August 2006 

Lab 6: Conditional Processing 

Contents 
6.1. Unconditional Jump 
6.2. The Compare Instruction 
6.3. Conditional Jump Instructions 
6.4. Finding the Maximum of Three Integers 
6.5. Implementing High-Level Control Structures 
6.6. Conditional Loop Instructions 
6.7. Linear Search of an Integer Array 
6.8. Indirect Jump and the Switch Statement 

6.1 Unconditional Jump 
The unconditional jump instruction (jmp) unconditionally transfers control to the instruction 
located at the target address. The general format is: 
jmp target 

There are two ways to specify the target address of the jmp instruction: direct and indirect. 
The most common one is the direct jump. Indirect jumps will be discussed in a later section. 

In direct jumps, the target instruction address is specified directly as part of the instruction. 
As a programmer, you only specify the target address by using a label and let the assembler 
figure out the jump value of the target instruction. In the following example, jmp L1 and jmp 
L2 are direct jumps. The first jump jmp L1 is a forward jump, while jmp L2 is a backward 
jump because the target instruction precedes the jump instruction. 
 
L2: 
  . . . 
  jmp L1 
  . . . 
L1: 
  . . . 
  jmp L2 

6.1.1 Relative Displacement 
The address that is specified in a jump instruction is not the absolute address of the target 
instruction. Rather, a relative displacement is stored in the jump instruction. The relative 
displacement is the number of bytes between the target instruction and the instruction 
following the jump instruction. Recall that EIP register points at the next instruction to be 
executed. Therefore, after fetching a jump instruction, EIP is advanced to point at the next 
instruction. When the processor executes the jump, it simply performs the following action: 

EIP = EIP + relative-displacement 
The relative displacement is a signed number stored inside the jump instruction itself. If the 
number is positive then it is a forward jump. Otherwise, it is a backward jump. 

In an indirect jump, the target address is specified indirectly through a register or memory. 
We will defer their discussion to Section 6.6. 



COE 205 Lab Manual Lab 6: Conditional Processing – Page 57 

Prepared by Dr. Muhamed Mudawar © KFUPM –Revised August 2006 

6.2 The Compare Instruction 
The compare (CMP) instruction performs an implied subtraction of a source operand from a 
destination operand. Neither operand is modified. It has the following format: 
CMP destination, source 

The Overflow, Carry, Sign, and Zero flags are updated as if the subtract instruction has been 
performed. The main purpose of the compare instruction is to update the flags so that a 
subsequent conditional jump instruction can test them. 

6.2.1 Lab Work: Demonstrating the Compare Instruction 
The following program demonstrates the compare instruction and the affected flags. 
 
TITLE Demonstrating the Compare Instruction  (cmp.asm) 
 
.686 
.MODEL flat, stdcall 
.STACK 
INCLUDE Irvine32.inc 
 
.data 
var1    SDWORD  -3056 
 
.code 
main PROC 
    mov eax, 0f7893478h 
    mov ebx,  1234F678h 
    cmp al,  bl 
    cmp ax,  bx 
    cmp eax, ebx 
    cmp eax, var1 
    exit 
main ENDP 
END main 

Carry the execution of the compare instructions manually by doing subtraction by hand. 
Guess the values of the flags and write them in the specified boxes. 

 

6.2.2 Lab Work: Assemble and Link cmp.asm 

6.2.3 Lab Work: Trace the Execution of Program cmp.exe 
Run the 32-bit Windows Debugger, either from the Tools menu in the ConTEXT editor, or 
by typing: windbg –QY –G cmp.exe at the command prompt. Open the source file cmp.asm 
from the File menu if it is not already opened. Watch and customize the registers to have the 
of cf sf zf flags and the eax ebx ax bx al and bl registers on top of the list. 

Place the cursor at the beginning of the main procedure and press F7. Now step through the 
program by pressing F10 and watch the changes in the flags and registers. Observe that the 
compare instruction does not modify any operand. It only affects the flags. Check the flag 
answers that you wrote. Make the necessary corrections and understand your mistakes. 

OF =  CF = SF = ZF = cmp al,  bl  

OF =  CF = SF = ZF = cmp ax,  bx  

OF =  CF = SF = ZF = cmp eax, ebx  

OF =  CF = SF = ZF = cmp eax, var1  



COE 205 Lab Manual Lab 6: Conditional Processing – Page 58 

Prepared by Dr. Muhamed Mudawar © KFUPM –Revised August 2006 

6.3 Conditional Jump Instructions 
Conditional jump instructions can be divided into four groups: 

• Jumps based on the value of a single arithmetic flag 
• Jumps based on the value of CX or ECX 
• Jumps based on comparisons of signed operands 
• Jumps based on comparisons of unsigned operands 

The following is a list of jumps based on the Zero, Carry, Overflow, Sign, and Parity flags. 

Mnemonic Description Flags 
JZ, JE Jump if Zero, Jump if Equal ZF = 1 
JNZ, JNE Jump if Not Zero, Jump if Not Equal ZF = 0 
JC Jump if Carry CF = 1 
JNC Jump if No Carry CF = 0 
JO Jump if Overflow OF = 1 
JNO Jump if No Overflow OF = 0 
JS Jump if Signed (Negative) SF = 1 
JNS Jump if Not Signed (Positive or Zero) SF = 0 
JP, JPE Jump if Parity, Jump if Parity is Even PF = 1 
JNP, JPO Jump if Not Parity, Jump if Parity is Odd PF = 0 

The following table shows the jumps based on the value of CX and ECX: 

Mnemonic Description 
JCXZ Jump if CX = 0 
JECXZ Jump if ECX = 0 

The following table shows a list of signed jumps based on comparisons of signed operands: 

Mnemonic Description Condition Tested 
JG, JNLE Jump if Greater, Jump if Not Less or Equal ZF = 0 and SF = OF 
JGE, JNL Jump if Greater or Equal, Jump if Not Less SF = OF 
JL, JNGE Jump if Less, Jump if Not Greater or Equal SF ≠ OF 
JLE, JNG Jump if Less or Equal, Jump if Not Greater ZF = 1 or SF ≠ OF 

The following shows a list of unsigned jumps based on comparisons of unsigned operands: 

Mnemonic Description Condition Tested 
JA, JNBE Jump if Above, Jump if Not Below or Equal ZF = 0 and CF = 0 
JAE, JNB Jump if Above or Equal, Jump if Not Below CF = 0 
JB, JNAE Jump if Below, Jump if Not Above or Equal CF = 1 
JBE, JNA Jump if Below or Equal, Jump if Not Above ZF = 1 or CF = 1 

 



COE 205 Lab Manual Lab 6: Conditional Processing – Page 59 

Prepared by Dr. Muhamed Mudawar © KFUPM –Revised August 2006 

6.4 Lab Work: Finding the Maximum of Three Integers 
 
TITLE Finding the Maximum of 3 Integers  (max.asm) 
.686 
.MODEL flat, stdcall 
.STACK 
INCLUDE Irvine32.inc 
 
.data 
var1    DWORD  -30  ; Equal to FFFFFFE2 (hex) 
var2    DWORD  12 
var3    DWORD  7 
max1    BYTE    "Maximum Signed Integer = ",0 
max2    BYTE    "Maximum Unsigned Integer = ",0 
 
.code 
main PROC 
    ; Finding Signed Maximum 
    mov eax, var1 
    cmp eax, var2 
    jge L1 
    mov eax, var2 
L1: 
    cmp eax, var3 
    jge L2 
    mov eax, var3 
L2: 
    lea  edx, max1 
    call WriteString 
    call WriteInt 
    call Crlf 
 
    ; Finding Unsigned Maximum 
    mov eax, var1 
    cmp eax, var2 
    jae L3 
    mov eax, var2 
L3: 
    cmp eax, var3 
    jae L4 
    mov eax, var3 
L4: 
    lea  edx, max2 
    call WriteString 
    call WriteHex 
    call Crlf 
 
    exit 
main ENDP 
END main 

Analyze the above program and find its output: 

 

Console Output 



COE 205 Lab Manual Lab 6: Conditional Processing – Page 60 

Prepared by Dr. Muhamed Mudawar © KFUPM –Revised August 2006 

6.4.1 Lab Work: Assemble and Link max.asm 

6.4.2 Lab Work: Trace Program max.exe 
Run the 32-bit Windows Debugger. Open the source file max.asm from the File menu if it is 
not already opened. Add a watch to variables var1, var2, var3, and register eax. You can 
view a register in the Watch window by typing @ before the register name as shown below. 

 
Place the cursor at the beginning of the main procedure and press F7. Now step through the 
program by pressing F10 and watch the changes in the eax register. Observe when 
conditional branches are taken (or not taken). Check the console output that you wrote, make 
the correction, and try to understand your mistakes. 

6.5 Implementing High-Level Control Structures 
High-level programming languages provide a number of control structures that are used for 
selection and iteration. Typically, an IF statement is used for selection and a WHILE loop is 
used for conditional iteration. 

6.5.1 Implementing an IF Statement 
An IF statement has a Boolean expression followed a list of statements that is performed 
when the expression is true, and an optional ELSE part when the expression is false. 

Examples on IF Assembly-Language Translation 
 
// One-Way Selection 
if (a > b) { . . . }   // if part

mov eax, a 
cmp eax, b 
jle end_if 
. . .              ; if part 

end_if: 

 
// Two-Way Selection 
if (a <= b) 
  { . . . }            // if part 
else 
  { . . . }            // else part 

mov eax, a 
cmp eax, b 
jg  else_part 
. . .              ; if part 
jmp end_if 

else_part: 
. . .              ; else part 

end_if: 
 
 
// Short-Circuit AND 
if (a > b && a == c) { . . . }

mov eax, a 
cmp eax, b 
jle end_if 
cmp eax, c 
jne end_if 
. . .              ; if part 

end_if: 



COE 205 Lab Manual Lab 6: Conditional Processing – Page 61 

Prepared by Dr. Muhamed Mudawar © KFUPM –Revised August 2006 

 
 
 
// Short-Circuit OR 
if (a > b || a == c ) { . . . } 

mov eax, a 
cmp eax, b 
jg  if_part 
cmp eax, c 
jne end_if 

if_part: 
. . .              ; if part 

end_if: 

6.5.2 Implementing a WHILE Statement 
A WHILE statement has a Boolean expression followed a list of statements that is performed 
repeatedly as long as the Boolean expression is true. The following table shows two 
translations for the WHILE statement. 

WHILE Statement Assembly-Language Translation 
 
 
// First Translation 
while (a > b) { . . . } 
 

start_while: 
mov eax, a 
cmp eax, b 
jle end_while 
. . .              ; while body 
jmp start_while 

end_while: 

 
 
// Second Translation 
while (a > b) { . . . } 

jmp bool_expr 
while_body: 

. . .              ; while body 
bool_expr: 

mov eax, a 
cmp eax, b 
jgt while_body 

end_while: 

In the first translation, the Boolean expression is placed before the loop body, whereas in the 
second translation, it is placed after the loop body. Both translations are correct, but the 
second translation is slightly better than the first one. The first translation has one forward 
conditional jump and one backward unconditional jump, which are executed for each loop 
iteration, while the second translation has only one conditional backward jump. The forward 
unconditional jump at the beginning of the second translation is done once. 

6.5.3 Lab Work: Translating Nested Control Structures 
Translate the following high-level control structure into assembly-language code: 

 

while (a <= b) { 
  a++; 
  if (b == c) 
    a = a + b 
  else { 
    b = b - a 
    c--; 
  } 
} 

 



COE 205 Lab Manual Lab 6: Conditional Processing – Page 62 

Prepared by Dr. Muhamed Mudawar © KFUPM –Revised August 2006 

6.6 Conditional Loop Instructions 
LOOP is a non-conditional instruction that uses the ECX register to maintain a repetition 
count. Register ECX is decremented and the loop repeats until ECX becomes zero. 

LOOPZ (Loop if Zero) is a conditional loop instruction that permits a loop to continue while 
the Zero flag is set and the unsigned value of ECX is greater than zero. This is what happens 
when the LOOPZ instruction is executed: 

ECX = ECX – 1 
if (ECX > 0 and ZF == 1) jump to target instruction 

LOOPE (Loop if Equal) instruction is equivalent to LOOPZ. 

LOOPNZ (Loop if Not Zero) instruction is the counterpart of the LOOPZ instruction. The 
loop continues while the Zero flag is clear and the unsigned value of ECX is greater than 
zero. This is the action of the LOOPNZ instruction: 

ECX = ECX – 1 
if (ECX > 0 and ZF == 0) jump to target instruction 

LOOPNE (Loop if Not Equal) instruction is equivalent to LOOPNZ. 

These instructions are summarized in the following table: 

Instruction Action 
LOOP   target ECX = ECX – 1 

If (ECX > 0) jump to target 

LOOPZ  target 
LOOPE  target 

ECX = ECX – 1 
If (ECX > 0 and ZF == 1) jump to target 

LOOPNZ target 
LOOPNE target 

ECX = ECX – 1 
If (ECX > 0 and ZF == 0) jump to target 

6.7 Lab Work: Linear Search of an Integer Array 
The following program demonstrates the use of the LOOPNZ instruction. 
 
TITLE Linear Search  (search.asm) 
 
.686 
.MODEL flat, stdcall 
.STACK 
 
INCLUDE Irvine32.inc 
 
.data 
; First element is at index 0 
intArray       SDWORD   18,20,35,-12,66,4,-7,100,15 
item           SDWORD   -12 
FoundStr       BYTE    " is found at index ", 0 
NotFoundStr    BYTE    " is not found", 0 
 
.code 
main PROC 
    mov    ecx, LENGTHOF intArray   ; loop counter 
    mov    eax, item                ; item to search 
    mov    esi, -1                  ; index to intArray 
 



COE 205 Lab Manual Lab 6: Conditional Processing – Page 63 

Prepared by Dr. Muhamed Mudawar © KFUPM –Revised August 2006 

L1: 
    inc    esi                      ; increment index before search 
    cmp    intArray[4*esi], eax     ; compare array element with item 
    loopnz L1                       ; loop as long as item not found 
    jne    notFound                 ; item not found 
 
found: 
    call  WriteInt                  ; write item 
    mov   edx, OFFSET FoundStr 
    call  WriteString               ; " is found at index " 
    mov   eax, esi 
    call  WriteDec                  ; Write index 
    jmp   quit 
 
notFound: 
    call  WriteInt                  ; write item 
    mov   edx, OFFSET NotFoundStr 
    call  WriteString               ; " is not found" 
 
quit: 
    call  Crlf 
    exit 
main ENDP 
END main 

Study the above program and write the Console Output in the specified box. 

 

6.7.1 Lab Work: Assemble, Link, and Run search.exe 
Check your answer in the above program and make the necessary corrections. 

Modify the item value in the above program from -12 to 100. Write below the console output. 
Reassemble, link, and run the modified program and check your answer. 

 
Repeat the above process but with item equal to -10. Write the Console Output in the box 
shown below. 

  

6.8 Indirect Jump and the Switch Statement 
So far, we have used direct jump instructions, where the target address is specified in the 
jump instruction itself. In an indirect jump, the target address is specified indirectly through 
memory. The syntax of the indirect jump is as follows for the 32-bit FLAT memory model: 
jmp mem32 ; mem32 is a 32-bit memory location 

Console Output (item = –10) 

Console Output (item = 100) 

Console Output 



COE 205 Lab Manual Lab 6: Conditional Processing – Page 64 

Prepared by Dr. Muhamed Mudawar © KFUPM –Revised August 2006 

6.8.1 Lab Work: Implementing a Switch Statement 
Indirect jumps can be used to implement multiway conditional statements, such as a switch 
statement in a high-level language. As an example, consider the following code: 

To have an efficient translation of the switch statement, we need to 
build a jump table of pointers. The input character is converted into 
an index into the jump table and the indirect jump instruction is used 
to jump into the correct case to execute. The following assembly-
language program is a translation to the above statement. The switch 
statement is executed repeatedly until the user enters 0, at which point 
the program terminates. 

The program uses a jump table, called table. This table is declared 
inside and is local to the main procedure. This table is an array of 
labels (case0, case1, …, case4). Each label is translated into a 32-bit 
address, which is the address of the instruction that comes after the 
label. The first jump instruction in the main procedure is used to 
bypass the table and to start execution at the break label, where value 
is displayed and the user is prompted to enter a digit between 0 and 4. 

The input character is checked. If it is out of range (<'0' or >'4'), it is ignored and a new 
character is read. Otherwise, the input character is echoed on the screen, converted from a 
character into a number, and then used to index the jump table in the indirect jump. This 
indirect jump transfers control to the corresponding case label. 
 
TITLE Demonstrating Indirect Jump (IndirectJump.asm) 
 
; This program shows the implementation of a switch statement 
; A jump table and indirect jump are used 
 
.686 
.MODEL flat, stdcall 
.STACK 
 
INCLUDE Irvine32.inc 
 
.data 
value      SDWORD  0 
valuestr   BYTE    "Value = ",0 
prompt     BYTE    "Enter Selection [Quit=0,Inc=1,Dec=2,Add5=3,Sub5=4]: ",0 
 
.code 
main PROC 
; Start at break to bypass the jump table 
    jmp break 
 
; Jump table is an array of labels (instruction addresses) 
table       DWORD   case0, case1, case2, case3, case4 
 
; Implementing a Switch Statement 
case0: 
    exit 
case1: 
    inc value 
    jmp break 
case2: 
    dec value 
    jmp break 

switch (ch) { 
  case '0': 
    exit();   
  case '1': 
    value++; 
    break; 
  case '2': 
    value--; 
    break; 
  case '3': 
    value += 5; 
    break; 
  case '4': 
    value -= 5; 
    break; 
} 



COE 205 Lab Manual Lab 6: Conditional Processing – Page 65 

Prepared by Dr. Muhamed Mudawar © KFUPM –Revised August 2006 

case3: 
    add value, 5 
    jmp break 
case4: 
    sub value, 5 
    jmp break 
 
break: 
; Display value 
    mov  edx, OFFSET valuestr 
    call WriteString 
    mov  eax, value 
    call WriteInt 
    call Crlf 
 
; Prompt for the user to enter his selection 
    mov  edx, OFFSET prompt 
    call WriteString 
 
; Read input character and check its value 
readch: 
    mov  eax,0          ; clear eax before reading 
    call ReadChar 
    cmp  al, '0' 
    jb   out_of_range   ; character < '0' 
    cmp  al, '4' 
    ja   out_of_range   ; character > '4' 
    call WriteChar      ; echo character 
    call Crlf 
    sub  al, 30h        ; convert char into number 
    jmp  table[4*eax]   ; Indirect jump using table 
 
; Out of range: ignore input and read again 
out_of_range: 
    jmp  readch 
main ENDP 
END main 

Determine the Console Output when the user input sequence is 1, 3, 2, 0. 

 

6.8.2 Lab Work: Assemble, Link, and Run IndirectJump.exe 
Check your answer for the above program and make the necessary corrections. 

Console Output 



COE 205 Lab Manual Lab 6: Conditional Processing – Page 66 

Prepared by Dr. Muhamed Mudawar © KFUPM –Revised August 2006 

Review Questions 

1. Which conditional jump instructions are based on unsigned comparisons? 

2. Which conditional jump instruction is based on the contents of the ECX register? 

3. (Yes/No) Are the JA and JNBE instructions equivalent? 

4. (Yes/No) Will the following code jump to the Target label? 
 mov ax, -42 
 cmp ax, 26 
 ja  Target 

5. Write instructions that jump to label L1 when the unsigned integer in DX is less than or 
equal to the unsigned integer in CX. 

6. (Yes/No) The LOOPE instruction jumps to a label if and only if the zero flag is clear. 

7. Implement the following statements in assembly language, for signed integers: 
 if (ebx > ecx) X = 1; 
 if (edx <= ecx && ecx <= ebx) X = 1; else X = -1; 
 while (ebx > ecx || ebx < edx) X++;  

Programming Exercises 

1. Write a program that uses a loop to input signed 32-bit integers from the user and 
computes and displays their minimum and maximum values. The program terminates 
when the user enters an invalid input. 

2. Using the following table as a guide, write a program that asks the user to enter an integer 
test score between 0 and 100. The program should display the appropriate letter grade. 
The program should display an error message if the test score is <0 or >100. 

90 to 100 85 to 89 80 to 84 75 to 79 70 to 74 65 to 70 60 to 64 55 to 59 0 to 54
A+ A B+ B C+ C D+ D F 

3. Write a program that reads a single character ‘0’ to ‘9’, ‘A’ to ‘F’, or ‘a’ to ‘f’, and then 
converts it and displays it as a number between 0 and 15. Use the ReadChar procedure to 
read the character. Do not use the ReadHex procedure. Display an error message if the 
input character is invalid. 

4. Write a program that reads a string of up to 50 characters and stores it in an array. It 
should then convert each lowercase letter to uppercase, leaving every other character 
unchanged. The program should output the modified string. 

5. Write a program that reads a string of up to 50 characters and stores it in an array. It then 
asks the user to input a single character and matches this character against all occurrences 
in the string. Each matched character in the string should be converted into a blank. 

6. Write a program that inputs an unsigned integer sum > 1, and then computes and displays 
the smallest integer n, such that 1 + 2 +…+ n > sum. An error message should be 
displayed if the input sum ≤ 1. 


