
COE 205 Lab Manual Lab 4: Basic Instructions and Addressing Modes - page 36

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

Lab 4: Basic Instructions and Addressing Modes

Contents
4.1. Data Transfer Instructions
4.2. Addition and Subtraction
4.3. Data Addressing Modes
4.4. LOOP Instruction
4.5. Copying a String
4.6. Summing an Array of Integers

4.1 Data Transfer Instructions
Data transfer instructions move data between registers or between registers and memory.
These instructions are briefly described below. For more details, refer to the lecture notes or
your textbook. The following program demonstrates the MOV, MOVZX, MOVSX, and
XCHG instructions:

MOV destination, source Move source to destination.
MOVZX destination, source Move source to destination with zero extension.
MOVSX destination, source Move source to destination with sign extension.
XCHG destination, source Exchange source with destination.

TITLE Data Transfer Examples (File: moves.asm)
; Demonstration of MOV, MOVZX, MOVSX, and XCHG

.686
.MODEL flat, stdcall
.STACK
INCLUDE Irvine32.inc

.data
var1 WORD 1000h
var2 WORD 2000h

.code
main PROC
; Demonstrating MOV and MOVZX
 mov ax, 0A69Bh
 movzx bx, al
 movzx ecx,ah
 movzx edx,ax

; Demonstrating MOVSX
 movsx bx, al
 movsx ecx,ah
 movsx edx,ax

; Demonstrating XCHG
 xchg ax,var1
 xchg ax,var2
 xchg ax,var1

 exit
main ENDP
END main

COE 205 Lab Manual Lab 4: Basic Instructions and Addressing Modes - page 37

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

4.1.1 Lab Work: Assemble and Link moves.asm
Open file moves.asm and assemble and link the file. You can use the make32 batch file from
the command prompt or from the ConTEXT editor’s Tools menu.

4.1.2 Lab Work: Trace the Execution of Program moves.exe
Now run the Windows debugger to trace the execution of the above program. You may open
the debugger from ConTEXT Tools menu or by typing: windbg –QY–G moves.exe

Open the Watch window to view the var1 and var2 variables. You can also watch registers
under the Watch window by typing their names preceded with the @ symbol as shown below.
Observe that the type of registers is unsigned int and the value is shown in hexadecimal. You
can change the type of a register to char, short, or int (depending on its size), to see its value
as a signed decimal.

Try first to guess the values of the registers and memory variables in the above program after
the execution of each instruction. Write your answers in hexadecimal in the specified boxes.
Place the cursor at the beginning of the main procedure and press F7. Now step through the
program by pressing F10 and watch the changes in registers and variables. Make the
necessary corrections to your answers.

MOV and MOVZX

MOVSX

XCHG

8) ax (hex) = 8) var1 (hex) =

9) ax (hex) = 9) var2 (hex) =

10) ax (hex) = 10) var1 (hex) =

1) al, ah (hex) =

3) ecx (hex) =

2) bx (hex) =

4) edx (hex) =

6) ecx (hex) =

5) bx (hex) =

7) edx (hex) =

COE 205 Lab Manual Lab 4: Basic Instructions and Addressing Modes - page 38

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

4.2 Addition and Subtraction
Integer addition and subtraction are two of the most fundamental operations that a processor
can perform. In the following Program, you will learn about the INC, DEC, ADD, SUB, and
NEG instructions. You will also learn about the flags affected by these arithmetic
instructions:

INC destination Increment destination by 1.
DEC destination Decrement destination by 1.
ADD destination, source Add source to destination.
SUB destination, source Subtract source from destination.
NEG destination Negate destination by computing 2's complement.

CF Carry Flag: set if unsigned result is out of range.
OF Overflow Flag: set if signed result is out of range.
SF Sign Flag: set if sign bit of result is negative (or 1).
ZF Zero Flag: set if result is zero (all bits are zero).
PF Parity Flag: set if low byte of result has even number of 1’s.

The ADD, SUB, and NEG instructions affect all the above flags. The INC and DEC
instructions also affect the above flags, except that the carry flag is not modified. For more
details about these instructions and flags, refer to the lecture notes or your textbook.

TITLE Simple Arithmetic (SimpleArith.asm)
.686
.MODEL flat, stdcall
.STACK
INCLUDE Irvine32.inc
.data ; No data

.code
main PROC
 ; ADD
 mov eax, 91ab0748h
 mov ebx, 3f54f8f2h
 add eax, ebx

 ; SUB
 mov eax, 91ab0748h
 sub eax, ebx

 ; NEG
 mov eax, 91ab0748h
 neg eax

 ; INC
 clc ; clear carry flag to show that it is not affected
 mov eax,7fffffffh
 inc eax

 ; DEC
 mov eax,0
 dec eax
 exit
main ENDP
END main

4.2.1 Lab Work: Assemble and Link SimpleArith.asm

COE 205 Lab Manual Lab 4: Basic Instructions and Addressing Modes - page 39

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

4.2.2 Lab Work: Trace the Execution of SimpleArith.exe
First, guess the values of the eax register (in hexadecimal) and the cf, of, sf, zf, and pf flags
after executing the add, sub, neg, inc, and dec instructions. Write these values below:

Run the 32-bit Windows Debugger. Open the source file SimpleArith.asm from the File menu
if it is not already opened. Watch the registers by selecting Registers from the View menu.
Have the registers eax, ebx and the flags cf, of, sf, zf, and pf on top of the list. Place the
cursor at the beginning of main procedure and press F7 to start debugging it. Press F10 to
step through the execution of the program. Watch the changes in the registers and flags.

Check the answers that you have guessed above. Make the necessary corrections and try to
understand why your previous answer was incorrect.

4.3 Data Addressing Modes
The assembly language instructions require the specification of the location of data for source
and destination operands. The specification of the location of data is called the data
addressing mode. It can be classified as shown in the following diagram:

Addressing Modes

Register Memory Immediate

Direct Indirect

Register
Indirect

Based Indexed Based-
Indexed

1) EAX after ADD (hex) =

2) EAX after SUB (hex) =

3) EAX after NEG (hex) =

4) EAX after INC (hex) =

5) EAX after DEC (hex) =

CF=

CF=

CF=

CF=

CF=

OF=

OF=

OF=

OF=

OF=

SF=

SF=

SF=

SF=

SF=

ZF=

ZF=

ZF=

ZF=

ZF=

PF=

PF=

PF=

PF=

PF=

COE 205 Lab Manual Lab 4: Basic Instructions and Addressing Modes - page 40

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

Register addressing is when a register is used to specify the source or destination of an
operand. This is the most efficient addressing mode because registers are implemented inside
the processor and their access is very fast.

Immediate addressing is when an immediate value (a constant) is used for a source operand.
It cannot be used to specify a destination operand. The immediate constant is part of the
instruction itself.

Memory addressing is used to specify the address of the source and destination operands
located in memory. This is the most detailed and interesting addressing mode. It can be
divided into direct and indirect memory addressing. Direct memory addressing is when the
address of a memory operand is specified directly by name. For example:
mov sum, eax ; sum is a variable in memory

Direct memory addressing is useful for accessing simple variables in memory, but it is
useless for addressing arrays or data structures. To address the elements of an array, we need
to use a register as a pointer to the array elements. This is called indirect memory
addressing. It can be further classified into register indirect, based, indexed, and based-
indexed, depending on how the address of the memory operand is specified. In general, a
memory address can be specified as follows:

Address = [BaseReg + IndexReg * Scale + Disp]
This is the most general indirect memory addressing called based-indexed, because it
combines a base register with an index register and a displacement. The other indirect
memory addressing modes: register indirect, based, and indexed are simpler.

Register Indirect Addressing: Address = [Reg]

Based Addressing: Address = [BaseReg + Disp]

Indexed Addressing: Address = [IndexReg * Scale + Disp]
The IA-32 processor architecture supports 32-bit addressing as well as 16-bit addressing. 16-
bit addressing modes originated in the 8086 processor, which supports only 16-bit registers.
The 16-bit addressing modes use BX and BP for the base register and SI and DI for the index
register. No scale factor is allowed, and displacements are limited to 16 bits.

With the advent of the IA-32 processor architecture, registers were extended from 16 bits to
32 bits. This enabled 32-bit addressing modes in addition to 16-bit addressing. Any 32-bit
general-purpose register (EAX, EBX, ECX, EDX, ESI, EDI, EBP, or ESP) can be used as a
base register. Any general-purpose register, with the exception of ESP can be used as an
index register. A scale factor of 1, 2, 4, or 8 is added to indexed-addressing, and
displacements are extended to 32-bits.

The differences between 16-bit and 32-bit addressing modes are summarized below:

 16-bit Addressing 32-bit Addressing

Base Register BX, BP EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP

Index Register SI, DI EAX, EBX, ECX, EDX, ESI, EDI, EBP

Scale Factor None 1, 2, 4, 8

Displacement 0, 8, 16 bits 0, 8, 32 bits

COE 205 Lab Manual Lab 4: Basic Instructions and Addressing Modes - page 41

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

4.3.1 Examples on 32-bit Addressing Modes
The following program demonstrates 32-bit memory addressing modes and the LEA (Load
Effective Address) instruction. The LEA instruction moves the address, rather than the
value, of a source operand into destination.

LEA destination, source Load Effective Address of source into destination

This is similar to moving the OFFSET of a variable. For example,

lea eax, variable is simlar to mov eax, OFFSET variable

The LEA instruction provides more flexibility in terms of computing complex addresses at
runtime. However, the OFFSET operator is used to determine the address of named variables
at assembly-time.

TITLE Memory Addressing Examples (File: addressing.asm)
.686
.MODEL flat, stdcall
.STACK
INCLUDE Irvine32.inc
.data
arrayB BYTE "COE 205",0
arrayW WORD 100h,200h,300h, 400h
arrayD DWORD 01234567h,89ABCDEFh

.code
main PROC
; Direct Memory Addressing
 mov al, arrayB ; same as [arrayB]
 mov ah, arrayB[5] ; same as [arrayB+5]
 mov bx, arrayW[2] ; same as [arrayW+2]
 mov ecx,[arrayD] ; same as arrayD
 mov edx,[arrayD+2] ; same as arrayD[2]

; Register Indirect Addressing
 mov ecx, OFFSET arrayB + 3
 mov edx, OFFSET arrayW + 1
 mov bx, [ecx] ; address in [ecx]
 mov al, [edx] ; address in [edx]

; Based Addressing
 mov edx, 4
 mov al, arrayB[edx]
 mov bx, arrayW[edx]
 mov ecx,arrayD[edx]

; Scaled Indexed Addressing
 mov esi, 1
 mov arrayB[esi*2], 'S'
 mov arrayW[esi*2], 102h
 mov arrayD[esi*4], 0

; Load Effective Address (LEA)
 lea eax, arrayB
 lea ebx,[eax + LENGTHOF arrayB]
 lea ecx,[ebx + esi*8]
 lea edx, arrayD
 exit
main ENDP
END main

COE 205 Lab Manual Lab 4: Basic Instructions and Addressing Modes - page 42

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

4.3.2 Lab Work: Assemble and Link ‘addressing.asm’

4.3.3 Lab Work: Trace the Execution of Program ‘addressing.exe’
First, guess the values of the registers and memory variables in program addressing.asm.
Write your answers in hexadecimal in the specified boxes after the execution of each
instruction. For characters, show the character symbol as well as its code in hexadecimal.

Run the Windows Debugger. Open the source file addressing.asm from the File menu if it is
not already opened. Watch the registers and memory by selecting them in the View menu. In
the Memory window, write the name of the first variable arrayB in the Virtual address box.
You may resize the Memory window so that exactly 16 bytes are displayed on each line.
Place the cursor at the beginning of main procedure and press F7. Press F10 to step through
the execution of the program. Watch the changes in the registers and memory.

Direct Memory Addressing

Register Indirect Addressing

Based Addressing

Scaled Indexed Addressing – show the address and byte values in memory

Load Effective Address (LEA)

15) arrayB address

16) arrayW address

17) arrayD address

byte byte byte byte byte byte byte byte

byte byte byte byte byte byte byte byte

byte byte byte byte byte byte byte byte

13) ecx = 11) al = 12) bx =

3) bx = 1) al = 2) ah =

4) ecx = 5) edx =

8) bx = 9) al =

6) ecx = 7) edx =

18) eax = 19) ebx =

20) ecx = 21) edx =

COE 205 Lab Manual Lab 4: Basic Instructions and Addressing Modes - page 43

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

4.4 LOOP Instruction
The LOOP instruction provides a simple way to repeat a block of statements a specific
number of times. It uses ECX as a counter, which is decremented each time the loop repeats.
The execution of the LOOP instruction involves two steps: First, it subtracts 1 from ECX. If
ECX is not equal to zero, a jump is taken to the label (start of the loop). Otherwise, the loop
terminates and the next instruction is executed.

LOOP label Decrement ECX and Jump to label if ECX ≠ 0

4.5 Copying a String
Study the following program:

TITLE Copying a String (File: CopyStr.asm)
; Demonstrates LOOP instruction and array indexing

.686
.MODEL flat, stdcall
.STACK

INCLUDE Irvine32.inc

.data
source BYTE "This is the source string",0
target BYTE SIZEOF source DUP(0)

.code
main PROC
 mov esi, 0 ; used to index source and target
 mov ecx, SIZEOF source ; loop counter
L1:
 mov al, source[esi] ; get a character from source
 mov target[esi], al ; store it in the target
 inc esi ; increment index
 loop L1 ; repeat for entire string

 exit
main ENDP
END main

What is the value of the target string in memory after finishing the execution of loop L1?

...

What is the number of iterations for loop L1? ...

4.5.1 Lab Work: Assemble and Link CopyStr.asm

4.5.2 Lab Work: Trace the Execution of CopyStr.exe
Run the 32-bit Windows Debugger. View the registers esi, ecx, and al, as well as the source
and target variables in memory. You can open two Memory windows to view separately the
source and target strings.

Put the cursor at the beginning of main procedure and press F7 to start debugging it. Press F8
to trace the execution of the loop, iteration by iteration. If you press F10 on the LOOP
instruction, it will execute ALL the loop iterations and will terminate the loop. This is why it

COE 205 Lab Manual Lab 4: Basic Instructions and Addressing Modes - page 44

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

is better here to use F8 to trace the execution of the loop. View how the esi, ecx, and al
registers change, as well as memory for the target variable. Check your previous answers,
make the necessary corrections, and try to understand your mistakes.

4.6 Summing an Array of Integers
Program SumArray.asm uses register esi as a pointer to intarray. Register-indirect
addressing is used to access the elements of intarray.
TITLE Summing an Array of Signed Words (File: SumArray.asm)
; Register-Indirect memory addressing is used

.686
.MODEL flat, stdcall
.STACK

INCLUDE Irvine32.inc

.data
intarray SWORD 5,7,-3,100,0,-9, 10 DUP(-999)
sum SWORD ?

.code
main PROC

 mov esi,OFFSET intarray ; esi = pointer to intarray
 mov ecx,LENGTHOF intarray ; ecx = loop counter
 mov ax,0 ; zero the accumulator
L1:
 add ax,[esi] ; register esi is a pointer
 add esi,TYPE intarray ; point to next integer
 loop L1 ; repeat until ECX = 0

 mov sum, ax
 exit
main ENDP
END main

What is the value of sum (in decimal) at the end of the program? ..

How many iterations was loop L1 repeated? ...

Assuming the initial value of ESI is 404000h before starting loop L1,
what is the final value of ESI (in hex) after finishing loop L1? ..

4.6.1 Lab Work: Assemble, Link, and Trace Program Execution
Open file SumArray.asm and assemble and link the file. Now run the Windows debugger to
trace the execution of the above program. You need to view the registers esi, ecx, and ax.
Add also a watch for the sum variable.

Put the cursor at the beginning of main procedure and press F7 to start debugging this
procedure. Press F8 to trace the execution of the loop, iteration by iteration. View how the
esi, ecx, and ax registers change. Press F10 to exit the program. Check your answers and
make the necessary corrections.

COE 205 Lab Manual Lab 4: Basic Instructions and Addressing Modes - page 45

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

Review Questions
1. For each of the following, write the destination register value (in hexadecimal) if the

instruction is valid. Otherwise, indicate that the instruction is invalid. Assume that var1 is
at virtual address 404000h.
var1 SBYTE -4, 2
var2 WORD 1000h, 2000h, 3000h
var3 DWORD 1, 2, 3, 4, 5

a. mov ax, var1

b. movzx ax, var1

c. movsx eax, var1

d. mov ax, var2[2]

e. mov bx, var3

f. mov edx, [var3+4]

g. lea esi, var2

h. mov al, [esi]

i. mov ax, [esi]

j. mov eax, [esi]

k. inc [esi]

2. (Yes/No) Is it possible to set the Overflow flag if you add a positive to a negative integer?

3. (Yes/No) Is it possible for the NEG instruction to set the Overflow flag?

4. (Yes/No) Is it possible for both the Sign and Zero flags to be set at the same time?

5. (Yes/No) Can any 16-bit general-purpose register be used for indirect addressing?

6. (Yes/No) Can any 32-bit general-purpose register be used for indirect addressing?

Programming Exercises
1. Write a program that does the following:

• Use the ADD and SUB instructions to set and clear the Carry flag.

• Use the ADD and SUB instructions to set and clear the Zero and Sign flags.

• Use the ADD and SUB instruction to set and clear the Overflow flag.

• Use the ADD instruction to set and clear both the Carry and Overflow flags.

Trace program execution and Explain why the flags are affected by each instruction.

2. Write a program that uses a loop to calculate the first ten values in the Fibonacci number
sequence {1, 1, 2, 3, 5, 8, 13, 21, 34, 55}. Place each value in the EAX register inside the
loop, and trace it with the Windows debugger.

3. Modify Program SumArray.asm to use the register esi as an index to intarray with a scale
factor of 2, instead of a pointer. Trace it with the Windows debugger.

4. Modify Program CopyStr.asm to use the register esi as a pointer (indirect addressing),
instead of an index, to copy the characters from source to target, but in reverse order.

