Registers and Counters

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

✤ Registers

Shift Registers and their Applications

- Ripple Counters
- Synchronous Counters

Register

- ✤ A register is a circuit capable of storing data
- \clubsuit An *n*-bit register consists of *n* Flip-Flops and stores *n* bits
- Common clock: data is loaded in parallel at the same clock edge
- Common reset: All Flip-Flops are reset in parallel

4-bit

Register Load (or Enable)

- Question: How to control the loading of data into a register?
 Solution: Introduce a register Load (or Enable) signal If the register is enabled, load the data into the register
 Otherwise, do not change the value of the register
- Question: How to implement register Load?

Register with Parallel Load

Solution: Add a mux at the D input of the register

- $\bigstar D_i = Load \cdot I_i + \overline{Load} \cdot Q_i$
- If Load is 1 then $D_i = I_i$ If Load is 0 then $D_i = Q_i$

Shift Registers

- ✤ A shift register is a cascade of flip flops sharing the same clock
- Allows the data to be shifted from each flip-flop to its neighbor
- The output of a flip-flop is connected to the input of its neighbor
- Shifting can be done in either direction
- ✤ All bits are shifted simultaneously at the active edge of the clock

Timing of a Shift Register

Cycle	SI	Q3	Q2	Q1	Q0 = SO
ТО	1 🔪	1	0	1	0
T1	0	¹ 1	1	0 1	1
Т2	1	0	<mark>۲</mark> 1	<u>۲</u> 1	0 1
Т3	1	1	0	1	1
Τ4	0 🔪	1	1	0	1
Т5	1	0	1	1	0
Т6	0	1	0	<u>۲</u>	1

Shift Register with Parallel Output

- The output of a shift register can be serial or parallel
- ✤ A Serial-In Parallel-Out (SIPO) shift register is shown below
- ✤ All flip-flop outputs can be read in parallel

Bit Serial Adder

- Adding two *n*-bit numbers A and B serially over n clock cycles
- A bit-serial adder can be implemented using
- 1. A Full Adder
- 2. A Flip-Flop to store the carry-out
- 3. A Shift Register to store the n-bit sum

Serial Addition Starts at the Least-significant bit

Sequence Detector with a Shift Register

A sequence detector can be implemented using:

Left Shift Register (SIPO) + AND Gates

Example: Detecting the sequences 1010 and 1100

Bits are shifted left starting at the most-significant bit

Parallel-In Serial-Out Shift Register

- A Parallel-In Serial-Out (PISO) Shift Register has:
 - $\diamond n$ parallel data input lines
 - ♦ Serial Input
 - ♦ Serial Output
 - ♦ Control input s
 - ♦ Clock input
 - ♦ Reset input
- Two control functions:
 - ♦ s = 0 → Shift Data
 - \diamond **s** = **1** \rightarrow Parallel Load *n* input bits

Parallel In Serial Out Shift Register

Two control functions:

 $s = 0 \rightarrow$ Shift $s = 1 \rightarrow$ Load data

Universal Shift Register

✤ A Universal Shift Register has the following specification:

- $\diamond n$ parallel data input and n output lines
- ♦ Right-shift and Left-shift Serial Inputs
- ♦ Two control input lines s
- ♦ Clock input
- ♦ Reset input
- Four control functions:
 - \diamond **s** = **00** \rightarrow No change in value
 - ♦ s = 01 → Shift Right (Right-Shift Serial Input)
 - ♦ s = 10 → Shift Left (Left-Shift Serial Input)
 - ♦ s = 11 → Parallel Load n input bits

Universal Shift Register Design

Counter

- Sequential circuit that goes through a specific sequence of states
- Output of the counter is the count value
- ♦ Modulo-*N* counter: goes through 0, 1, 2, ..., (N-1)
- Modulo-8 binary counter: goes through 0, 1, 2, ..., 7
- Modulo-10 (BCD) counter: goes through 0, 1, 2, ..., 9
- Counting can be up or down
- Some Applications:
 - ♦ Timers
 - ♦ Event Counting
 - ♦ Frequency Division

Implementing Counters

Two Basic Approaches:

1. Ripple Counters

- ♦ The system clock is connected to the clock input of the first flip-flop (LSB)
- ♦ Each flip-flop output connects to the clock input of the next flip-flop
- ♦ Advantage: simple circuit and low power consumption
- ♦ Disadvantage: The counter is not truly synchronous
- ♦ No common clock to all flip-flops
- $\diamond\,$ Ripple propagation delay as the clock signal propagates to the MSB

2. Synchronous Counters

- ♦ The system clock is connected to the clock input of ALL flip-flops
- ♦ Combinational logic is used to implement the desired state sequence

Ripple Counter

- Q₀ toggles at the positive edge of every cycle
- \mathbf{A}_1 toggles when Q_0 goes from 1 down to 0
- \mathbf{A}_2 toggles when Q_1 goes from 1 down to 0
- \mathbf{A}_{3} toggles when Q_{2} goes from 1 down to 0

Q3	Q2	Q1	Q0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0

Counts Up from 0 to 15 then back to 0

Ripple Counter (cont'd)

Up Count		Down Count			t	$Q[3:0]$ is the D_3 Q_3 Q_3		
Q_3	Q_2	Q_1	Q_0	Q'_3	Q_2'	Q_1'	Q'_0	Up Count
0	0	0	0	1	1	1	1	
0	0	0	1	1	1	1	0	Q'[3:0] is the
0	0	1 🗸	0	1	1	0	1	Down Count
0	0	1	1	1	1	0	0	
0	1 🗸	0 🗸	0	1	0	1 🗸	1	How to Count $\begin{bmatrix} P & O' \end{bmatrix}$
0	1	0	1	1	0	1	0	$\square OW IO COUNT = \frac{K}{\sqrt{2}} Q_2 P^2$
0	1	1	0	1	0	0	1	Down?
0	1	1	1	1	0	0	0	
1 🗸	0 🗸	0 🗸	0	0	1 🗸	1 🗸	1	Connect $U_1 V_1 V_1 V_1$
1	0	0	1	0	1	1	0	Q0 to Clk Q1
1	0	1 🗸	0	0	1	0	1 🗸	O1 to Clk O2
1	0	1	1	0	1	0	0	
1	1 🗸	0 🗸	0	0	0	1 🗸	1	Q2 to Clk Q3
1	1	0	1	0	0	1	0	
1	1	1	0	0	0	0	1	Clock - Clock
1	1	1	1	0	0	0	0	Reset — K Q ₀ P

Registers and Counters

Timing of a Ripple Counter

Drawback of ripple counter:

Flip-flops are NOT driven by the same clock (Not Synchronous)

Q delay increases as we go from Q_0 to Q_3

Given Δ = flip-flop delay \rightarrow Delay of Q₀, Q₁, Q₂, Q₃ = Δ , 2 Δ , 3 Δ , 4 Δ

Synchronous Counter

- Avoid clock rippling
- ✤ *n*-bit Register with a **common clock** for all flip-flops
- ✤ *n*-bit Incrementer to generate next state (Up-Counter)

4-Bit Synchronous Counter with Enable

An incrementer is a reduced (contracted) form of an adder

Synchronous Counter (Counting Up)

Count Up

♦ When $Q_0 = 1$

Toggle (Complement) Q_1

♦ When $Q_0 = Q_1 = 1$

Toggle (Complement) Q_2

♦ When $Q_0 = Q_1 = Q_2 = 1$

Toggle (Complement) Q_3

4-Bit Synchronous Counter with T Flip-Flops

Toggle Q1 when c1 = 1, Toggle Q2 when c2 = 1, etc.

Synchronous Up-Down Counter (T Flip-Flops)

Timing of a Synchronous Counter

Advantage of Synchronous counter:

ALL Flip-flops are driven by the same clock

Delay of all outputs is identical \rightarrow Delay of $Q_0 = Q_1 = Q_2 = Q_3 = \Delta$

Frequency Division

- ✤ A counter can be used as a frequency divider
- Counter is driven by a Clock with frequency F
- Output Q_0 Frequency = F/2, Output Q_1 Frequency = F/4
- Output Q_2 Frequency = F/8, Output Q_3 Frequency = F/16

BCD Counter

Problem: Convert a 4-bit binary counter into a BCD counter

- Solution: When output reaches 9 then reset back to 0
- Asynchronous Reset: Count to 10 and reset immediately

Building Larger Synchronous Counters

- Smaller counters can be used to build a larger counter
- ✤ Example: 12-bit counter designed using three 4-bit counters Counts from 0 to 4095 ($2^{12} - 1$), then back to 0

The Cout of a 4-bit counter is used to enable the next counter

Synchronous Counter with Parallel Load

✤ Ability to load an initial binary number into the counter

- \diamond Prior to the count operation
- Two control inputs:

♦ Load: Initialize counter with input Data

Implementing a Counter with Parallel Load

3-to-12 Counter

- Convert a 4-bit binary counter with load into 3-to-12 counter
- Solution: Detect binary count 12 and then load 3
- Detect 12: Binary count with Q₃ = Q₂ = 1

9-to-99 Counter

Problem: Use two 4-bit binary counters with parallel load and logic gates to build a counter that counts from 9 to 99 = 'b01100011

Add a synchronous **Preset** input to initialize the counter to value 9

