Analysis of Clocked Sequential Circuits

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

- Analysis of Clocked Sequential circuits
 - ♦ State and Output Equations
 - ♦ State Table
 - ♦ State Diagram
- Mealy versus Moore Sequential Circuits

♦ State and Timing Diagrams

Analysis of Clocked Sequential Circuits

Analysis is describing what a given circuit will do

The output of a clocked sequential circuit is determined by

- 1. Inputs
- 2. State of the Flip-Flops

Analysis Procedure:

- 1. Obtain the equations at the inputs of the Flip-Flops
- 2. Obtain the output equations
- 3. Fill the state table for all possible input and state values
- 4. Draw the state diagram

Analysis Example

✤ Is this a clocked sequential circuit?

YES!

- What type of Memory?
 D Flip-Flops
- How many state variables?

Two state variables: A and B

What are the Inputs?

One Input: x

What are the Outputs?

One Output: y

Flip-Flop Input Equations

- ✤ What are the equations on the *D* inputs of the flip-flops?
- $D_A = A x + B x$ $D_{R} = A' x$ D > Clk✤ A and B are the current state A(t) = A, B(t) = B \mathbf{O}_A and D_B are the **next state** D > Clk $A(t+1) = D_A, B(t+1) = D_B$ Clock \clubsuit The values of A and B will be D_A and D_{R} at the next clock edge

Next State and Output Equations

The next state equations define the next state

At the inputs of the Flip-Flops

Next state equations?

$$A(t+1) = D_A = A x + B x$$

$$B(t+1)=D_B=A'x$$

- \clubsuit There is only one output y
- What is the output equation?

$$y = (A + B) x'$$

State Table

- State table shows the Next State and Output in a tabular form
- ♦ Next State Equations: A(t + 1) = A x + B x and B(t + 1) = A' x
- Output Equation: y = (A + B) x'

Present State		Input	Ne St	ext ate	Output		Anoth	er fo	rm	of t	he s	tate tab	le	
Α	B	x	A	B	Y									
0	0	0	0	0	0	Present State		Next State				Output		
0	0	1	0	1	0									
0	1	0	0	0	1			<i>x</i> =	x = 0 $x = 1$		= 1	x = 0 $x = 1$		
0	1	1	1	1	0	Α	B	Α	B	A	B	Y	y	
1	0	0	0	0	1	0	0	0	0	0	1	0	0	
1	0	1	1	0	0	0	1	0	0	1	1	1	0	
1	1	0	0	0	1	1	0	0	0	1	0	1	0	
1	1	1	1	0	0	1	1	0	0	1	0	1	0	

State Diagram

- State diagram is a graphical representation of a state table
- The circles are the states
- \bigstar Two state variable \rightarrow Four states (ALL values of *A* and *B*)
- Arcs are the state transitions
 Labeled with: Input *x* / Output *y*

Present State		N	ext	Stat	e	Output			
		x = 0		<i>x</i> = 1		x = 0	<i>x</i> = 1		
Α	В	A	A B		B	Y	y		
0	0	0	0	0	1	0	0		
0	1	0	0	1	1	1	0		
1	0	0	0	1	0	1	0		
1	1	0	0	1	0	1	0		

Combinational versus Sequential Analysis

Analysis of Combinational Circuits

- Obtain the Boolean Equations
- Fill the Truth Table

Output is a function of input only

Analysis of Sequential Circuits

- Obtain the Next State Equations
- Obtain the Output Equations
- Fill the State Table
- Draw the State Diagram

Next state is a function of input and current state

Output is a function of input and current state

Example with Output = Current State

- Analyze the sequential circuit shown below
- **\bigstar** Two inputs: *x* and *y*
- One state variable A
- No separate output \rightarrow Output = current state A
- Obtain the next state equation, state table, and state diagram

Example with Output = Current State

Sequential Circuit with T Flip-Flops

Analysis of Clocked Sequential Circuits

Recall: Flip-Flop Characteristic Equation

• For D Flip-Flop: Q(t+1) = D

• For T Flip-Flop: $Q(t+1) = T \oplus Q(t)$

These equations define the Next State

• For JK Flip-Flop: Q(t + 1) = J Q'(t) + K' Q(t)

DF	lip-Flop		T Flip-Flop		JK Flip-Flop				
D	Q(t+1)	Т	Q(t+1)	JK	Q(t+1)				
0	Ø Reset	0	Q(t) No change	00	Q(t) No change				
1	1 Set	1	Q'(t) Complement	0 1	Ø Reset				
					1 Set				
			1 1	Q'(t) Complement					

Sequential Circuit with T Flip-Flops

T Flip-Flop Input Equations:

$$T_A = B x$$

$$T_B = x$$

Next State Equations:

y

 $A(t+1) = T_A \oplus A = (B x) \oplus A$

$$B(t+1) = T_B \oplus B = x \oplus B$$

Output Equation:

$$y = A B$$

Analysis of Clocked Sequential Circuits

From Next State Equations to State Table

T Flip-Flop Input Equations:

 $T_A = B x$ $T_R = x$ Next State Equations: $A(t+1) = (B x) \oplus A$ $B(t+1) = x \oplus B$ Output Equation:

y = A B

Present State		Input	Ne Sta	ext ate	Output	
Α	В	x	Α	В	y	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	1	0	
0	1	1	1	0	0	
1	0	0	1	0	0	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	1	

Notice that the output is a function of the present state only. It does **NOT** depend on the input *x*

From State Table to State Diagram

• Four States: AB = 00, 01, 10, 11 (drawn as circles)

• Output Equation: y = A B (does not depend on input x)

• Output y is shown inside the state circle (AB/y)

Sequential Circuit with a JK Flip-Flops

One Input x and two state variables: A and B (outputs of Flip-Flops)

No separate output \rightarrow Output = Current state *A B*

JK Input and Next State Equations

JK Flip-Flop Input Equations:

 $B(t+1) = x'B' + (A \oplus x)'B = B'x' + A B x + A'B x'$

From JK Input Equations to State Table

JK Input Equations:
$$J_A = B$$
, $K_A = B x'$, $J_B = x'$ and $K_B = A \oplus x$

Present State		Input	Next State			Flip-Flop Inputs					
A	В	x	Α	В	JA	K _A	J _B	K _B			
0	0	0	0	1	0	0	1	0			
0	0	1	0	0	0	0	0	1			
0	1	0	1	1	1	1	1	0			
0	1	1	1	0	1	0	0	1			
1	0	0	1	1	0	0	1	1			
1	0	1	1	0	0	0	0	0			
1	1	0	0	0	1	1	1	1			
1	1	1	1	1	1	0	0	0			

From State Table to State Diagram

Four states: A B = 00, 01, 10, and 11 (drawn as circles)

Arcs show the input value *x* on the state transition

Mealy versus Moore Sequential Circuits

There are two ways to design a clocked sequential circuit:

- 1. Mealy Machine: Outputs depend on present state and inputs
- 2. Moore Machine: Outputs depend on present state only

Analysis of Clocked Sequential Circuits

Mealy Machine

- The outputs are a function of the present state and Inputs
- The outputs are NOT synchronized with the clock
- The outputs may change if inputs change during the clock cycle
- The outputs may have momentary false values (called glitches)
- The correct outputs are present just before the edge of the clock

Mealy State Diagram

- An example of a Mealy state diagram is shown on the right
- Each arc is labeled with: Input / Output
- The output is shown on the arcs of the state diagram
- The output depends on the current state and input
- Notice that State 11 cannot be reached from the other states

Tracing a Mealy State Diagram

✤ When the circuit is powered, the initial state (AB) is unknown

- Even though the initial state is unknown, the input x = 0 forces a transition to state AB = 00, regardless of the present state
- Sometimes, a reset input is used to initialize the state to 00

False Output in the Timing Diagram

Moore Machine

- The outputs are a function of the Flip-Flop outputs only
- The outputs depend on the current state only
- The outputs are synchronized with the clock
- Glitches cannot appear in the outputs (even if inputs change)
- ✤ A given design might mix between Mealy and Moore

Moore State Diagram

- An example of a Moore state diagram is shown on the right
- Arcs are labeled with input only
- The output is shown inside the state: (State / Output)
- The output depends on the current state only

Tracing a Moore State Diagram

- When the circuit is powered, the initial state (AB) and output are unknown
- ✤ Input x = 0 resets the state AB to 00. Can also be done with a reset signal.

Cycle	0	1	2	3	4	5	6	7	8
Input <i>x</i>	0	1	1	0	1	1	1	1	0
Present	?	0	0	1	0	0	1	1	1
State A B	?	0	1	0	0	1	0	1	1
Output z	?	0	0	0	0	0	0	1	1

Timing Diagram of a Moore Machine

Analysis of Clocked Sequential Circuits

Summary

- To analyze a clocked sequential circuit:
- 1. Obtain the equations at the **Inputs** of the flip-flops
- 2. Obtain the **Next State** equations
 - \diamond For a D Flip-Flop, the Next State = D input equation
 - ♦ For T and JK, use the characteristic equation of the Flip-Flop
- 3. Obtain the **Output** equations
- 4. Fill the **State Table**
 - ♦ Put all the combinations of current state and input
 - ♦ Fill the next state and output columns
- 5. Draw the **State Diagram**
- Two types of clocked sequential circuits: Mealy versus Moore