Introduction to Sequential Circuits

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

- Introduction to Sequential Circuits
- Synchronous versus Asynchronous
- Latches
- Flip-Flops

Characteristic Tables and Equations

Combinational versus Sequential

- Two classes of digital circuits
 - ♦ Combinational Circuits
 - ♦ Sequential Circuits
- Combinational Circuit
 - ♦ Outputs = F(Inputs)
 - ♦ Function of Inputs only
 - ♦ NO internal memory
- Sequential Circuit
 - ♦ Outputs is a function of Inputs and internal Memory
 - \diamond There is an internal memory that stores the state of the circuit
 - \diamond Time is very important: memory changes with time

Introduction to Sequential Circuits

A Sequential circuit consists of:

♦ Computes the Outputs of the circuit

Outputs depend on Inputs and Current State

♦ Computes the Next State of the circuit

Next State also depends on the Inputs and the Present State

Two Types of Sequential Circuits

1. Synchronous Sequential Circuit

- ♦ Uses a clock signal as an additional input
- ♦ Changes in the memory elements are controlled by the clock
- ♦ Changes happen at discrete instances of time

2. Asynchronous Sequential Circuit

- ♦ No clock signal
- ♦ Changes in the memory elements can happen at any instance of time
- Our focus will be on Synchronous Sequential Circuits
 - ♦ Easier to design and analyze than asynchronous sequential circuits

Synchronous Sequential Circuits

- Synchronous sequential circuits use a clock signal
- The clock signal is an input to the memory elements
- The clock determines when the memory should be updated
- The present state = output value of memory (stored)
- The next state = input value to memory (not stored yet)

The Clock

- Clock is a periodic signal = Train of pulses (1's and 0's)
- The same clock cycle repeats indefinitely over time
- Positive Pulse: when the level of the clock is 1
- Negative Pulse: when the level of the clock is 0
- Rising Edge: when the clock goes from 0 to 1

Falling Edge: when the clock goes from 1 down to 0

Clock Cycle versus Clock Frequency

Clock cycle (or period) is a time duration

- ♦ Measured in seconds, milli-, micro-, nano-, or pico-seconds
- \Rightarrow 1 ms = 10⁻³ sec, 1 µs = 10⁻⁶ sec, 1 ns = 10⁻⁹ sec, 1 ps = 10⁻¹² sec
- Clock frequency = number of cycles per second (Hertz)

 \Rightarrow 1 Hz = 1 cycle/sec, 1 KHz = 10³ Hz, 1 MHz = 10⁶ Hz, 1 GHz = 10⁹ Hz

Clock frequency = 1 / Clock Cycle

 \diamond Example: Given the clock cycle = 0.5 ns = 0.5 × 10⁻⁹ sec

 \diamond Then, the clock frequency = 1/(0.5×10⁻⁹) = 2×10⁹ Hz = 2 GHz

Memory Elements

- Memory can store and maintain binary state (0's or 1's)
 - ♦ Until directed by an input signal to change state
- Main difference between memory elements
 - ♦ Number of inputs they have
 - \diamond How the inputs affect the binary state
- Two main types:
 - ♦ Latches are level-sensitive (the level of the clock)
 - ♦ Flip-Flops are edge-sensitive (sensitive to the edge of the clock)
- Flip-Flips are used in synchronous sequential circuits
- Flip-Flops are built with latches

- Introduction to Sequential Circuits
- Synchronous versus Asynchronous

Latches

Flip-Flops

Characteristic Tables and Equations

SR Latch

✤ A latch is a memory element that can store 0 or 1

An **SR Latch** can be built using two **cross-coupled** NOR gates

✤ Two inputs: S (Set) and R (Reset)

\bigstar Two outputs: Q and \overline{Q}

SR Latch Operation

SR Latch Invalid Operation

S = R = 1 should never be used

If S and R change from $1 \rightarrow 0$ simultaneously then race condition (oscillation) occurs

Final Q and \overline{Q} are unknown

Timing Diagram of an SR Latch

Introduction to Sequential Circuits

© Muhamed Mudawar – slide 14

Gated SR Latch with Clock Enable

- ✤ An additional Clock (enable) input signal C is used
- Clock controls when the state of the latch can be changed
- ✤ When C=0, the S and R inputs have no effect on the latch

The latch will remain in the same state, regardless of S and R

When C=1, then normal SR latch operation

$\overline{S} \overline{R}$ Latch with NAND Gates

- If $\overline{S} = 0$ and $\overline{R} = 1$ then Set $(Q = 1, \overline{Q} = 0)$
- If $\overline{S} = 1$ and $\overline{R} = 0$ then **Reset** $(Q = 0, \overline{Q} = 1)$
- When $\overline{S} = \overline{R} = 1$, Q and \overline{Q} are unchanged (remain the same)
- ✤ The latch stores its outputs Q and \overline{Q} as long as $\overline{S} = \overline{R} = 1$
- ↔ When $\overline{S} = \overline{R} = 0$, Q and \overline{Q} are undefined (should never be used)

S R Latch Operation

Introduction to Sequential Circuits

COE 202 – Digital Logic Design

S R Latch Invalid Operation

 $\overline{S} = \overline{R} = 0$ should never be used

If \overline{S} and \overline{R} change from $0 \rightarrow 1$ simultaneously then race condition (oscillation) occurs

Final Q and \overline{Q} are unknown

Gated SR Latch with Clock Enable

- ✤ An additional Clock (enable) input signal C is used
- Clock controls when the state of the latch can be changed
- ✤ When C=0, the latch remains in the same state
- When C=1, then normal latch operation

The NAND gates invert the **S** and **R** inputs when **C=1**

D-Latch with Clock Enable

Timing of a D-Latch with Clock Enable

Graphic Symbols for Latches

* A bubble appears at the complemented output \overline{Q}

Indicates that \overline{Q} is the complement of Q

• A bubble also appears at the inputs of an \overline{SR} latch

Indicates that **logic-0** is used (not logic-1) to set (or reset) the latch (as in the NAND latch implementation)

Problem with Latches

- A latch is **level-sensitive** (sensitive to the level of the clock)
- ✤ As long as the clock signal is high …

Any change in the value of input D appears in the output Q

- Output *Q* keeps changing its value during a clock cycle
- ✤ Final value of output *Q* is uncertain

Due to this uncertainty, latches are NOT used as memory elements in synchronous circuits

- Introduction to Sequential Circuits
- Synchronous versus Asynchronous

Flip-Flops

Characteristic Tables and Equations

Flip-Flops

- A Flip-Flop is a better memory element for synchronous circuits
- Solves the problem of latches in synchronous sequential circuits
- ✤ A latch is sensitive to the level of the clock
- However, a flip-flop is sensitive to the edge of the clock
- A flip-flop is called an **edge-triggered** memory element
- It changes it output value at the edge of the clock

Edge-Triggered D Flip-Flop

- Built using two latches in a master-slave configuration
- ✤ A master latch (D-type) receives external inputs
- ✤ A slave latch (SR-type) receives inputs from the master latch
- Only one latch is enabled at any given time

When **Clk=0**, the master is enabled and the D input is latched (slave disabled)

When **Clk=1**, the slave is enabled to generate the outputs (master is disabled)

Negative Edge-Triggered D Flip-Flop

- Similar to positive edge-triggered flip-flop
- The first inverter at the Master C input is removed
- Only one latch is enabled at any given time

When **Clk=1**, the master is enabled and the D input is latched (slave disabled) When **Clk=0**, the slave is enabled to generate the outputs (master is disabled)

D Flip-Flop Timing Diagram

- The diagram shows the timing of a positive-edge D Flip-Flop
- The master latch changes its output Qm when the clock C is 0
- The rising edge of the clock triggers the D Flip-Flop
- Notice the slight delay in the output Q after the rising edge

Graphic Symbols for Flip-Flops

✤ A Flip-Flop has a similar symbol to a Latch

- The difference is the arrowhead at the clock input
- The arrowhead indicates sensitivity to the edge of the clock
- ✤ A circle at the Clk input indicates negative edge-triggered FF

Asynchronous Set and Reset

- When Flip-Flops are powered, their initial state is unknown
- Some flip-flops have an **asynchronous Set** and **Reset** inputs
- Set forces Q to become 1, independently of the clock
- Reset forces Q to become 0, independently of the clock

	Inp	Outputs			
<u>Set</u>	Reset	Data	Clk	Q	\overline{Q}
0	1	Х	Х	1	0
1	0	Х	Х	0	1
1	1	0	↑	0	1
1	1	1	1	1	0

Function Table

Introduction to Sequential Circuits

COE 202 – Digital Logic Design

JK Flip-Flop

- The D Flip-Flop is the most commonly used type
- The JK is another type of Flip-Flop with inputs: J, K, and Clk
- ♦ When $JK = 10 \rightarrow Set$, When $JK = 01 \rightarrow Reset$
- ♦ When $JK = 00 \rightarrow$ No change, When $JK = 11 \rightarrow$ Invert outputs
- ✤ JK can be implemented using two Clocked SR latches and gates

T Flip-Flop

The T (Toggle) flip-flop has inputs: T and Clk

♦ When $T = 0 \rightarrow$ No change, When $T = 1 \rightarrow$ Invert outputs

✤ The *T* flip-flop can be implemented using a *JK* flip-flop

✤ It can also be implemented using a D flip-flop and a XOR gate

Flip-Flop Characteristic Table

- Defines the operation of a flip-flop in a tabular form
- Next state is defined in terms of the current state and the inputs
 - Q(t) refers to current state **before** the clock edge arrives
 - Q(t + 1) refers to next state after the clock edge arrives

D Flip-Flop		JK Flip-Flop		T Flip-Flop		
D	Q(t+1)	JK	Q(t+1)	Τ	Q(t+1)	
0	Ø Reset	00	Q(t) No change	0	Q(t) No change	
1	1 Set	01	0 Reset	1	Q'(t) Complement	
		10	1 Set			
		1 1	Q'(t) Complement			

Flip-Flop Characteristic Equation

- The characteristic equation defines the operation of a flip-flop
- For D Flip-Flop: Q(t+1) = D
- ♦ For JK Flip-Flop: Q(t + 1) = J Q'(t) + K' Q(t)
- ♦ For T Flip-Flop: $Q(t+1) = T \oplus Q(t)$
- Clearly, the D Flip-Flop is the simplest among the three

D Flip-Flop		JK Flip-Flop		T Flip-Flop		
D	Q(t+1)	JK	Q(t+1)	Τ	Q(t+1)	
0	0 Reset	00	Q(t) No change	0	Q(t) No change	
1	1 Set	0 1	Ø Reset	1	Q'(t) Complement	
		10	1 Set			
		1 1	Q'(t) Complement			

Timing Considerations for Flip-Flops

- Setup Time (T_s): Time duration for which the data input must be valid and stable before the arrival of the clock edge.
- Hold Time (T_h): Time duration for which the data input must not be changed after the clock transition occurs.
- T_s and T_h must be ensured for the proper operation of flip-flops

Summary

- In a sequential circuit there is internal memory
 - ♦ Output is a function of current inputs and present state
 - \diamond The stored memory value defines the present state
 - ♦ Similarly, the next state depends on current inputs and present state
- Two types of sequential circuits:
 - ♦ Synchronous sequential circuits are clocked (easier to implement)
 - ♦ Asynchronous sequential circuits are not clocked
- Two types of Memory elements: Latches and Flip-Flops
- Latches are level-sensitive, flip-flops are edge-triggered
- Flip-flops are better memory elements for synchronous circuits
- ✤ A flip-flop is described using a characteristic table and equation