
Behavioral Modeling in Verilog

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 2

Presentation Outline

� Introduction to Dataflow and Behavioral Modeling

� Verilog Operators

� Module Parameters

� Modeling Adders, Comparators, Multiplexers

� Always Block with Sensitivity List

� Procedural Statements: IF and CASE

� Modeling Decoder, Priority Encoder, and ALU

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 3

Verilog Four-Valued Logic

�Verilog Value Set consists of four basic values:

0 – represents a logic zero, or false condition

1 – represents a logic one, or true condition

X – represents an unknown logic value

Z – represents a high-impedance value

x or X represents an unknown or uninitialized value

z or Z represents the output of a disabled tri-state buffer

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 4

Nets and Variables

Verilog has two major data types:

1. Net data types: are connections between parts of a design

2. Variable data types: can store data values

� The wire is a net data type (physical connection)

� A wire cannot store the value of a procedural assignment

� However, a wire can be driven by continuous assignment

� The reg is a variable data type

� Can store the value of a procedural assignment

� However, cannot be driven by continuous assignment

� Other variable types: integer, time, real, and realtime

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 5

Modeling Circuits in Verilog

Four levels of modeling circuits in Verilog

1. Gate-Level Modeling

Lowest-level modeling using Verilog primitive gates

2. Structural Modeling using module instantiation

Describes the structure of a circuit with modules at different levels

3. Dataflow Modeling using concurrent assign statements

Describes the flow of data between input and output

4. Behavioral Modeling using procedural blocks and statements

Describes what the circuit does at a higher level of abstraction

Can also mix different models in the same design

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 6

Dataflow and Behavioral Modeling

� Dataflow Modeling using Continuous Assignment

� Used mostly for describing Boolean equations and combinational logic

� Verilog provides a rich set of operators

� Can describe: adders, comparators, multiplexers, etc.

� Synthesis tool can map a dataflow model into a target technology

� Behavioral Modeling using Procedural Blocks and Statements

� Describes what the circuit does at a functional and algorithmic level

� Encourages designers to rapidly create a prototype

� Can be verified easily with a simulator

� Some procedural statements are synthesizable (Others are NOT)

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 7

Continuous Assignment

� The assign statement defines continuous assignment

� Syntax: assign [#delay] net_name = expression;

� Assigns expression value to net_name (wire or output port)

� The optional #delay specifies the delay of the assignment

� Continuous assignment statements are concurrent

� Can appear in any order inside a module

� Continuous assignment can model combinational circuits

� Describes the flow of data between input and output

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 8

Verilog Operators

Bitwise Operators

~a Bitwise NOT

a & b Bitwise AND

a | b Bitwise OR

a ^ b Bitwise XOR

a ~^ b Bitwise XNOR

a ^~ b Same as ~^

Arithmetic Operators

a + b ADD

a – b Subtract

-a Negate

a * b Multiply

a / b Divide

a % b Remainder

Shift Operators

a << n Shift Left

a >> n Shift Right

Reduction Operators

&a AND all bits

|a OR all bits

^a XOR all bits

~&a NAND all bits

~|a NOR all bits

~^a XNOR all bits

Relational Operators

a == b Equality

a != b Inequality

a < b Less than

a > b Greater than

a <= b Less or equal

a >= b Greater or equal

Reduction operators produce a 1-bit result

Relational operators produce a 1-bit result

{a, b} concatenates the bits of a and b

Miscellaneous Operators

sel?a:b Conditional

{a, b} Concatenate

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 9

Bit Vectors in Verilog

� A Bit Vector is multi-bit declaration that uses a single name

� A Bit Vector is specified as a Range [msb:lsb]

� msb is most-significant bit and lsb is least-significant bit

� Examples:

input [15:0] A; // A is a 16-bit input vector

output [0:15] B; // Bit 0 is most-significant bit

wire [3:0] W; // Bit 3 is most-significant bit

� Bit select: W[1] is bit 1 of W

� Part select: A[11:8] is a 4-bit select of A with range [11:8]

� The part select range must be consistent with vector declaration

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 10

Reduction Operators
module Reduce

(input [3:0] A, B, output X, Y, Z);

// A, B are input vectors, X, Y, Z are 1-bit outputs

// X = A[3] | A[2] | A[1] | A[0];

assign X = |A;

// Y = B[3] & B[2] & B[1] & B[0];

assign Y = &B;

// Z = X & (B[3] ^ B[2] ^ B[1] ^ B[0]);

assign Z = X & (^B);

endmodule

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 11

Concatenation Operator { }

module Concatenate

(input [7:0] A, B, output [7:0] X, Y, Z);

// A, B are input vectors, X, Y, Z are output vectors

// X = A is right-shifted 3 bits using { } operator

assign X = {3'b000, A[7:3]};

// Y = A is right-rotated 3 bits using { } operator

assign Y = {A[2:0], A[7:3]};

// Z = selecting and concatenating bits of A and B

assign Z = {A[5:4], B[6:3], A[1:0]};

endmodule

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 12

Integer Literals (Constant Values)

� Syntax: [size]['base]value

size (optional) is the number of bits in the value

'base can be: 'b(binary), 'o(octal), 'd(decimal), or 'h(hex)

value can be in binary, octal, decimal, or hexadecimal

� If the 'base is not specified then decimal value

� Examples:

8'b1011_1101 (8-bit binary), 'hA3F0 (16-bit hexadecimal)

16'o56377 (16-bit octal), 32'd999 (32-bit decimal)

� The underscore _ can be used to enhance readability of value

� When size is fewer bits than value, upper bits are truncated

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 13

Ripple Carry Adder

� Using identical copies of a full adder to build a large adder

� The cell (iterative block) is a full adder

Adds 3 bits: ai, bi, ci, Computes: Sum si and Carry-out ci+1

� Carry-out of cell i becomes carry-in to cell (i +1)

c0Full
Adder

a0 b0

s0

c1Full
Adder

a1 b1

s1

c2. . .cn-1Full
Adder

an-1 bn-1

sn-1

cn ciFull
Adder

ai bi

si

ci+1

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 14

16-Bit Adder with Array Instantiation

// Input ports: 16-bit a and b, 1-bit cin (carry input)

// Output ports: 16-bit sum, 1-bit cout (carry output)

module Adder_16 (input [15:0] a, b, input cin,

output [15:0] sum, output cout);

wire [16:0] c; // carry bits

assign c[0] = cin; // carry input

assign cout = c[16]; // carry output

// Instantiate an array of 16 Full Adders

// Each instance [i] is connected to bit select [i]

Full_Adder FA [15:0] (a[15:0], b[15:0], c[15:0],

c[16:1], sum[15:0]);

endmodule

Array Instantiation of identical modules by a single statement

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 15

16-Bit Adder with Continuous Assignment

// Input ports: 16-bit a and b, 1-bit cin (carry input)

// Output ports: 16-bit sum, 1-bit cout (carry output)

module Adder_16 (input [15:0] a, b, input cin,

output [15:0] sum, output cout);

wire [16:0] c; // carry bits

assign c[0] = cin; // carry input

assign cout = c[16]; // carry output

// assignment of 16-bit vectors

assign sum[15:0] = (a[15:0] ^ b[15:0]) ^ c[15:0];

assign c[16:1] = (a[15:0] & b[15:0]) |

(a[15:0] ^ b[15:0]) & c[15:0];

endmodule

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 16

16-bit Adder with the + Operator

module Adder16

(input [15:0] A, B, input cin,

output [15:0] Sum, output cout);

// A and B are 16-bit input vectors

// Sum is a 16-bit output vector

// {cout, Sum} is a concatenated 17-bit vector

// A + B + cin is 16-bit addition + input carry

// The + operator is translated into an adder

assign {cout, Sum} = A + B + cin;

endmodule

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 17

Modeling a Parametric n-bit Adder

// Parametric n-bit adder, default value for n = 16

module Adder #(parameter n = 16)

(input [n-1:0] A, B, input cin,

output [n-1:0] Sum, output cout);

// A and B are n-bit input vectors

// Sum is an n-bit output vector

// The + operator is translated into an n-bit adder

// Only one assign statement is used

assign {cout, Sum} = A + B + cin;

endmodule

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 18

Instantiating Adders of Various Sizes

// Instantiate a 16-bit adder (parameter n = 16)

// A1, B1, and Sum1 must be 16-bit vectors

Adder #(16) adder16 (A1, B1, Cin1, Sum1, Cout1);

// Instantiate a 32-bit adder (parameter n = 32)

// A2, B2, and Sum2 must be 32-bit vectors

Adder #(32) adder32 (A2, B2, Cin2, Sum2, Cout2);

// If parameter is not specified, it defaults to 16

Adder adder16 (A1, B1, Cin1, Sum1, Cout1);

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 19

Modeling a Magnitude Comparator

// n-bit magnitude comparator, No default value for n

module Comparator #(parameter n)

(input [n-1:0] A, B,

output GT, EQ, LT);

// A and B are n-bit input vectors (unsigned)

// GT, EQ, and LT are 1-bit outputs

assign GT = (A > B);

assign EQ = (A == B);

assign LT = (A < B);

endmodule

n-bit

Magnitude

Comparator

A[n–1:0]
n

B[n–1:0]
n

GT

EQ

LT

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 20

Instantiating Comparators of Various Sizes

// Instantiate a 16-bit comparator (n = 16)

// A1 and B1 must be declared as 16-bit vectors

Comparator #(16) comp16 (A1, B1, GT1, EQ1, LT1);

// Instantiate a 32-bit comparator (n = 32)

// A2 and B2 must be declared as 32-bit vectors

Comparator #(32) comp32 (A2, B2, GT2, EQ2, LT2);

// WRONG Instantiation: Must specify parameter n

Comparator comp32 (A2, B2, GT2, EQ2, LT2);

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 21

Conditional Operator

� Syntax:

Boolean_expr ? True_expression : False_expression

If Boolean_expr is true then select True_expression

Else select False_Expression

� Examples:

assign max = (a>b)? a : b; // maximum of a and b

assign min = (a>b)? b : a; // minimum of a and b

� Conditional operators can be nested

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 22

Modeling a 2x1 Multiplexer

// Parametric 2x1 Mux, default value for n = 1

module Mux2 #(parameter n = 1)

(input [n-1:0] A, B, input sel,

output [n-1:0] Z);

// A and B are n-bit input vectors

// Z is the n-bit output vector

// if (sel==0) Z = A; else Z = B;

// Conditional operator used for selection

assign Z = (sel == 0)? A : B;

endmodule

Z
n

sel

0A
n

1B
n

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 23

Modeling a 4x1 Multiplexer

// Parametric 4x1 Mux, default value for n = 1

module Mux4 #(parameter n = 1)

(input [n-1:0] A, B, C, D,

input [1:0] sel,

output [n-1:0] Z);

// sel is a 2-bit vector

// Nested conditional operators

assign Z = (sel[1] == 0) ?

((sel[0] == 0) ? A : B) :

((sel[0] == 0) ? C : D);

endmodule

Z
n

sel

0A
n

1B
n

2C
n

3D
n

2

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 24

Behavioral Modeling

� Uses procedural blocks and procedural statements

� There are two types of procedural blocks in Verilog

1. The initial block

� Executes the enclosed statement(s) one time only

2. The always block

� Executes the enclosed statement(s) repeatedly until simulation terminates

� The body of the initial and always blocks is procedural

� Can enclose one or more procedural statements

� Procedural statements are surrounded by begin … end

� Multiple procedural blocks can appear in any order inside a
module and run in parallel inside the simulator

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 25

Example of Initial and Always Blocks

module behave;
reg clk; // 1-bit variable
reg [15:0] A; // 16-bit variable
initial begin // executed once

clk = 0; // initialize clk
A = 16'h1234; // initialize A
#200 $finish

end
always begin // executed always

#10 clk = ~clk; // invert clk every 10 ns
end
always begin // executed always

#20 A = A + 1; // increment A every 20 ns
end

endmodule

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 26

Always Block with Sensitivity List

� Syntax:

always @(sensitivity list) begin

procedural statements

end

� An always block can have a sensitivity list

� Sensitivity list is a list of signals: @(signal1, signal2, …)

The sensitivity list triggers the execution of the always block

When there is a change of value in any listed signal

Otherwise, the always block does nothing until another
change occurs on a signal in the sensitivity list

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 27

Sensitivity List for Combinational Logic

� For combinational logic, the sensitivity list must include:

ALL the signals that are read inside the always block

Example: A, B, and sel must be in the sensitivity list below:

always @(A, B, sel) begin

if (sel == 0) Z = A;

else Z = B;

end

� Combinational logic can also use: @(*) or @*

@(*) is automatically sensitive to all the signals that are read

inside the always block

A, B, and sel are
read inside the
always block

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 28

If Statement

� The if statement is procedural

� Can only be used inside a procedural block

� Syntax:

if (expression) statement

[else statement]

� The else part is optional

A statement can be simple or compound

A compound statement is surrounded by begin ... end

� if statements can be nested

� Can be nested under if or under else part

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 29

Modeling a 2x1 Multiplexer

// Behavioral Modeling of a Parametric 2x1 Mux

module Mux2 #(parameter n = 1)

(input [n-1:0] A, B, input sel,

output reg [n-1:0] Z);

// Output Z must be of type reg

// Sensitivity list = @(A, B, sel)

always @(A, B, sel) begin

if (sel == 0) Z = A;

else Z = B;

end

endmodule

Z
n

sel

0A
n

1B
n

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 30

Modeling a 3x8 Decoder

module Decoder3x8 (input [2:0] A, output reg [7:0] D);

// Sensitivity list = @(A)

always @(A) begin

if (A == 0) D = 8'b00000001;

else if (A == 1) D = 8'b00000010;

else if (A == 2) D = 8'b00000100;

else if (A == 3) D = 8'b00001000;

else if (A == 4) D = 8'b00010000;

else if (A == 5) D = 8'b00100000;

else if (A == 6) D = 8'b01000000;

else D = 8'b10000000;

end

endmodule

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 31

Modeling a 4x2 Priority Encoder

module Priority_Encoder4x2

(input [3:0] D, output reg V, output reg [1:0] A);

// sensitivity list = @(D)

always @(D) begin

if (D[3]) {V, A} = 3'b111;

else if (D[2]) {V, A} = 3'b110;

else if (D[1]) {V, A} = 3'b101;

else if (D[0]) {V, A} = 3'b100;

else {V, A} = 3'b000;

end

endmodule

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 32

Modeling a Magnitude Comparator

// Behavioral Modeling of a Magnitude Comparator

module Comparator #(parameter n = 1)

(input [n-1:0] A, B, output reg GT, EQ, LT);

// Sensitivity list = @(A, B)

always @(A, B) begin

if (A > B)

{GT,EQ,LT}='b100;

else if (A == B)

{GT,EQ,LT}='b010;

else

{GT,EQ,LT}='b001;

end

endmodule

n-bit

Magnitude

Comparator

A[n–1:0]
n

B[n–1:0]
n

GT

EQ

LT

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 33

Case Statement

� The case statement is procedural (used inside always block)

� Syntax:

case (expression)

case_item1: statement

case_item2: statement

. . .

default: statement

endcase

The default case is optional

A statement can be simple or compound

A compound statement is surrounded by begin ... end

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 34

Modeling a Mux with a Case Statement
module Mux4 #(parameter n = 1)

(input [n-1:0] A, B, C, D, input [1:0] sel,

output reg [n-1:0] Z);

// @(*) is @(A, B, C, D, sel)

always @(*) begin

case (sel)

2'b00: Z = A;

2'b01: Z = B;

2'b10: Z = C;

default: Z = D;

endcase

end

endmodule

Z
n

sel

0A
n

1B
n

2C
n

3D
n

2

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 35

Modeling a Multifunction ALU
// Behavioral Modeling of an ALU

module ALU #(parameter n = 16)

(input [n-1:0] A, B, input [1:0] F,

output reg [n-1:0] Z, output reg Cout);

// @(*) is @(A, B, F)

always @(*) begin

case (F)

2'b00: {Cout,Z} = A+B;

2'b01: {Cout,Z} = A-B;

2'b10: {Cout,Z} = A&B;

default: {Cout,Z} = A|B;

endcase

end

endmodule

ALUF [1:0]
2

n

A [n-1:0]

n

B [n-1:0]

Z [n-1:0]

n
Cout

ALU Symbol

Behavioral Modeling in Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 36

Modeling a BCD to 7-Segment Decoder

module BCD_to_7Seg_Decoder

(input [3:0] BCD, output reg [6:0] Seg)

always @(BCD) begin

case (BCD)

0: Seg = 7'b1111110; 1: Seg = 7'b0110000;

2: Seg = 7'b1101101; 3: Seg = 7'b1111001;

4: Seg = 7'b0110011; 5: Seg = 7'b1011011;

6: Seg = 7'b1011111; 7: Seg = 7'b1110000;

8: Seg = 7'b1111111; 9: Seg = 7'b1111011;

default: Seg = 7'b0000000;

endcase

end

endmodule

