Arithmetic Circuits 3

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

- Carry Lookahead Adder
- BCD Adder
- Binary Multiplier
- Carry-Save Adders in Multipliers

Carry Lookahead Adder

- ✤ Is it possible to eliminate carry propagation?
- ↔ Observation: $c_{i+1} = a_i b_i + (a_i \oplus b_i) c_i$
- If both inputs a_i and b_i are 1s then

 c_{i+1} will be 1 regardless of input c_i

↔ Therefore, define $g_i = a_i b_i$

- * g_i is called **carry generate**: generates c_{i+1} regardless of c_i
- ✤ In addition, define $p_i = (a_i \oplus b_i)$ $a_i \text{ or } b_i \text{ is 1, not both}$
- * p_i is called **carry propagate**: propagates value of c_i to c_{i+1}
- ♣ Equation of output carry becomes: $c_{i+1} = g_i + p_i c_i$
- ✤ If both inputs a_i and b_i are 0s then $g_i = p_i = 0$ and $c_{i+1} = 0$

Carry Bits

Carry bits are generated by a Lookahead Carry Unit as follows: $c_0 = input carry$

 $c_1 = g_0 + p_0 c_0$

 $c_2 = g_1 + p_1 c_1 = g_1 + p_1 (g_0 + p_0 c_0) = g_1 + p_1 g_0 + p_1 p_0 c_0$

 $c_3 = g_2 + p_2 c_2 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$

 $c_4 = g_3 + p_3 c_3 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 c_0$

Define Group Generate: $GG = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0$

Define Group Propagate: $GP = p_3 p_2 p_1 p_0$

 $c_4 = GG + GP c_0$

Carry does not ripple anymore

Reduced delay when generating c_1 to c_4 in parallel

4-Bit Carry Lookahead Adder

All generate and propagate signals (g_i, p_i) are generated in parallel All carry bits $(c_1 \text{ to } c_4)$ are generated in parallel

The sum bits are generated faster than ripple-carry adder

Lookahead Carry Unit

Longest Delay of the 4-bit CLA

- ✤ All generate and propagate signals are produced in parallel
- ↔ Delay of all g_i and $p_i = \Delta_1$ (Delay of XOR > Delay of AND)
- ↔ Carry bits c_1 , c_2 , and c_3 are generated in parallel (Delay = Δ_2)

 \diamond Carry-out bit c_4 is not needed to compute the sum bits

♣ Longest Delay of the 4-bit CLA = $\Delta_1 + \Delta_2 + \Delta_1 = 2 \Delta_1 + \Delta_2$

Hierarchical 16-Bit Carry Lookahead Adder

- Designed with Four 4-bit Carry Lookahead Adders (CLA)
- A Second-Level Lookahead Carry Unit is required
- Uses Group Generate (GG) and Group Propagate (GP) signals

Hierarchical 64-Bit Carry Lookahead Adder

- Designed with Four 16-bit Carry Lookahead Adders (CLA)
- A Third-Level Lookahead Carry Unit is required
- Uses Group Generate (GG) and Group Propagate (GP) signals

Next . . .

- Carry Lookahead Adder
- BCD Adder
- Binary Multiplier
- Carry-Save Adders in Multipliers

BCD Addition

We use binary arithmetic to add the BCD digits

	1000	8
+	0101	+ 5
	1101	13 (>9)

✤ If the result is more than 9, it must be corrected to use 2 digits

To correct the digit, add 6 to the digit sum

	1000		8	
+	0101		+ 5	
	1101		13 (>9)	
+	0110		+ 6 (add 6)	
1	0011	Final answer in BCD	19 (carry + 3)

Multiple Digit BCD Addition

Add: 2905 + 1897 in BCD

Showing carries and digit corrections

С	arry	+1	+1	+1	
	+	0010	1001	0000	0101
	J	0001	1000	1001	0111
		0100	10010	1010	1100
igit corr		rection	0110	0110	0110
_		0100	1000	0000	0010

Final answer: 2905 + 1897 = 4802

C

BCD Adder

Ripple-Carry BCD Adder

✤ Inputs are BCD digits: 0 to 9

- Sum are BCD digits: **ones**, **tens**, **hundreds**, **thousands**, etc.
- Can be extended to any number of BCD digits
- BCD adders are larger in size than binary adders

Next . . .

- Carry Lookahead Adder
- BCD Adder
- Binary Multiplier
- Carry-Save Adders in Multipliers

Binary Multiplication

Binary Multiplication is simple:

0×0=0,	0×1=0,	1×0=0,	1×1=1
Multiplica Multiplier	and ×	$1100_2 = 1$ $1101_2 = 1$	2 3
	1 11	1100 0000 100 00	Binary multiplication 0 × multiplicand = 0 1 × multiplicand = multiplicand
Product 10011100 ₂ =		11100 ₂ = 1	56

- ✤ *n*-bit multiplicand × *n*-bit multiplier = 2*n*-bit product
- Accomplished via shifting and addition

4-bit × 4-bit Binary Multiplier

Suppose we want to multiply two numbers A and B

 \diamond Example on 4-bit numbers: A = a₃ a₂ a₁ a₀ and B = b₃ b₂ b₁ b₀

Step 1: AND (multiply) each bit of A with each bit of B

♦ Requires n^2 AND gates and produces n^2 product bits

♦ Position of $a_ib_i = (i+j)$. For example, Position of $a_2b_3 = 2+3 = 5$

Adding the Bits Vertically

- ADD the product bits vertically using Carry-Save adders
 - Full Adder adds three vertical bits \diamond
 - Half Adder adds two vertical bits \diamond
 - \diamond Each adder produces a partial sum and a carry
- Use Carry-propagate adder for final addition

Carry Save Adder

✤ A n-bit carry-save adder produces two n-bit outputs

 \diamond n-bit partial sum bits and n-bit carry bits

- ✤ All the n bits of a carry-save adder work in parallel
 - ♦ The carry does not propagate as in a carry-propagate adder
 - ♦ This is why a carry-save is faster than a carry-propagate adder
- Useful when adding multiple numbers (as in a multiplier)

Carry-Save Adders in a Multiplier

Step 1: Use carry save adders to add the partial products

♦ Reduce the partial products to just two numbers

Step 2: Use carry-propagate adder to add last two numbers

