# Arithmetic Circuits 2 

## COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

## Zero versus Sign Extension

* Unsigned Integers are Zero-Extended
* Signed Integers are Sign-Extended
* Given that X is a 4-bit unsigned integer $\boldsymbol{\rightarrow}$ Range $=0$ to 15
$*$ Given that Y is a 4-bit signed integer $\rightarrow$ Range $=-8$ to +7
* If unsigned $X=4$ 'b1101 (binary), then $X=13$ (decimal)
* If signed $\mathrm{Y}=4$ 'b1101 (binary), then $\mathrm{Y}=-3$ (decimal)
* If X is zero-extended from 4 to 6 bits then $\mathrm{X}=6$ 'b001101 $=13$
* If Y is sign-extended from 4 to 6 bits then $\mathrm{Y}=6$ 'b111101 $=-3$


## Unsigned Addition $S=X+Y$

* Design a circuit that computes: $\mathrm{S}=\mathrm{X}+\mathrm{Y}$ (unsigned X and Y$)$
* $\mathrm{X}[3: 0]$ and $\mathrm{Y}[3: 0]$ are 4-bit unsigned integers $\rightarrow$ Range $=0$ to 15


## Solution:

$\because$ Maximum $S=15+15=30 \rightarrow$ unsigned $S$ must be 5 bits

## Most-significant sum bit $S_{4}$ is the carry bit $\mathrm{C}_{4}$



## Signed Addition $S=X+Y$

* Design a circuit that computes: $S=X+Y($ signed $X$ and $Y)$
* $\mathrm{X}[3: 0]$ and $\mathrm{Y}[3: 0]$ are 4-bit signed integers $\rightarrow$ Range $=-8$ to +7


## Solution:

* Minimum $S=(-8)+(-8)=-16$, Maximum $S=(+7)+(+7)=+14$
* Therefore, signed range of $S=-16$ to $+14 \rightarrow S$ must be 5 bits



## Unsigned Subtraction $S=X-Y$

* Design a circuit that computes $S=X-Y$ (unsigned $X$ and $Y$ )
* $\mathrm{X}[3: 0]$ and $\mathrm{Y}[3: 0]$ are 4-bit unsigned integers $\rightarrow$ Range $=0$ to 15

Solution: $\mathrm{S}=\mathrm{X}-\mathrm{Y}=2$ 2's complement of $\mathrm{Y}=\mathrm{X}+\mathrm{Y}^{\prime}+1$

* Minimum $S=0-15=-15$, Maximum $S=15-0=+15$
$* S$ is signed, even though $X$ are $Y$ are unsigned $\rightarrow S$ is 5 bits



## Unsigned Subtraction $S=X-Y$

$*$ Most-significant bit: $\mathrm{S}_{4}=0+0^{\prime}+\mathrm{C}_{4}=1+\mathrm{C}_{4}=\mathrm{C}_{4}{ }^{\prime}$

* Full Adder for $\mathrm{S}_{4}$ can be replaced by an inverter



## Signed Subtraction $S=X-Y$

* Design a circuit that computes $S=X-Y($ signed $X$ and $Y)$
* X[3:0] and Y[3:0] are 4-bit signed integers $\rightarrow$ Range $=-8$ to +7

Solution: $\mathrm{S}=\mathrm{X}-\mathrm{Y}=\mathrm{X}+\mathrm{Y}^{\prime}+1$

* Minimum $\mathrm{S}=-8-(+7)=-15$, Maximum $\mathrm{S}=+7-(-8)=+15$
* Signed range for $S$ is -15 to $+15 \rightarrow S$ is 5 bits



## $S=2^{*} X+Y($ Unsigned $X$ and $Y)$

* Design a circuit that computes $S=2^{*} X+Y$ (unsigned $X$ and $Y$ )
* $\mathrm{X}[3: 0]$ and $\mathrm{Y}[3: 0]$ are 4-bit unsigned integers $\rightarrow$ range $=0$ to 15 Solution:
* $2^{*} X+Y=X \ll 1+Y$ (Shift-Left $X$ by 1 bit)
* Maximum value of $S=2^{*} 15+15=45 \rightarrow S$ is 6 bits $=S[5: 0]$



## $S=2^{*} X+Y($ Signed $X$ and $Y)$

* Design a circuit that computes $S=2^{*} X+Y$ using Full Adders
* X[3:0] and $\mathrm{Y}[3: 0]$ are 4-bit signed integers $\rightarrow$ range $=-8$ to +7


## Solution:

* Range of X and Y is -8 to $+7 \rightarrow$ Minimum $\mathrm{S}=2^{*}(-8)+(-8)=-24$
* Maximum $S=2^{*}(+7)+7=+21 \rightarrow S$ is 6 bits $=S[5: 0]$



## Unsigned Less Than: LT $=X<Y$

* Design a circuit that computes unsigned LT (unsigned $X$ and $Y$ )


## Solution:

* If $(\mathbf{X}<\mathrm{Y})$ then $(\mathbf{X}-\mathrm{Y})<\mathbf{0}, \quad$ If $(\mathbf{X}=\mathbf{=})$ then $(\mathbf{X}-\mathrm{Y}==\mathbf{0})$
* Do unsigned subtraction, $\mathbf{L T}=\mathrm{S}_{\mathbf{4}}=$ sign-bit of the result



## Signed Less Than: LT $=X<Y$

* Design a circuit that computes signed LT (Signed X and Y) Solution:
* If $(\mathbf{X}<\mathbf{Y})$ then $(\mathbf{X}-\mathrm{Y})<\mathbf{0}, \quad$ If $(\mathbf{X}=\mathbf{Y})$ then ( $\mathbf{X}-\mathbf{Y}=\mathbf{=}$ )
* Do signed subtraction, LT $=\mathbf{S}_{\mathbf{4}}=$ sign-bit of the result



## Design a Circuit for Unsigned $S=X+Y+Z$

* $\mathrm{X}, \mathrm{Y}$, and Z are 4-bit unsigned integers $\rightarrow$ Range $=0$ to 15

Solution: Maximum $S=15+15+15=45 \rightarrow$ S must be 6 bits


## Design a Circuit for Signed $S=W+X-Y-Z$

* W, X, Y, and Z are 4-bit signed integers $\rightarrow$ Range $=-8$ to +7

Solution: $\mathrm{S}=\mathrm{W}+\mathrm{X}-\mathrm{Y}-\mathrm{Z}=(\mathrm{W}+\mathrm{X})-(\mathrm{Y}+\mathrm{Z}) \rightarrow 6$ bits are used


## Absolute Difference $|X-Y|$ of Signed $X, Y$

* Design a circuit that computes $A=|X-Y|$ (absolute difference)

Solution: Maximum $A=|X-Y|=|-8-+7|=15 \rightarrow 4$ bits are used


## Incrementor Circuit



