Arithmetic Circuits

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

Magnitude Comparator

Design by Contraction

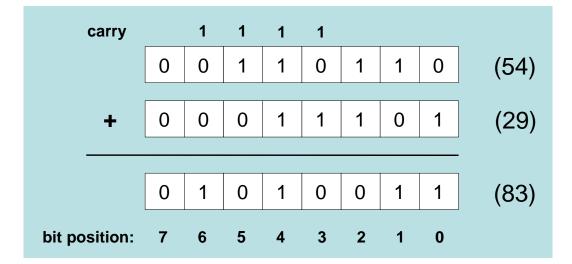
Signed Numbers

Addition/Subtraction of Signed 2's Complement

Binary Addition

Start with the least significant bit (rightmost bit)

- ✤ Add each pair of bits
- Include the carry in the addition

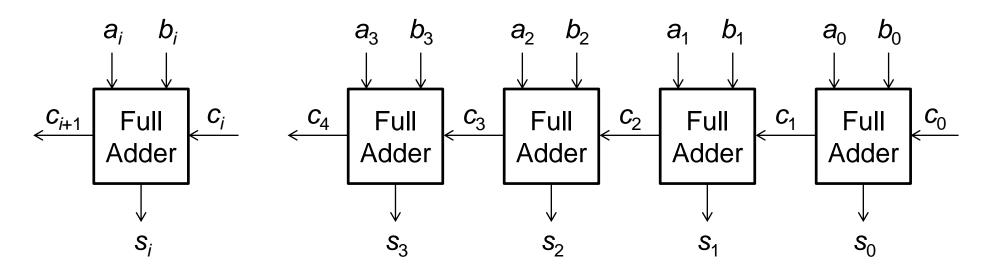


Iterative Design: Ripple Carry Adder

- Uses identical copies of a full adder to build a large adder
- Simple to implement: can be extended to add any number of bits
- The cell (iterative block) is a full adder

Adds 3 bits: a_i , b_i , c_i , Computes: Sum s_i and Carry-out c_{i+1}

Carry-out of cell *i* becomes carry-in to cell (*i*+1)



Full-Adder Equations

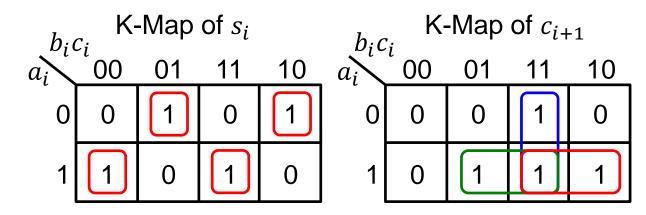
$$s_{i} = a'_{i}b'_{i}c_{i} + a'_{i}b_{i}c'_{i} + a_{i}b'_{i}c'_{i} + a_{i}b_{i}c_{i}$$

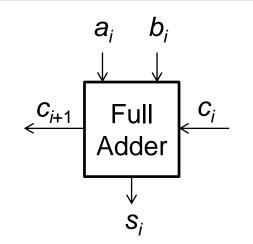
$$s_{i} = \text{odd function} = (a_{i} \oplus b_{i}) \oplus c_{i}$$

$$c_{i+1} = a'_{i}b_{i}c_{i} + a_{i}b'_{i}c_{i} + a_{i}b_{i}c'_{i} + a_{i}b_{i}c_{i}$$

$$c_{i+1} = (a'_{i}b_{i} + a_{i}b'_{i}) c_{i} + a_{i}b_{i} (c'_{i} + c_{i})$$

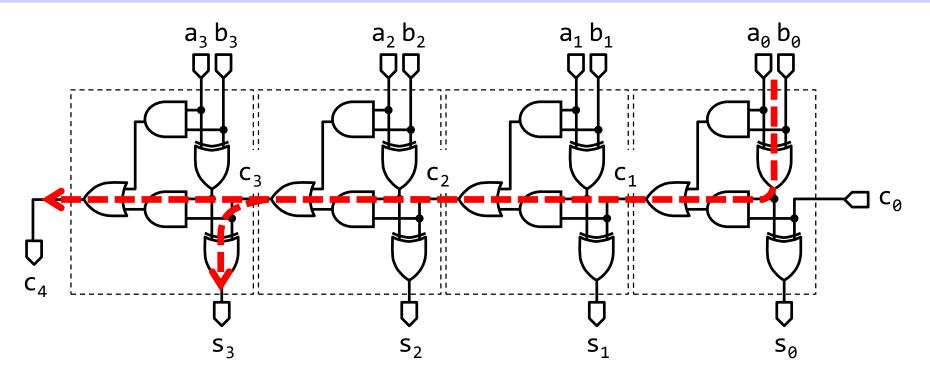
$$c_{i+1} = (a_{i} \oplus b_{i}) c_{i} + a_{i}b_{i}$$
K-map: $c_{i+1} = a_{i}b_{i} + a_{i}c_{i} + b_{i}c_{i}$





$a_i b_i c_i$	c _{i+1}	s_i
000	0	0
001	0	1
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	1	1

Carry Propagation

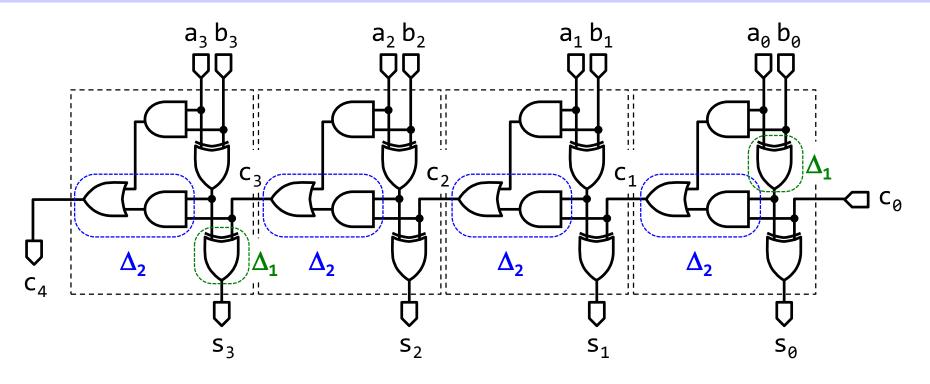


Major drawback of ripple-carry adder is the carry propagation

- The carries are connected in a chain through the full adders
- This is why it is called a ripple-carry adder

The carry ripples (propagates) through all the full adders

Longest Delay Analysis



Suppose the XOR delay is Δ_1 and AND-OR delay is Δ_2

For an *N*-bit ripple-carry adder, if all inputs are present at once:

- 1. Most-significant sum-bit delay = $2\Delta_1 + (N-1)\Delta_2$
- 2. Final Carry-out delay = $\Delta_1 + N \Delta_2$

Ripple-Carry Adder

Magnitude Comparator

Design by Contraction

Signed Numbers

Addition/Subtraction of Signed 2's Complement

Magnitude Comparator

✤ A combinational circuit that compares two unsigned integers

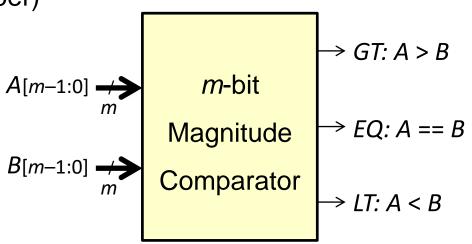
Two Inputs:

♦ Unsigned integer A (*m*-bit number)

 \diamond Unsigned integer *B* (*m*-bit number)

Three outputs:

- \Rightarrow A > B (GT output)
- \Rightarrow A == B (EQ output)
- \Rightarrow A < B (LT output)



- Exactly one of the three outputs must be equal to 1
- While the remaining two outputs must be equal to 0

Example: 4-bit Magnitude Comparator

Inputs:

- $\diamond A = A_3 A_2 A_1 A_0$
- $\diamond B = B_3 B_2 B_1 B_0$
- \diamond 8 bits in total \rightarrow 256 possible combinations
- ♦ Not simple to design using conventional K-map techniques
- The magnitude comparator can be designed at a higher level
- \clubsuit Let us implement first the *EQ* output (*A* is equal to *B*)

$$\Rightarrow EQ = 1 \leftrightarrow A_3 == B_3, A_2 == B_2, A_1 == B_1, \text{ and } A_0 == B_0$$

$$\diamond$$
 Define: $E_i = (A_i = B_i) = A_i B_i + A'_i B'_i$

 \diamond Therefore, $EQ = (A == B) = E_3 E_2 E_1 E_0$

The Greater Than Output

Given the 4-bit input numbers: *A* and *B*

1. If $A_3 > B_3$ then GT = 1, irrespective of the lower bits of A and B

Define:
$$G_3 = A_3 B'_3$$
 ($A_3 == 1$ and $B_3 == 0$)

2. If $A_3 == B_3$ ($E_3 == 1$), we compare A_2 with B_2

Define:
$$G_2 = A_2 B'_2$$
 ($A_2 == 1$ and $B_2 == 0$)

3. If $A_3 == B_3$ and $A_2 == B_2$, we compare A_1 with B_1

Define: $G_1 = A_1 B'_1$ ($A_1 == 1$ and $B_1 == 0$)

4. If $A_3 == B_3$ and $A_2 == B_2$ and $A_1 == B_1$, we compare A_0 with B_0

Define: $G_0 = A_0 B'_0$ ($A_0 == 1$ and $B_0 == 0$)

Therefore, $GT = G_3 + E_3G_2 + E_3E_2G_1 + E_3E_2E_1G_0$

The Less Than Output

We can derive the expression for the LT output, similar to GTGiven the 4-bit input numbers: A and B

1. If $A_3 < B_3$ then LT = 1, irrespective of the lower bits of A and B Define: $L_3 = A'_3 B_3$ ($A_3 == 0$ and $B_3 == 1$) 2. If $A_3 = B_3$ ($E_3 == 1$), we compare A_2 with B_2 Define: $L_2 = A'_2 B_2$ ($A_2 == 0$ and $B_2 == 1$) 3. Define: $L_1 = A'_1 B_1$ ($A_1 == 0$ and $B_1 == 1$) 4. Define: $L_0 = A'_0 B_0$ ($A_0 == 0$ and $B_0 == 1$) Therefore, $LT = L_3 + E_3L_2 + E_3E_2L_1 + E_3E_2E_1L_0$ Knowing GT and EQ, we can also derive LT = (GT + EQ)'

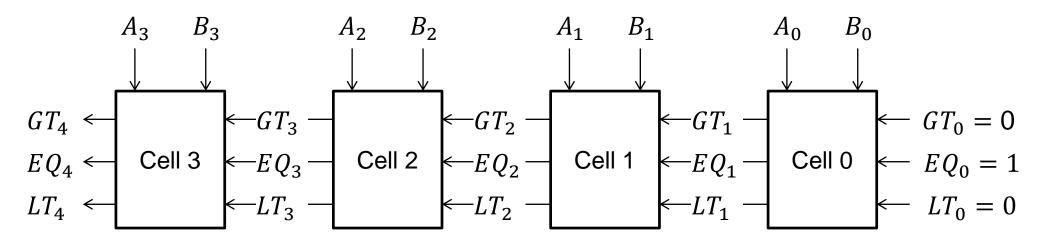
Iterative Magnitude Comparator Design

The Magnitude comparator can also be designed iteratively

4-bit magnitude comparator is implemented using 4 identical cells

Design can be extended to any number of cells

- Comparison starts at least-significant bit
- ✤ Final comparator output: $GT = GT_4$, $EQ = EQ_4$, $LT = LT_4$



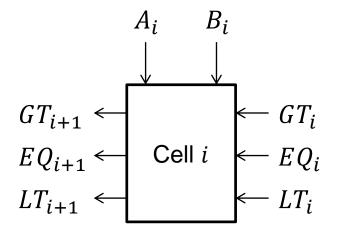
Cell Implementation

- ✤ Each Cell *i* receives as inputs:
 Bit *i* of inputs *A* and *B*: *A_i* and *B_i GT_i*, *EQ_i*, and *LT_i* from cell (*i* − 1)
- Each Cell *i* produces three outputs: $GT_{i+1}, EQ_{i+1}, \text{ and } LT_{i+1}$

Outputs of cell *i* are inputs to cell (i + 1)

- Output Expressions of Cell i
 - $EQ_{i+1} = E_i EQ_i \qquad E_i = A'_i B'_i + A_i B_i (A_i \text{ equals } B_i)$ $GT_{i+1} = A_i B'_i + E_i GT_i \qquad A_i B'_i (A_i > B_i)$ $LT_{i+1} = A'_i B_i + E_i LT_i \qquad A'_i B_i (A_i < B_i)$

Third output can be produced for first two: LT = (EQ + GT)'



Ripple-Carry Adder

Magnitude Comparator

Design by Contraction

Signed Numbers

Addition/Subtraction of Signed 2's Complement

Design by Contraction

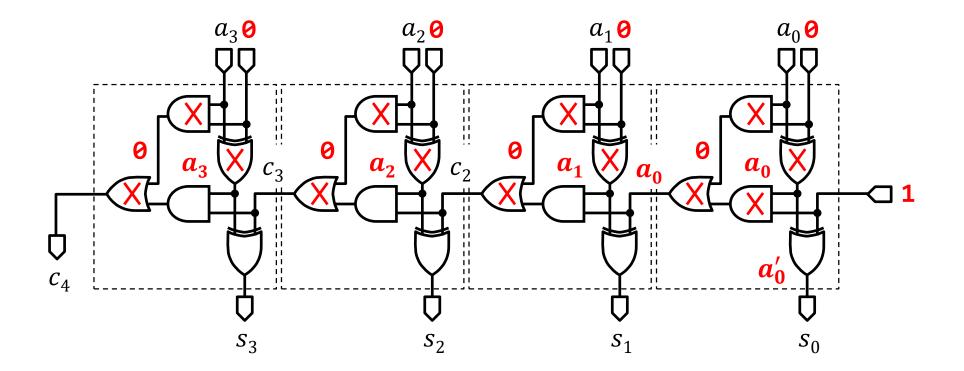
- Contraction is a technique for simplifying the logic
- Applying 0s and 1s to some inputs
- Equations are simplified after applying fixed 0 and 1 inputs
- Converting a function block to a more simplified function
- Examples of Design by Contraction
 - ♦ Incrementing a number by a fixed constant
 - $\diamond\,$ Comparing a number to a fixed constant

Designing an Incrementer

An incrementer is a special case of an adder

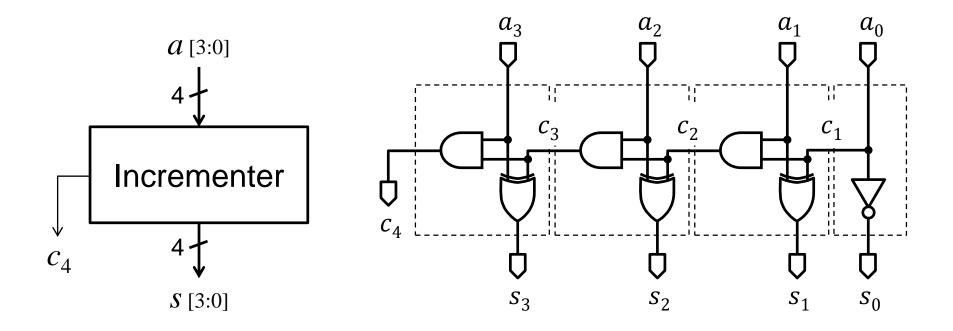
Sum = A + 1 (B = 0, $C_0 = 1$)

✤ An *n*-bit Adder can be simplified into an *n*-bit Incrementer



Simplifying the Incrementer Circuit

- Many gates were eliminated
- ✤ No longer needed when an input is a constant
- ✤ Last cell can be replicated to implemented an *n*-bit incrementer



Ripple-Carry Adder

Magnitude Comparator

Design by Contraction

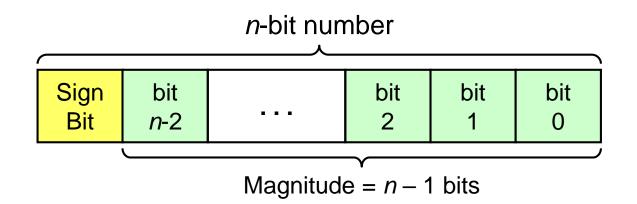
Addition/Subtraction of Signed 2's Complement

Signed Numbers

Several ways to represent a signed number

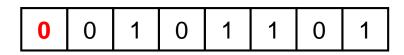
- ♦ Sign-Magnitude
- ♦ 1's complement
- \diamond 2's complement
- Divide the range of values into two parts
 - ↔ First part corresponds to the positive numbers (≥ 0)
 - \diamond Second part correspond to the negative numbers (< 0)
- The 2's complement representation is widely used
 - ♦ Has many advantages over other representations

Sign-Magnitude Representation

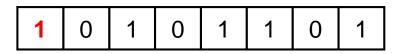


- Independent representation of the sign and magnitude
- Leftmost bit is the sign bit: 0 is positive and 1 is negative
- ↔ Using *n* bits, largest represented magnitude = $2^{n-1} 1$

Sign-magnitude 8-bit representation of +45



Sign-magnitude 8-bit representation of -45



Properties of Sign-Magnitude

Symmetric range of represented values:

For *n*-bit register, range is from $-(2^{n-1}-1)$ to $+(2^{n-1}-1)$

For example, if n = 8 bits then range is -127 to +127

- Two representations for zero: +0 and -0
 NOT Good!
- Two circuits are needed for addition & subtraction NOT Good!
 - ♦ In addition to an adder, a second circuit is needed for subtraction
 - ♦ Sign and magnitude parts should be processed independently
 - ♦ Sign bit should be examined to determine addition or subtraction
 - ♦ Addition of numbers of different signs is converted into subtraction
 - ♦ Increases the cost of the add/subtract circuit

Sign-Magnitude Addition / Subtraction

Eight cases for Sign-Magnitude Addition / Subtraction

Operation	ADD Magnitudes	Subtract Magnitudes		
operation		A >= B	A < B	
(+A) + (+B)	+(A+B)			
(+A) + (-B)		+(A-B)	-(B-A)	
(-A) + (+B)		-(A-B)	+(B-A)	
(-A) + (-B)	-(A+B)			
(+A) - (+B)		+(A-B)	-(B-A)	
(+A) - (-B)	+(A+B)			
(-A) - (+B)	-(A+B)			
(-A) - (-B)		-(A-B)	+(B-A)	

1's Complement Representation

✤ Given a binary number A

The 1's complement of A is obtained by inverting each bit in A

- Example: 1's complement of $(01101001)_2 = (10010110)_2$
- ✤ If A consists of n bits then:

A + (1's complement of A) = $(2^{n} - 1) = (1...111)_{2}$ (all bits are 1's)

♦ Range of values is $-(2^{n-1} - 1)$ to $+(2^{n-1} - 1)$

For example, if n = 8 bits, range is -127 to +127

✤ Two representations for zero: +0 and -0 NOT Good!
1's complement of $(0...000)_2 = (1...111)_2 = 2^n - 1$

 $-0 = (1...111)_2$ **NOT Good!**

2's Complement Representation

Standard way to represent signed integers in computers

✤ A simple definition for 2's complement:

Given a binary number A

The 2's complement of A = (1's complement of A) + 1

• Example: 2's complement of $(01101001)_2 =$

 $(10010110)_2 + 1 = (10010111)_2$

✤ If A consists of n bits then

$$A + (2's \text{ complement of } A) = 2^n$$

```
2's complement of A = 2^n - A
```

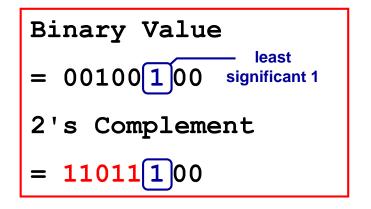
Computing the 2's Complement

starting value	00100100 ₂ = +36
step1: Invert the bits (1's complement)	11011011 ₂
step 2: Add 1 to the value from step 1	+ 1 ₂
sum = 2's complement representation	$11011100_2 = -36$

2's complement of 11011100_2 (-36) = 00100011_2 + 1 = 00100100_2 = +36

The 2's complement of the 2's complement of A is equal to A

Another way to obtain the 2's complement: Start at the least significant 1 Leave all the 0s to its right unchanged Complement all the bits to its left



Properties of the 2's Complement

✤ Range of represented values: -2^{n-1} to $+(2^{n-1}-1)$

For example, if n = 8 bits then range is -128 to +127

- There is only **one zero** = $(0...000)_2$ (all bits are zeros)
- The 2's complement of A is the negative of A
- The sum of A + (2's complement of A) must be zero

The final carry is ignored

• Consider the 8-bit number $A = 00101100_2 = +44$

2's complement of $A = 11010100_2 = -44$

 $00101100_2 + 11010100_2 = 1\ 00000000_2$ (8-bit sum is 0)

Ignore final carry = 2⁸

Values of Different Representations

8-bit Binary Representation	Unsigned Value	Sign Magnitude Value	1's Complement Value	2's Complement Value
00000000	0	+0	+0	0
00000001	1	+1	+1	+1
00000010	2	+2	+2	+2
• • •	• • •	• • •	• • •	• • •
01111101	125	+125	+125	+125
01111110	126	+126	+126	+126
0111111	127	+127	+127	+127
10000000	128	-0	-127	-128
10000001	129	-1	-126	-127
10000010	130	-2	-125	-126
• • •	• • •	• • •	• • •	• • •
11111101	253	-125	-2	-3
11111110	254	-126	-1	-2
11111111	255	-127	-0	-1

2's Complement Signed Value

Positive numbers (sign-bit = 0)

♦ Signed value = Unsigned value

Negative numbers (sign-bit = 1)

♦ Signed value = Unsigned value -2^n

 \Rightarrow *n* = number of bits

Negative weight for sign bit

 The 2's complement representation assigns a negative weight to the sign bit (most-significant bit)

1	0	1	1	0	1	0	0
-128	64	32	16	8	4	2	1

```
-128 + 32 + 16 + 4 = -76
```

8-bit Binary	Unsigned Value	Signed Value
00000000	0	0
00000001	1	+1
00000010	2	+2
	• • •	• • •
01111101	125	+125
01111110	126	+126
01111111	127	+127
10000000	128	-128
10000001	129	-127
10000010	130	-126
• • •	• • •	• • •
11111101	253	-3
11111110	254	-2
11111111	255	-1

Ripple-Carry Adder

Magnitude Comparator

Design by Contraction

Signed Numbers

Addition/Subtraction of Signed 2's Complement

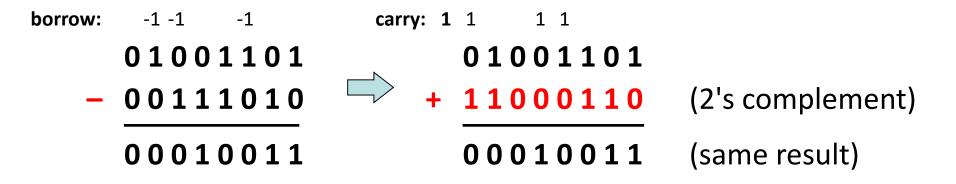
Converting Subtraction into Addition

✤ When computing A – B, convert B to its 2's complement

A - B = A + (2's complement of B)

Same adder is used for both addition and subtraction

This is the biggest advantage of 2's complement



Final carry is ignored, because

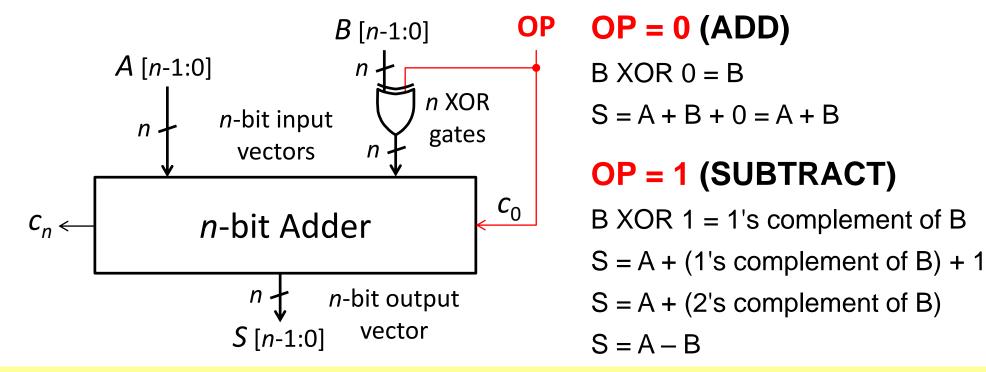
A + (2's complement of B) = A + $(2^n - B) = (A - B) + 2^n$ Final carry = 2^n , for *n*-bit numbers

Adder/Subtractor for 2's Complement

- Same adder is used to compute: (A + B) or (A B)
- ✤ Subtraction (A B) is computed as: A + (2's complement of B)

2's complement of B = (1's complement of B) + 1

Two operations: OP = 0 (ADD), OP = 1 (SUBTRACT)

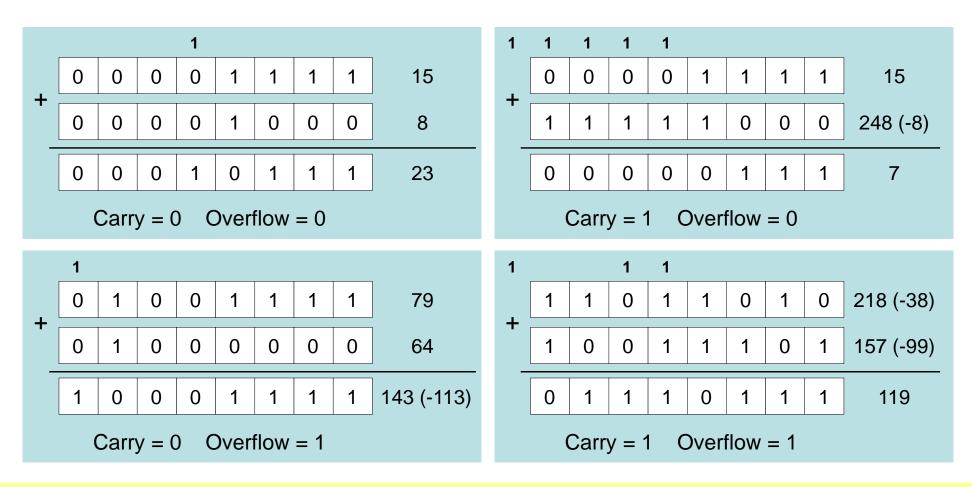


Carry versus Overflow

- ✤ Carry is important when …
 - ♦ Adding unsigned integers
 - ♦ Indicates that the unsigned sum is out of range
 - ♦ Sum > maximum unsigned *n*-bit value
- ✤ Overflow is important when …
 - Adding or subtracting signed integers
 - ♦ Indicates that the signed sum is out of range
- ✤ Overflow occurs when …
 - $\diamond\,$ Adding two positive numbers and the sum is negative
 - \diamond Adding two negative numbers and the sum is positive
- ↔ Simplest way to detect Overflow: $V = C_{n-1} \oplus C_n$
 - \diamond **C**_{*n*-1} and **C**_{*n*} are the carry-in and carry-out of the most-significant bit

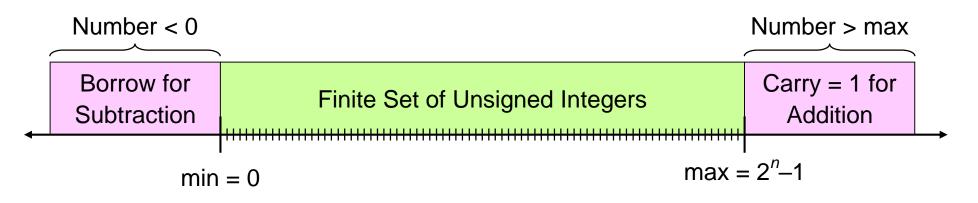
Carry and Overflow Examples

- We can have carry without overflow and vice-versa
- Four cases are possible (Examples on 8-bit numbers)



Range, Carry, Borrow, and Overflow

Unsigned Integers: n-bit representation



Signed Integers: 2's complement representation

