# Arithmetic Circuits 

## COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

## Presentation Outline

* Ripple-Carry Adder
* Magnitude Comparator
* Design by Contraction
* Signed Numbers
* Addition/Subtraction of Signed 2's Complement


## Binary Addition

* Start with the least significant bit (rightmost bit)
* Add each pair of bits
* Include the carry in the addition

| carry | $\mathbf{1}$ |  |  |  |  |  |  |  | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| ---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 0 1 1 0 1 1 0 <br> + 0 0 0 1 1 1 0 |  |  |  |  |  |  |  |  |  |  | | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Iterative Design: Ripple Carry Adder

* Uses identical copies of a full adder to build a large adder
* Simple to implement: can be extended to add any number of bits
* The cell (iterative block) is a full adder

Adds 3 bits: $a_{i}, b_{i}, c_{i}$, Computes: Sum $s_{i}$ and Carry-out $c_{i+1}$

* Carry-out of cell $i$ becomes carry-in to cell $(i+1)$



## Full-Adder Equations

$$
\begin{aligned}
& s_{i}=a_{i}^{\prime} b_{i}^{\prime} c_{i}+a_{i}^{\prime} b_{i} c_{i}^{\prime}+a_{i} b_{i}^{\prime} c_{i}^{\prime}+a_{i} b_{i} c_{i} \\
& s_{i}=\text { odd function }=\left(a_{i} \oplus b_{i}\right) \oplus c_{i} \\
& c_{i+1}=a_{i}^{\prime} b_{i} c_{i}+a_{i} b_{i}^{\prime} c_{i}+a_{i} b_{i} c_{i}^{\prime}+a_{i} b_{i} c_{i} \\
& c_{i+1}=\left(a_{i}^{\prime} b_{i}+a_{i} b_{i}^{\prime}\right) c_{i}+a_{i} b_{i}\left(c_{i}^{\prime}+c_{i}\right) \\
& c_{i+1}=\left(a_{i} \oplus b_{i}\right) c_{i}+a_{i} b_{i} \\
& \text { K-map: } c_{i+1}=a_{i} b_{i}+a_{i} c_{i}+b_{i} c_{i}
\end{aligned}
$$

| K-Map of $s_{i}$ |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| $b_{i} b_{i} c_{i}$ |  |  |  |  |
| $a_{i}$ |  |  |  |  |
| 0 |  |  |  |  |$|$|  | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 |
| 1 |  |  |  |
| 1 | 1 | 0 | 1 |


| $b_{i} c_{i}$ | K-Map of $c_{i+1}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $a_{i}$ | 00 | 01 | 11 | 10 |
| 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 | 1 |

## Carry Propagation



* Major drawback of ripple-carry adder is the carry propagation
* The carries are connected in a chain through the full adders
* This is why it is called a ripple-carry adder
* The carry ripples (propagates) through all the full adders


## Longest Delay Analysis



Suppose the XOR delay is $\Delta_{1}$ and AND-OR delay is $\Delta_{2}$
For an $N$-bit ripple-carry adder, if all inputs are present at once:

1. Most-significant sum-bit delay $=2 \Delta_{1}+(N-1) \Delta_{2}$
2. Final Carry-out delay $=\Delta_{1}+N \Delta_{2}$

* Ripple-Carry Adder
* Magnitude Comparator
* Design by Contraction
* Signed Numbers
* Addition/Subtraction of Signed 2's Complement


## Magnitude Comparator

* A combinational circuit that compares two unsigned integers
* Two Inputs:
$\diamond$ Unsigned integer $A$ ( $m$-bit number)
$\triangleleft$ Unsigned integer $B$ ( $m$-bit number)
* Three outputs:

$$
\begin{aligned}
& \diamond A>B \text { (GT output) } \\
& \diamond A==B \text { (EQ output) } \\
& \diamond A<B \text { (LT output) }
\end{aligned}
$$



* Exactly one of the three outputs must be equal to 1
* While the remaining two outputs must be equal to 0


## Example: 4-bit Magnitude Comparator

* Inputs:

$$
\begin{aligned}
& \diamond A=A_{3} A_{2} A_{1} A_{0} \\
& \diamond B=B_{3} B_{2} B_{1} B_{0}
\end{aligned}
$$

$\diamond 8$ bits in total $\rightarrow 256$ possible combinations
$\diamond$ Not simple to design using conventional K-map techniques

* The magnitude comparator can be designed at a higher level
* Let us implement first the $E Q$ output ( $A$ is equal to $B$ )
$\diamond E Q=1 \leftrightarrow A_{3}==B_{3}, A_{2}==B_{2}, A_{1}==B_{1}$, and $A_{0}==B_{0}$
$\diamond$ Define: $E_{i}=\left(A_{i}==B_{i}\right)=A_{i} B_{i}+A_{i}^{\prime} B_{i}^{\prime}$
$\diamond$ Therefore, $E Q=(A==B)=E_{3} E_{2} E_{1} E_{0}$


## The Greater Than Output

Given the 4-bit input numbers: $A$ and $B$

1. If $A_{3}>B_{3}$ then $G T=1$, irrespective of the lower bits of $A$ and $B$

Define: $G_{3}=A_{3} B_{3}^{\prime}\left(A_{3}==1\right.$ and $\left.B_{3}==0\right)$
2. If $A_{3}==B_{3}\left(E_{3}==1\right)$, we compare $A_{2}$ with $B_{2}$

Define: $G_{2}=A_{2} B_{2}^{\prime}\left(A_{2}==1\right.$ and $\left.B_{2}==0\right)$
3. If $A_{3}==B_{3}$ and $A_{2}=B_{2}$, we compare $A_{1}$ with $B_{1}$

Define: $G_{1}=A_{1} B_{1}^{\prime}\left(A_{1}==1\right.$ and $\left.B_{1}==0\right)$
4. If $A_{3}==B_{3}$ and $A_{2}==B_{2}$ and $A_{1}==B_{1}$, we compare $A_{0}$ with $B_{0}$ Define: $G_{0}=A_{0} B_{0}^{\prime}\left(A_{0}==1\right.$ and $\left.B_{0}==0\right)$
Therefore, $G T=G_{3}+E_{3} G_{2}+E_{3} E_{2} G_{1}+E_{3} E_{2} E_{1} G_{0}$

## The Less Than Output

We can derive the expression for the $L T$ output, similar to $G T$
Given the 4-bit input numbers: $A$ and $B$

1. If $A_{3}<B_{3}$ then $L T=1$, irrespective of the lower bits of $A$ and $B$

Define: $L_{3}=A_{3}^{\prime} B_{3} \quad\left(A_{3}==0\right.$ and $\left.B_{3}==1\right)$
2. If $A_{3}=B_{3}\left(E_{3}==1\right)$, we compare $A_{2}$ with $B_{2}$

Define: $L_{2}=A_{2}^{\prime} B_{2} \quad\left(A_{2}==0\right.$ and $\left.B_{2}==1\right)$
3. Define: $L_{1}=A_{1}^{\prime} B_{1} \quad\left(A_{1}==0\right.$ and $\left.B_{1}==1\right)$
4. Define: $L_{0}=A_{0}^{\prime} B_{0} \quad\left(A_{0}==0\right.$ and $\left.B_{0}==1\right)$

Therefore, $L T=L_{3}+E_{3} L_{2}+E_{3} E_{2} L_{1}+E_{3} E_{2} E_{1} L_{0}$
Knowing $G T$ and $E Q$, we can also derive $L T=(G T+E Q)^{\prime}$

## Iterative Magnitude Comparator Design

* The Magnitude comparator can also be designed iteratively

4-bit magnitude comparator is implemented using 4 identical cells
Design can be extended to any number of cells

* Comparison starts at least-significant bit
$\star$ Final comparator output: $G T=G T_{4}, E Q=E Q_{4}, L T=L T_{4}$



## Cell Implementation

* Each Cell $i$ receives as inputs:

Bit $i$ of inputs $A$ and $B: A_{i}$ and $B_{i}$ $G T_{i}, E Q_{i}$, and $L T_{i}$ from cell ( $i-1$ )

* Each Cell $i$ produces three outputs:
$G T_{i+1}, E Q_{i+1}$, and $L T_{i+1}$


Outputs of cell $i$ are inputs to cell $(i+1)$

* Output Expressions of Cell $i$

$$
\begin{array}{ll}
E Q_{i+1}=E_{i} E Q_{i} & E_{i}=A_{i}^{\prime} B_{i}^{\prime}+A_{i} B_{i}\left(A_{i} \text { equals } B_{i}\right) \\
G T_{i+1}=A_{i} B_{i}^{\prime}+E_{i} G T_{i} & A_{i} B_{i}^{\prime}\left(A_{i}>B_{i}\right) \\
L T_{i+1}=A_{i}^{\prime} B_{i}+E_{i} L T_{i} & A_{i}^{\prime} B_{i}\left(A_{i}<B_{i}\right)
\end{array}
$$

Third output can be produced for first two: $L T=(E Q+G T)^{\prime}$

* Ripple-Carry Adder
* Magnitude Comparator
* Design by Contraction
* Signed Numbers
* Addition/Subtraction of Signed 2's Complement


## Design by Contraction

* Contraction is a technique for simplifying the logic
* Applying 0s and 1 s to some inputs
* Equations are simplified after applying fixed 0 and 1 inputs
* Converting a function block to a more simplified function
* Examples of Design by Contraction
$\diamond$ Incrementing a number by a fixed constant
$\diamond$ Comparing a number to a fixed constant


## Designing an Incrementer

* An incrementer is a special case of an adder

$$
\text { Sum }=A+1\left(B=0, C_{0}=1\right)
$$

* An $n$-bit Adder can be simplified into an $n$-bit Incrementer



## Simplifying the Incrementer Circuit

* Many gates were eliminated
* No longer needed when an input is a constant
* Last cell can be replicated to implemented an $n$-bit incrementer

* Ripple-Carry Adder
* Magnitude Comparator
* Design by Contraction
* Signed Numbers
* Addition/Subtraction of Signed 2's Complement


## Signed Numbers

* Several ways to represent a signed number
$\diamond$ Sign-Magnitude
$\diamond 1$ 's complement
$\diamond 2$ 's complement
* Divide the range of values into two parts
$\diamond$ First part corresponds to the positive numbers ( $\geq 0$ )
$\diamond$ Second part correspond to the negative numbers (<0)
* The 2's complement representation is widely used
$\diamond$ Has many advantages over other representations


## Sign-Magnitude Representation



* Independent representation of the sign and magnitude
* Leftmost bit is the sign bit: 0 is positive and 1 is negative
$*$ Using $n$ bits, largest represented magnitude $=2^{n-1}-1$

Sign-magnitude 8 -bit representation of +45

| 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Properties of Sign-Magnitude

* Symmetric range of represented values:

For $n$-bit register, range is from $-\left(2^{n-1}-1\right)$ to $+\left(2^{n-1}-1\right)$
For example, if $n=8$ bits then range is -127 to +127

* Two representations for zero: +0 and -0 NOT Good!
* Two circuits are needed for addition \& subtraction NOT Good!
$\diamond$ In addition to an adder, a second circuit is needed for subtraction
$\diamond$ Sign and magnitude parts should be processed independently
$\diamond$ Sign bit should be examined to determine addition or subtraction
$\diamond$ Addition of numbers of different signs is converted into subtraction
$\diamond$ Increases the cost of the add/subtract circuit


## Sign-Magnitude Addition / Subtraction

Eight cases for Sign-Magnitude Addition / Subtraction

| Operation | ADD Magnitudes | Subtract Magnitudes |  |
| :---: | :---: | :---: | :---: |
|  |  | A $>=B$ | $A<B$ |
| $(+A)+(+B)$ | + ( $A+B$ ) |  |  |
| $(+A)+(-B)$ |  | $+(A-B)$ | - (B-A) |
| $(-A)+(+B)$ |  | - ( $A-B$ ) | $+(B-A)$ |
| $(-A)+(-B)$ | - ( $A+B$ ) |  |  |
| $(+A)-(+B)$ |  | +(A-B) | - (B-A) |
| $(+A)-(-B)$ | +(A+B) |  |  |
| $(-A)-(+B)$ | - ( $A+B$ ) |  |  |
| $(-A)-(-B)$ |  | - ( $A-B$ ) | $+(B-A)$ |

## 1's Complement Representation

* Given a binary number $A$

The 1's complement of $A$ is obtained by inverting each bit in $A$

* Example: 1's complement of $(01101001)_{2}=(10010110)_{2}$
* If $A$ consists of $n$ bits then:
$A+(1$ 's complement of $A)=\left(2^{n}-1\right)=(1 \ldots 111)_{2}$ (all bits are 1 's)
* Range of values is $-\left(2^{n-1}-1\right)$ to $+\left(2^{n-1}-1\right)$

For example, if $n=8$ bits, range is -127 to +127

* Two representations for zero: +0 and -0 NOT Good! 1's complement of $(0 \ldots 000)_{2}=(1 \ldots 111)_{2}=2^{n}-1$
$-0=(1 \ldots 111)_{2} \quad$ NOT Good!


## 2's Complement Representation

* Standard way to represent signed integers in computers
* A simple definition for 2's complement:

Given a binary number $A$
The 2's complement of $A=(1$ 's complement of $A)+1$

* Example: 2's complement of $(01101001)_{2}=$ $(10010110)_{2}+1=(10010111)_{2}$
$\star$ If $A$ consists of $n$ bits then
$A+(2$ 's complement of $A)=2^{n}$
2's complement of $A=2^{n}-A$


## Computing the 2's Complement

| starting value | $\mathbf{0 0 1 0 0 1 0 0 _ { 2 } = + 3 6}$ |
| :--- | :--- |
| step1: Invert the bits (1's complement) | $11011011_{2}$ |
| step 2: Add 1 to the value from step 1 | $+\frac{\mathbf{1}_{2}}{}$sum $=$ 2's complement representation $\mathbf{1 1 0 1 1 1 0 0 ~}_{2}=-36$ |

2's complement of $11011100_{2}(-36)=00100011_{2}+1=00100100_{2}=+36$
The 2's complement of the 2's complement of $A$ is equal to $A$

Another way to obtain the 2's complement:
Start at the least significant 1
Leave all the 0s to its right unchanged
Complement all the bits to its left

$$
\begin{aligned}
& \text { Binary Value } \\
& =00100 \sqrt{100} \text { significant } 1
\end{aligned}
$$

## Properties of the 2's Complement

* Range of represented values: $-2^{n-1}$ to $+\left(2^{n-1}-1\right)$

For example, if $n=8$ bits then range is -128 to +127

* There is only one zero $=(0 \ldots 000)_{2} \quad$ (all bits are zeros)
* The 2's complement of $A$ is the negative of $A$
* The sum of $A+(2$ 's complement of $A)$ must be zero

The final carry is ignored

* Consider the 8-bit number $A=00101100_{2}=+44$

2's complement of $A=11010100_{2}=-44$
$00101100_{2}+11010100_{2}=100000000_{2}$ (8-bit sum is 0 ) $\uparrow$ Ignore final carry $=2^{8}$

## Values of Different Representations

| 8-bit Binary Representation | Unsigned Value | Sign Magnitude Value | 1's Complement Value | 2's Complement Value |
| :---: | :---: | :---: | :---: | :---: |
| 00000000 | 0 | +0 | +0 | 0 |
| 00000001 | 1 | +1 | +1 | +1 |
| 00000010 | 2 | +2 | +2 | +2 |
| -•• | -•• | - • | - • | - |
| 01111101 | 125 | +125 | +125 | +125 |
| 01111110 | 126 | +126 | +126 | +126 |
| 01111111 | 127 | +127 | +127 | +127 |
| 10000000 | 128 | -0 | -127 | -128 |
| 10000001 | 129 | -1 | -126 | -127 |
| 10000010 | 130 | -2 | -125 | -126 |
| -•• | -• | -•• | -• | - • |
| 11111101 | 253 | -125 | -2 | -3 |
| 11111110 | 254 | -126 | -1 | -2 |
| 11111111 | 255 | -127 | -0 | -1 |

## 2's Complement Signed Value

* Positive numbers (sign-bit = 0)
$\diamond$ Signed value $=$ Unsigned value
Negative numbers (sign-bit = 1)
$\diamond$ Signed value $=$ Unsigned value $-2^{n}$
$\triangleleft n=$ number of bits
* Negative weight for sign bit
$\diamond$ The 2's complement representation assigns a negative weight to the sign bit (most-significant bit)

| 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |

$$
-128+32+16+4=-76
$$

| 8-bit <br> Binary | Unsigned <br> Value | Signed <br> Value |
| :---: | :---: | :---: |
| 00000000 | 0 | 0 |
| 00000001 | 1 | +1 |
| 00000010 | 2 | +2 |
| .$\ldots$. | ... | ... |
| 01111101 | 125 | +125 |
| 01111110 | 126 | +126 |
| 01111111 | 127 | +127 |
| 10000000 | 128 | -128 |
| 10000001 | 129 | -127 |
| 10000010 | 130 | -126 |
| ... | ... | ... |
| 11111101 | 253 | -3 |
| 11111110 | 254 | -2 |
| 11111111 | 255 | -1 |

* Ripple-Carry Adder
* Magnitude Comparator
* Design by Contraction
* Signed Numbers
* Addition/Subtraction of Signed 2's Complement


## Converting Subtraction into Addition

* When computing A-B, convert B to its 2 's complement $\mathbf{A}-\mathbf{B}=\mathbf{A}+(2$ 's complement of $B$ )
* Same adder is used for both addition and subtraction

This is the biggest advantage of 2's complement

```
borrow: -1-1 carry: 1 1 1 1 1
```


$\Varangle$ Final carry is ignored, because
$A+\left(2^{\prime} s\right.$ complement of $\left.B\right)=A+\left(2^{n}-B\right)=(A-B)+2^{n}$
Final carry $=2^{n}$, for $n$-bit numbers

## Adder/Subtractor for 2's Complement

* Same adder is used to compute: ( $\mathrm{A}+\mathrm{B}$ ) or ( $\mathrm{A}-\mathrm{B}$ )
* Subtraction $(A-B)$ is computed as: $A+(2 ' s$ complement of $B)$

2 's complement of $B=(1$ 's complement of $B)+1$

* Two operations: OP = 0 (ADD), OP = 1 (SUBTRACT)



## Carry versus Overflow

* Carry is important when ...
$\diamond$ Adding unsigned integers
$\diamond$ Indicates that the unsigned sum is out of range
$\diamond$ Sum > maximum unsigned $n$-bit value
* Overflow is important when ...
« Adding or subtracting signed integers
$\diamond$ Indicates that the signed sum is out of range
* Overflow occurs when ...
$\triangleleft$ Adding two positive numbers and the sum is negative
$\triangleleft$ Adding two negative numbers and the sum is positive
* Simplest way to detect Overflow: $V=C_{n-1} \oplus C_{n}$
$\triangleleft \boldsymbol{C}_{n-1}$ and $\boldsymbol{C}_{n}$ are the carry-in and carry-out of the most-significant bit


## Carry and Overflow Examples

* We can have carry without overflow and vice-versa
* Four cases are possible (Examples on 8-bit numbers)

| 1 |  |  |  |  |  |  |  | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |  |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 8 |
| 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 23 |
| Carry $=0$ Overflow $=0$ |  |  |  |  |  |  |  |  |


| 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 15 |
|  | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 248 (-8) |
|  | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 7 |
|  | Carry = 1 |  |  |  | Overflow = 0 |  |  |  |  |


1

+| 1 | 1 | 1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | $218(-38)$ |
| 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | $157(-99)$ |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 119 |
| Carry $=1$ |  |  |  |  |  | Overflow $=1$ |  |  |

## Range, Carry, Borrow, and Overflow

*Unsigned Integers: $n$-bit representation


* Signed Integers: 2's complement representation


