
Arithmetic Circuits

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 2

Presentation Outline

❖ Ripple-Carry Adder

❖ Magnitude Comparator

❖ Design by Contraction

❖ Signed Numbers

❖ Addition/Subtraction of Signed 2's Complement

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 3

Binary Addition

❖ Start with the least significant bit (rightmost bit)

❖ Add each pair of bits

❖ Include the carry in the addition

0 0 0 1 1 1 0 1

0 0 1 1 0 1 1 0

+

(54)

(29)

(83)

1carry

01234bit position: 567

11 1

0 1 0 1 0 0 1 1

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 4

Iterative Design: Ripple Carry Adder

❖ Uses identical copies of a full adder to build a large adder

❖ Simple to implement: can be extended to add any number of bits

❖ The cell (iterative block) is a full adder

Adds 3 bits: ai, bi, ci, Computes: Sum si and Carry-out ci+1

❖ Carry-out of cell i becomes carry-in to cell (i +1)

c0Full

Adder

a0 b0

s0

c1Full

Adder

a1 b1

s1

c2Full

Adder

a2 b2

s2

c3Full

Adder

a3 b3

s3

c4ciFull

Adder

ai bi

si

ci+1

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 5

Full-Adder Equations

𝑠𝑖 = 𝑎𝑖
′𝑏𝑖

′𝑐𝑖 + 𝑎𝑖
′𝑏𝑖𝑐𝑖

′ + 𝑎𝑖𝑏𝑖
′𝑐𝑖

′ + 𝑎𝑖𝑏𝑖𝑐𝑖

𝑠𝑖 = odd function = 𝑎𝑖 𝑏𝑖 𝑐𝑖

𝑐𝑖+1 = 𝑎𝑖
′𝑏𝑖𝑐𝑖 + 𝑎𝑖𝑏𝑖

′𝑐𝑖 + 𝑎𝑖𝑏𝑖𝑐𝑖
′ + 𝑎𝑖𝑏𝑖𝑐𝑖

𝑐𝑖+1 = 𝑎𝑖
′𝑏𝑖 + 𝑎𝑖𝑏𝑖

′ 𝑐𝑖 + 𝑎𝑖𝑏𝑖 (𝑐𝑖
′ + 𝑐𝑖)

𝑐𝑖+1 = 𝑎𝑖 𝑏𝑖 𝑐𝑖 + 𝑎𝑖𝑏𝑖

K-map: 𝑐𝑖+1 = 𝑎𝑖𝑏𝑖 + 𝑎𝑖𝑐𝑖 + 𝑏𝑖𝑐𝑖

ai bi ci ci+1 si

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

00 01 11 10

0

1

𝑎𝑖

𝑏𝑖𝑐𝑖

0 1 0 1

1 0 1 0

K-Map of 𝑠𝑖

00 01 11 10

0

1

𝑎𝑖

𝑏𝑖𝑐𝑖

0 0 1 0

0 1 1 1

K-Map of 𝑐𝑖+1

ciFull

Adder

ai bi

si

ci+1

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 6

Carry Propagation

❖Major drawback of ripple-carry adder is the carry propagation

❖ The carries are connected in a chain through the full adders

❖ This is why it is called a ripple-carry adder

❖ The carry ripples (propagates) through all the full adders

a0

c0

s0

b0a1

s1

b1

c1

a2

s2

b2

c2

a3

s3

b3

c3

c4

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 7

Longest Delay Analysis

Suppose the XOR delay is 1 and AND-OR delay is 2

For an N-bit ripple-carry adder, if all inputs are present at once:

1. Most-significant sum-bit delay = 21 +(N – 1) 2

2. Final Carry-out delay = 1 + N 2

a0

c0

s0

b0a1

s1

b1

c1

a2

s2

b2

c2

a3

s3

b3

c3

c4
2222

1

1

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 8

Next . . .

❖ Ripple-Carry Adder

❖ Magnitude Comparator

❖ Design by Contraction

❖ Signed Numbers

❖ Addition/Subtraction of Signed 2's Complement

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 9

Magnitude Comparator

❖ A combinational circuit that compares two unsigned integers

❖ Two Inputs:

 Unsigned integer A (m-bit number)

 Unsigned integer B (m-bit number)

❖ Three outputs:

 A > B (GT output)

 A == B (EQ output)

 A < B (LT output)

❖ Exactly one of the three outputs must be equal to 1

❖While the remaining two outputs must be equal to 0

m-bit

Magnitude

Comparator

A[m–1:0]
m

B[m–1:0]
m

GT: A > B

EQ: A == B

LT: A < B

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 10

Example: 4-bit Magnitude Comparator

❖ Inputs:

 𝐴 = 𝐴3𝐴2𝐴1𝐴0

 𝐵 = 𝐵3𝐵2𝐵1𝐵0

 8 bits in total ➔ 256 possible combinations

Not simple to design using conventional K-map techniques

❖ The magnitude comparator can be designed at a higher level

❖ Let us implement first the 𝐸𝑄 output (𝐴 is equal to 𝐵)

 𝐸𝑄 = 1 ↔ 𝐴3 == 𝐵3 , 𝐴2 == 𝐵2 , 𝐴1 == 𝐵1 , and 𝐴0 == 𝐵0

Define: 𝐸𝑖 = 𝐴𝑖 == 𝐵𝑖 = 𝐴𝑖𝐵𝑖 + 𝐴𝑖
′𝐵𝑖

′

 Therefore, 𝐸𝑄 = 𝐴 == 𝐵 = 𝐸3𝐸2𝐸1𝐸0

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 11

The Greater Than Output

Given the 4-bit input numbers: 𝐴 and 𝐵

1. If 𝐴3 > 𝐵3 then 𝐺𝑇 = 1, irrespective of the lower bits of 𝐴 and 𝐵

Define: 𝐺3 = 𝐴3𝐵3
′ (𝐴3 == 1 and 𝐵3 == 0)

2. If 𝐴3 == 𝐵3 (𝐸3 == 1), we compare 𝐴2 with 𝐵2

Define: 𝐺2 = 𝐴2𝐵2
′ (𝐴2 == 1 and 𝐵2 == 0)

3. If 𝐴3 == 𝐵3 and 𝐴2 == 𝐵2, we compare 𝐴1 with 𝐵1

Define: 𝐺1 = 𝐴1𝐵1
′ (𝐴1 == 1 and 𝐵1 == 0)

4. If 𝐴3 == 𝐵3 and 𝐴2 == 𝐵2 and 𝐴1 == 𝐵1, we compare 𝐴0 with 𝐵0

Define: 𝐺0 = 𝐴0𝐵0
′ (𝐴0 == 1 and 𝐵0 == 0)

Therefore, 𝐺𝑇 = 𝐺3 + 𝐸3𝐺2 + 𝐸3𝐸2𝐺1 + 𝐸3𝐸2𝐸1𝐺0

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 12

The Less Than Output

We can derive the expression for the 𝐿𝑇 output, similar to 𝐺𝑇

Given the 4-bit input numbers: 𝐴 and 𝐵

1. If 𝐴3 < 𝐵3 then 𝐿𝑇 = 1, irrespective of the lower bits of 𝐴 and 𝐵

Define: 𝐿3 = 𝐴3
′ 𝐵3 (𝐴3 == 0 and 𝐵3 == 1)

2. If 𝐴3 = 𝐵3 (𝐸3 == 1), we compare 𝐴2 with 𝐵2

Define: 𝐿2 = 𝐴2
′ 𝐵2 (𝐴2 == 0 and 𝐵2 == 1)

3. Define: 𝐿1 = 𝐴1
′𝐵1 (𝐴1 == 0 and 𝐵1 == 1)

4. Define: 𝐿0 = 𝐴0
′ 𝐵0 (𝐴0 == 0 and 𝐵0 == 1)

Therefore, 𝐿𝑇 = 𝐿3 + 𝐸3𝐿2 + 𝐸3𝐸2𝐿1 + 𝐸3𝐸2𝐸1𝐿0

Knowing 𝐺𝑇 and 𝐸𝑄, we can also derive 𝐿𝑇 = (𝐺𝑇 + 𝐸𝑄)′

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 13

Iterative Magnitude Comparator Design

❖ The Magnitude comparator can also be designed iteratively

4-bit magnitude comparator is implemented using 4 identical cells

Design can be extended to any number of cells

❖ Comparison starts at least-significant bit

❖ Final comparator output: 𝐺𝑇 = 𝐺𝑇4 , 𝐸𝑄 = 𝐸𝑄4 , 𝐿𝑇 = 𝐿𝑇4

𝐺𝑇3

𝐸𝑄3

𝐿𝑇3

Cell 3

𝐺𝑇4

𝐸𝑄4

𝐿𝑇4

𝐴3 𝐵3

𝐺𝑇2

𝐸𝑄2

𝐿𝑇2

Cell 2

𝐴2 𝐵2

𝐺𝑇1

𝐸𝑄1

𝐿𝑇1

Cell 1

𝐴1 𝐵1

𝐺𝑇0 = 0

𝐸𝑄0 = 1

𝐿𝑇0 = 0

Cell 0

𝐴0 𝐵0

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 14

Cell Implementation

❖ Each Cell 𝑖 receives as inputs:

Bit 𝑖 of inputs 𝐴 and 𝐵: 𝐴𝑖 and 𝐵𝑖

𝐺𝑇𝑖, 𝐸𝑄𝑖, and 𝐿𝑇𝑖 from cell (𝑖 − 1)

❖ Each Cell 𝑖 produces three outputs:

𝐺𝑇𝑖+1, 𝐸𝑄𝑖+1, and 𝐿𝑇𝑖+1

Outputs of cell 𝑖 are inputs to cell (𝑖 + 1)

❖ Output Expressions of Cell 𝑖

𝐸𝑄𝑖+1 = 𝐸𝑖 𝐸𝑄𝑖 𝐸𝑖 = 𝐴𝑖
′𝐵𝑖

′ + 𝐴𝑖𝐵𝑖 (𝐴𝑖 equals 𝐵𝑖)

𝐺𝑇𝑖+1 = 𝐴𝑖 𝐵𝑖
′ + 𝐸𝑖 𝐺𝑇𝑖 𝐴𝑖𝐵𝑖

′ (𝐴𝑖 > 𝐵𝑖)

𝐿𝑇𝑖+1 = 𝐴𝑖
′𝐵𝑖 + 𝐸𝑖 𝐿𝑇𝑖 𝐴𝑖

′𝐵𝑖 (𝐴𝑖 < 𝐵𝑖)

Third output can be produced for first two: 𝐿𝑇 = (𝐸𝑄 + 𝐺𝑇)′

𝐺𝑇𝑖

𝐸𝑄𝑖

𝐿𝑇𝑖

Cell 𝑖

𝐺𝑇𝑖+1

𝐸𝑄𝑖+1

𝐿𝑇𝑖+1

𝐴𝑖 𝐵𝑖

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 15

Next . . .

❖ Ripple-Carry Adder

❖ Magnitude Comparator

❖ Design by Contraction

❖ Signed Numbers

❖ Addition/Subtraction of Signed 2's Complement

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 16

Design by Contraction

❖ Contraction is a technique for simplifying the logic

❖ Applying 0s and 1s to some inputs

❖ Equations are simplified after applying fixed 0 and 1 inputs

❖ Converting a function block to a more simplified function

❖ Examples of Design by Contraction

 Incrementing a number by a fixed constant

 Comparing a number to a fixed constant

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 17

Designing an Incrementer

❖ An incrementer is a special case of an adder

Sum = A + 1 (B = 0, C0 = 1)

❖ An n-bit Adder can be simplified into an n-bit Incrementer

𝑎0

1

𝑠0

0𝑎1

𝑠1

0𝑎2

𝑠2

0𝑎3

𝑠3

0

𝑐3 𝑐2 𝑐1

𝑐4

𝒂𝟎

𝒂𝟎
′

0 𝒂𝟎
0 𝒂𝟏

0 𝒂𝟐
0 𝒂𝟑

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 18

Simplifying the Incrementer Circuit

❖Many gates were eliminated

❖ No longer needed when an input is a constant

❖ Last cell can be replicated to implemented an n-bit incrementer

𝑎1

𝑠1

𝑐4

𝑎0

𝑠0

𝑎2

𝑠2

𝑐2

𝑎3

𝑠3

𝑐3 𝑐1

Incrementer

4

4

a [3:0]

s [3:0]

c4

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 19

Next . . .

❖ Ripple-Carry Adder

❖ Magnitude Comparator

❖ Design by Contraction

❖ Signed Numbers

❖ Addition/Subtraction of Signed 2's Complement

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 20

Signed Numbers

❖ Several ways to represent a signed number

 Sign-Magnitude

 1's complement

 2's complement

❖ Divide the range of values into two parts

 First part corresponds to the positive numbers (≥ 0)

 Second part correspond to the negative numbers (< 0)

❖ The 2's complement representation is widely used

 Has many advantages over other representations

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 21

Sign-Magnitude Representation

❖ Independent representation of the sign and magnitude

❖ Leftmost bit is the sign bit: 0 is positive and 1 is negative

❖ Using n bits, largest represented magnitude = 2n-1 – 1

Sign

Bit

bit

n-2

bit

2

bit

1

bit

0
. . .

Magnitude = n – 1 bits

n-bit number

10110100 10110101

Sign-magnitude

8-bit representation of +45

Sign-magnitude

8-bit representation of -45

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 22

Properties of Sign-Magnitude

❖ Symmetric range of represented values:

For n-bit register, range is from -(2n-1 – 1) to +(2n-1 – 1)

For example, if n = 8 bits then range is -127 to +127

❖ Two representations for zero: +0 and -0 NOT Good!

❖ Two circuits are needed for addition & subtraction NOT Good!

 In addition to an adder, a second circuit is needed for subtraction

 Sign and magnitude parts should be processed independently

 Sign bit should be examined to determine addition or subtraction

 Addition of numbers of different signs is converted into subtraction

 Increases the cost of the add/subtract circuit

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 23

Sign-Magnitude Addition / Subtraction

Eight cases for Sign-Magnitude Addition / Subtraction

Operation
ADD

Magnitudes

Subtract Magnitudes

A >= B A < B

(+A) + (+B) +(A+B)

(+A) + (-B) +(A–B) -(B–A)

(-A) + (+B) -(A–B) +(B–A)

(-A) + (-B) -(A+B)

(+A) – (+B) +(A–B) -(B–A)

(+A) – (-B) +(A+B)

(-A) – (+B) -(A+B)

(-A) – (-B) -(A–B) +(B–A)

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 24

1’s Complement Representation

❖ Given a binary number A

The 1’s complement of A is obtained by inverting each bit in A

❖ Example: 1’s complement of (01101001)2 = (10010110)2

❖ If A consists of n bits then:

A + (1’s complement of A) = (2n – 1) = (1…111)2 (all bits are 1's)

❖ Range of values is -(2n-1 – 1) to +(2n-1 – 1)

For example, if n = 8 bits, range is -127 to +127

❖ Two representations for zero: +0 and -0 NOT Good!

1's complement of (0…000)2 = (1…111)2 = 2n – 1

-0 = (1…111)2 NOT Good!

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 25

2’s Complement Representation

❖ Standard way to represent signed integers in computers

❖ A simple definition for 2’s complement:

Given a binary number A

The 2’s complement of A = (1’s complement of A) + 1

❖ Example: 2’s complement of (01101001)2 =

(10010110)2 + 1 = (10010111)2

❖ If A consists of n bits then

A + (2’s complement of A) = 2n

2’s complement of A = 2n – A

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 26

Computing the 2's Complement

Another way to obtain the 2's complement:

Start at the least significant 1

Leave all the 0s to its right unchanged

Complement all the bits to its left

starting value 001001002 = +36

step1: Invert the bits (1's complement) 110110112

step 2: Add 1 to the value from step 1 + 12

sum = 2's complement representation 110111002 = -36

Binary Value

= 00100 1 00

2's Complement

= 11011 1 00

least

significant 1

2’s complement of 110111002 (-36) = 001000112 + 1 = 001001002 = +36

The 2’s complement of the 2’s complement of A is equal to A

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 27

Properties of the 2’s Complement

❖ Range of represented values: -2n-1 to +(2n-1 – 1)

For example, if n = 8 bits then range is -128 to +127

❖ There is only one zero = (0…000)2 (all bits are zeros)

❖ The 2’s complement of A is the negative of A

❖ The sum of A + (2’s complement of A) must be zero

The final carry is ignored

❖ Consider the 8-bit number A = 001011002 = +44

2’s complement of A = 110101002 = -44

001011002 + 110101002 = 1 000000002 (8-bit sum is 0)

Ignore final carry = 28

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 28

Values of Different Representations

8-bit Binary
Representation

Unsigned
Value

Sign Magnitude
Value

1's Complement
Value

2's Complement
Value

00000000 0 +0 +0 0

00000001 1 +1 +1 +1

00000010 2 +2 +2 +2

.

01111101 125 +125 +125 +125

01111110 126 +126 +126 +126

01111111 127 +127 +127 +127

10000000 128 -0 -127 -128

10000001 129 -1 -126 -127

10000010 130 -2 -125 -126

.

11111101 253 -125 -2 -3

11111110 254 -126 -1 -2

11111111 255 -127 -0 -1

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 29

2's Complement Signed Value

❖ Positive numbers (sign-bit = 0)

 Signed value = Unsigned value

❖ Negative numbers (sign-bit = 1)

 Signed value = Unsigned value – 2n

 n = number of bits

❖ Negative weight for sign bit

 The 2's complement representation

assigns a negative weight to the sign

bit (most-significant bit)

-128 + 32 + 16 + 4 = -76

1 0 1 1 0 1 0 0

-128 64 32 16 8 4 2 1

8-bit
Binary

Unsigned
Value

Signed
Value

00000000 0 0

00000001 1 +1

00000010 2 +2

.

01111101 125 +125

01111110 126 +126

01111111 127 +127

10000000 128 -128

10000001 129 -127

10000010 130 -126

.

11111101 253 -3

11111110 254 -2

11111111 255 -1

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 30

Next . . .

❖ Ripple-Carry Adder

❖ Magnitude Comparator

❖ Design by Contraction

❖ Signed Numbers

❖ Addition/Subtraction of Signed 2's Complement

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 31

Converting Subtraction into Addition
❖When computing A – B, convert B to its 2's complement

A – B = A + (2’s complement of B)

❖ Same adder is used for both addition and subtraction

This is the biggest advantage of 2's complement

❖ Final carry is ignored, because

A + (2's complement of B) = A + (2n – B) = (A – B) + 2n

Final carry = 2n, for n-bit numbers

0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1

– 0 0 1 1 1 0 1 0 + 1 1 0 0 0 1 1 0 (2's complement)

0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 (same result)

borrow: carry:-1-1-1 1111

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 32

Adder/Subtractor for 2's Complement

❖ Same adder is used to compute: (A + B) or (A – B)

❖ Subtraction (A – B) is computed as: A + (2's complement of B)

2's complement of B = (1's complement of B) + 1

❖ Two operations: OP = 0 (ADD), OP = 1 (SUBTRACT)

n-bit Adder

n

A [n-1:0]

S [n-1:0]

n

n

n

B [n-1:0]

c0

OP

cn

n-bit input
vectors

n-bit output
vector

n XOR
gates

OP = 0 (ADD)

B XOR 0 = B

S = A + B + 0 = A + B

OP = 1 (SUBTRACT)

B XOR 1 = 1's complement of B

S = A + (1's complement of B) + 1

S = A + (2's complement of B)

S = A – B

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 33

Carry versus Overflow

❖ Carry is important when …

 Adding unsigned integers

 Indicates that the unsigned sum is out of range

 Sum > maximum unsigned n-bit value

❖ Overflow is important when …

 Adding or subtracting signed integers

 Indicates that the signed sum is out of range

❖ Overflow occurs when …

 Adding two positive numbers and the sum is negative

 Adding two negative numbers and the sum is positive

❖ Simplest way to detect Overflow: V = Cn–1 Cn

 Cn-1 and Cn are the carry-in and carry-out of the most-significant bit

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 34

0 1 0 0 0 0 0 0

0 1 0 0 1 1 1 1
+

1 0 0 0 1 1 1 1

79

64

143 (-113)

Carry = 0 Overflow = 1

1

1 0 0 1 1 1 0 1

1 1 0 1 1 0 1 0
+

0 1 1 1 0 1 1 1

218 (-38)

157 (-99)

119

Carry = 1 Overflow = 1

111

Carry and Overflow Examples

❖We can have carry without overflow and vice-versa

❖ Four cases are possible (Examples on 8-bit numbers)

1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 0 0 1 1 1

15

248 (-8)

7

Carry = 1 Overflow = 0

11111

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 1 0 1 1 1

15

8

23

Carry = 0 Overflow = 0

1

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 35

❖Unsigned Integers: n-bit representation

❖Signed Integers: 2's complement representation

Range, Carry, Borrow, and Overflow

max = 2
n
–1min = 0

Carry = 1 for

Addition

Number > max

Borrow for

Subtraction

Number < 0

Positive

Overflow

Number > max

Negative

Overflow

Number < min

max = 2
n-1

–1

Finite Set of Signed Integers

0min = -2
n-1

Finite Set of Unsigned Integers

