
Introduction to Verilog

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 2

Presentation Outline

❖ Hardware Description Language

❖ Logic Simulation versus Synthesis

❖ Verilog Module

❖ Gate-Level Description and Gate Delays

❖ Module Instantiation

❖ Continuous Assignment

❖ Writing a Simple Test Bench

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 3

Hardware Description Language

❖ Describes the hardware of digital systems in a textual form

❖ Describes the hardware structures and behavior

❖ Can represent logic diagrams, expressions, and complex circuits

❖ NOT a software programming language

❖ Two standard hardware description languages (HDLs)

1. Verilog (will be studied in this course)

2. VHDL (harder to learn than Verilog)

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 4

Verilog = "Verifying Logic"

❖ Invented as a simulation language in 1984 by Phil Moorby

❖ Opened to public in 1990 by Cadence Design Systems

❖ Became an IEEE standard in 1995 (Verilog-95)

❖ Revised and upgraded in 2001 (Verilog-2001)

❖ Revised also in 2005 (Verilog-2005)

❖ Verilog allows designers to describe hardware at different levels

 Can describe anything from a single gate to a full computer system

❖ Verilog is supported by the majority of electronic design tools

❖ Verilog can be used for logic simulation and synthesis

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 5

Logic Simulation

❖ Logic simulator interprets the Verilog (HDL) description

❖ Produces timing diagrams

❖ Predicts how the hardware will behave before it is fabricated

❖ Simulation allows the detection of functional errors in a design

 Without having to physically implement the circuit

❖ Errors detected during the simulation can be corrected

 By modifying the appropriate statements in the Verilog description

❖ Simulating and verifying a design requires a test bench

❖ The test bench is also written in Verilog

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 6

Logic Synthesis

❖ Logic synthesis is similar to translating a program

❖ However, the output of logic synthesis is a digital circuit

❖ A digital circuit modeled in Verilog can be translated into a list

of components and their interconnections, called netlist

❖ Synthesis can be used to fabricate an integrated circuit

❖ Synthesis can also target a Field Programmable Gate Array

 An FPGA chip can be configured to implement a digital circuit

 The digital circuit can also be modified by reconfiguring the FPGA

❖ Logic simulation and synthesis are automated

 Using special software, called Electronic Design Automation (EDA) tools

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 7

Verilog Module

❖ A digital circuit is described in Verilog as a set of modules

❖ A module is the design entity in Verilog

❖ A module is declared using the module keyword

❖ A module is terminated using the endmodule keyword

❖ A module has a name and a list of input and output ports

❖ A module is described by a group of statements

❖ The statements can describe the module structure or behavior

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 8

Example of a Module in Verilog

// Description of a simple circuit

module simple_circuit(input A, B, C, output x, y);

wire w;

and g1(w, A, B);

not g2(y, C);

or g3(x, w, y);

endmodule

The input keyword defines the input ports: A, B, C

The output keyword defines the output ports: x, y

The wire keyword defines an internal connection: w

The structure of simple_circuit is defined by three gates: and, not, or

Each gate has an optional name, followed by the gate output then inputs

A

B

C

w

x

y

g1

g2

g3

Order is not

important

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 9

Verilog Syntax

❖ Keywords: have special meaning in Verilog

Many keywords: module, input, output, wire, and, or, etc.

Keywords cannot be used as identifiers

❖ Identifiers: are user-defined names for modules, ports, etc.

Verilog is case-sensitive: A and a are different names

❖ Comments: can be specified in two ways (similar to C)

 Single-line comments begin with // and terminate at end of line

 Multi-line comments are enclosed between /* and */

❖White space: space, tab, newline can be used freely in Verilog

❖ Operators: operate on variables (similar to C: ~ & | ^ + - etc.)

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 10

Basic Gates

❖ Basic gates: and, nand, or, nor, xor, xnor, not, buf

❖ Verilog define these gates as keywords

❖ Each gate has an optional name

❖ Each gate has an output (listed first) and one or more inputs

❖ The not and buf gates can have only one input

❖ Examples:

and g1(x,a,b); // 2-input and gate named g1

or g2(y,a,b,c); // 3-input or gate named g2

nor g3(z,a,b,c,d); // 4-input nor gate named g3

inputsoutputname

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 11

Modeling a Half Adder

A half adder adds two bits: a and b

Two output bits:

1. Carry bit: cout = a · b

2. Sum bit: sum = a b

module Half_Adder(a, b, cout, sum);

input a, b;

output sum, cout;

and (cout, a, b);

xor (sum, a, b);

endmodule

a b cout sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Truth Table

Verilog-95

Syntax

ba

cout sum

Half_Adder

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 12

Full Adder

❖ Full adder adds 3 bits: a, b, and c

❖ Two output bits:

1. Carry bit: cout

2. Sum bit: sum

❖ Sum bit is 1 if the number of 1's in

the input is odd (odd function)

sum = (a b) c

❖ Carry bit is 1 if the number of 1's in

the input is 2 or 3

cout = a·b + (a b)·c

a b c cout sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Truth Table

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 13

Full Adder Module

module Full_Adder(input a, b, c, output cout, sum);

wire w1, w2, w3;

and (w1, a, b);

xor (w2, a, b);

and (w3, w2, c);

xor (sum, w2, c);

or (cout, w1, w3)

endmodule

a b c

sumcout

w1

w2w3

Full_Adder

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 14

Gate Delays

❖When simulating Verilog modules, it is sometime necessary to

specify the delay of gates using the # symbol

❖ The `timescale directive specifies the time unit and precision

timescale is also used as a simulator option

`timescale 1ns/100ps

module Half_Adder(input a, b, output cout, sum);

and #2 (cout, a, b); // gate delay = 2ns

xor #3 (sum, a, b); // gate delay = 3ns

endmodule

Time unit = 1ns = 10-9 sec

Precision = 100ps = 0.1ns

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 15

Full Adder Module with Gate Delay

module Full_Adder(input a, b, c, output cout, sum);

wire w1, w2, w3;

and #2 (w1, a, b);

xor #3 (w2, a, b);

and #2 (w3, w2, c);

xor #3 (sum, w2, c);

or #2 (cout, w1, w3)

endmodule

a b c

sumcout

w1

w2w3

Full_Adder

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 16

Continuous Assignment

❖ The assign statement defines continuous assignment

❖ Syntax: assign name = expression;

❖ Assigns expression value to name (output port or wire)

❖ Examples:

assign x = a&b | c&~d; // x = ab + cd'

assign y = (a|b) & ~c; // y = (a+b)c'

assign z = ~(a|b|c); // z = (a+b+c)'

assign sum = (a^b) ^ c; // sum = (a b) c

❖ Verilog uses the bit operators: ~ (not), & (and), | (or), ^ (xor)

❖ Operator precedence: (parentheses), ~ , & , | , ^

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 17

Continuous Assignment with Delay

Syntax: assign #delay name = expression;

The optional #delay specifies the delay of the assignment

To have a delay similar to the gate implementation

module Full_Adder (input a, b, c, output cout, sum);

assign #6 sum = (a^b)^c; // delay = 6

assign #7 cout = a&b | (a^b)&c; // delay = 7

endmodule

The order of the assign statements does not matter

They are sensitive to inputs (a, b, c) that appear in the expressions

Any change in value of the input ports (a, b, c) will re-evaluate the

outputs sum and cout of the assign statements

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 18

Test Bench

❖ In order to simulate a circuit, it is necessary to apply inputs to the

circuit for the simulator to generate an output response

❖ A test bench is written to verify the correctness of a design

❖ A test bench is written as a Verilog module with no ports

❖ It instantiates the module that should be tested

❖ It provides inputs to the module that should be tested

❖ Test benches can be complex and lengthy, depending on the

complexity of the design

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 19

Example of a Simple Test Bench

module Test_Full_Adder; // No need for Ports

reg a, b, c; // variable inputs

wire sum, cout; // wire outputs

// Instantiate the module to be tested

Full_Adder FA (a, b, c, cout, sum);

initial begin // initial block

a=0; b=0; c=0; // at t=0 time units

#20 a=1; b=1; // at t=20 time units

#20 a=0; b=0; c=1; // at t=40 time units

#20 a=1; c=0; // at t=60 time units

#20 $finish; // at t=80 finish simulation

end // end of initial block

endmodule

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 20

Difference Between wire and reg

Verilog has two major data types

1. Net data types: are connections between parts of a design

2. Variable data types: can store data values

❖The wire is a net data type

 A wire cannot store a value

 Its value is determined by its driver, such as a gate, a module

output, or continuous assignment

❖The reg is a variable data type

Can store a value from one assignment to the next

Used only in procedural blocks, such as the initial block

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 21

The initial Statement

❖ The initial statement is a procedural block of statements

❖ The body of the initial statement surrounded by begin-end is

sequential, like a sequential block in a programming language

❖ Procedural assignments are used inside the initial block

❖ Procedural assignment statements are executed in sequence

Syntax: #delay variable = expression;

❖ Procedural assignment statements can be delayed

❖ The optional #delay indicates that the variable (of reg type)

should be updated after the time delay

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 22

Running the Simulator

Examine the waveforms to verify the correctness of your design

At t = 0 ns, the values of cout and sum are unknown (shown in red)

The cout and sum signals are delayed by 7ns and 6ns, respectively

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 23

Modular Design: 4-bit Adder

❖ Uses identical copies of a full adder to build a large adder

❖ Simple to implement: the cell (iterative block) is a full adder

❖ Carry-out of cell i becomes carry-in to cell (i +1)

❖ Can be extended to add any number of bits

c0Full

Adder

a0 b0

s0

c1Full

Adder

a1 b1

s1

c2Full

Adder

a2 b2

s2

c3Full

Adder

a3 b3

s3

c4

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 24

4-bit Adder using Module Instantiation

module Adder4 (input a0, a1, a2, a3, b0, b1, b2, b3, c0,

output s0, s1, s2, s3, c4

);

wire c1, c2, c3; // Internal wires for the carries

// Instantiate Four Full Adders: FA0, FA1, FA2, FA3

// The ports are matched by position

Full_Adder FA0 (a0, b0, c0, c1, s0);

Full_Adder FA1 (a1, b1, c1, c2, s1);

Full_Adder FA2 (a2, b2, c2, c3, s2);

Full_Adder FA3 (a3, b3, c3, c4, s3);

// Can also match the ports by name

// Full Adder FA0 (.a(a0), .b(b0), .c(c0), .cout(c1), .sum(s0));

endmodule

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 25

Module Instantiation

❖Module declarations are like templates

❖Module instantiation is like creating an object

❖Modules are instantiated inside other modules at different levels

❖ The top-level module does not require instantiation

❖Module instantiation defines the structure of a digital design

❖ It produces module instances at different levels

❖ The ports of a module instance must match those declared

❖ The matching of the ports can be done by name or by position

Introduction to Verilog COE 202 – Digital Logic Design © Muhamed Mudawar – slide 26

Writing a Test Bench for the 4-bit Adder

module Adder4_TestBench; // No Ports

reg a0, a1, a2, a3; // variable inputs

reg b0, b1, b2, b3, cin; // variable inputs

wire s0, s1, s2, s3, cout; // wire outputs

// Instantiate the module to be tested

Adder4 Add4 (a0,a1,a2,a3, b0,b1,b2,b3, cin, s0,s1,s2,s3, cout);

initial begin // initial block

a0=0;a1=0;a2=0;a3=0; // at t=0

b0=0;b1=0;b2=0;b3=0;cin=0; // at t=0

#100 a1=1;a3=1;b2=1;b3=1; // at t=100

#100 a0=1;a1=0;b1=1;b2=0; // at t=200

#100 a2=1;a3=0;cin=1; // at t=300

#100 $finish; // at t=400 finish simulation

end // end of initial block

endmodule

