Additional Gates

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

- Additional Gates and Symbols
- Universality of NAND and NOR gates
- NAND-NAND and NOR-NOR implementations
- Exclusive OR (XOR) and Exclusive NOR (XNOR) gates
- Odd and Even functions

Additional Logic Gates and Symbols

✤ Why?

- ♦ Low cost implementation
- ♦ Useful in implementing Boolean functions

NAND Gate

The NAND gate has the following symbol and truth table

- NAND represents NOT AND
- The small bubble circle represents the invert function

NAND gate is implemented efficiently in CMOS technology

 \diamond In terms of chip area and speed

NOR Gate

- The NOR gate has the following symbol and truth table
- ✤ NOR represents NOT OR
- The small bubble circle represents the invert function

NOR gate is implemented efficiently in CMOS technology

 \diamond In terms of chip area and speed

The NAND Gate is Universal

NAND gates can implement any Boolean function

✤ NAND gates can be used as inverters, or to implement AND/OR

✤ A single-input NAND gate is an inverter

 $x \text{ NAND } x = (x \cdot x)' = x'$

AND is equivalent to NAND with inverted output

$$(x \text{ NAND } y)' = ((x \cdot y)')' = x \cdot y \text{ (AND)}$$

 $x \cdot y$

OR is equivalent to NAND with inverted inputs

$$(x' \text{ NAND } y') = (x' \cdot y')' = x + y \text{ (OR)}$$

The NOR Gate is also Universal

NOR gates can implement any Boolean function

✤ NOR gates can be used as inverters, or to implement AND/OR

✤ A single-input NOR gate is an inverter

x NOR x = (x + x)' = x'

OR is equivalent to NOR with inverted output

$$(x \text{ NOR } y)' = ((x + y)')' = x + y \text{ (OR)}$$

AND is equivalent to NOR with inverted inputs

$$(x' \text{ NOR } y') = (x' + y')' = x \cdot y \text{ (AND)}$$

Non-Associative NAND / NOR Operations

- Unlike AND, NAND operation is NOT associative
 - $(x \text{ NAND } y) \text{ NAND } z \neq x \text{ NAND } (y \text{ NAND } z)$
 - (x NAND y) NAND z = ((xy)'z)' = ((x' + y')z)' = xy + z'
 - x NAND (y NAND z) = (x(yz)')' = (x(y' + z'))' = x' + yz

Unlike OR, NOR operation is NOT associative

 $(x \text{ NOR } y) \text{ NOR } z \neq x \text{ NOR } (y \text{ NOR } z)$ (x NOR y) NOR z = ((x + y)' + z)' = ((x'y') + z)' = (x + y)z'

x NOR (y NOR z) = (x + (y + z)')' = (x + (y'z'))' = x'(y + z)

Multiple-Input NAND / NOR Gates

NAND/NOR gates can have multiple inputs, similar to AND/OR gates

Note: a 3-input NAND is a single gate, NOT a combination of two 2-input gates. The same can be said about other multiple-input NAND/NOR gates.

NAND - NAND Implementation

Consider the following sum-of-products expression:

f = bd + a'cd'

A 2-level AND-OR circuit can be converted easily to a 2-level NAND-NAND implementation

Two successive bubbles on same line cancel each other

NOR - NOR Implementation

Consider the following product-of-sums expression:

g = (a+d)(b+c+d')

A 2-level OR-AND circuit can be converted easily to a 2-level NOR-NOR implementation

Two successive bubbles on same line cancel each other

Exclusive OR / Exclusive NOR

Exclusive OR (XOR) is an important Boolean operation used extensively in logic circuits

Exclusive NOR (XNOR) is the complement of XOR

ху	XOR		ху	XNOR	
0 0	0		0 0	1	
0 1	1		0 1	0	XNOR is also known
1 0	1		1 0	0	as equivalence
1 1	0		1 1	1	
x = y y = x $\oplus y$ XOR gate				R gate	$(x \oplus y)'$

XOR / XNOR Functions

- ✤ The XOR function is: $x \oplus y = xy' + x'y$
- ✤ The XNOR function is: $(x \oplus y)' = xy + x'y'$
- ✤ XOR and XNOR gates are complex
 - \diamond Can be implemented as a true gate, or by
 - ♦ Interconnecting other gate types
- XOR and XNOR gates do not exist for more than two inputs
 - ♦ For 3 inputs, use two XOR gates
 - ♦ The cost of a 3-input XOR gate is greater than the cost of two XOR gates
- Uses for XOR and XNOR gates include:
 - ♦ Adders, subtractors, multipliers, counters, incrementers, decrementers
 - \diamond Parity generators and checkers

XOR and XNOR Properties

- $x \oplus 0 = x x \oplus 1 = x'$ $x \oplus x = 0 x \oplus x' = 1$
- $x \oplus y = y \oplus x$
- $x' \oplus y' = x \oplus y$

$$\bigstar (x \oplus y)' = x' \oplus y = x \oplus y'$$

XOR and XNOR are **associative** operations

$$\bigstar (x \oplus y) \oplus z = x \oplus (y \oplus z) = x \oplus y \oplus z$$

$$\bigstar ((x \oplus y)' \oplus z)' = (x \oplus (y \oplus z)')' = x \oplus y \oplus z$$

Odd Function

- Output is 1 if the number of 1's is odd in the inputs
- Output is the XOR operation on all input variables

	X	у	z	fodd
a runction with 3 inputs	0	0	0	0
	0	0	1	1
	0	1	0	1
	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	0
5	1	1	1	1

$$fodd = \sum (1, 2, 4, 7)$$

$$fodd = x'y'z + x'yz' + xy'z' + xyz$$

$$fodd = x \oplus y \oplus z$$

Implementation using two XOR gates

Even Function

W	X	У	Z	feven
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

- Output is 1 if the number of 1's is even in the inputs (complement of odd function)
- Output is the XNOR operation on all inputs

$$feven = \sum (0, 3, 5, 6, 9, 10, 12, 15)$$

$$feven = (w \oplus x \oplus y \oplus z)'$$

Implementation using two XOR gates and one XNOR

Even Function with 4 inputs

Parity Generators and Checkers

- ✤ A parity bit is added to the *n*-bit code
 - \Rightarrow Produces (*n*+1)-bit code with an odd (or even) count of 1's
- Odd parity: count of 1's in the (*n*+1)-bit code is odd
 - ♦ Use an even function to generate the odd parity bit
 - \diamond Use an **even function** to check the (*n*+1)-bit code
- Even parity: count of 1's in the (*n*+1)-bit code is even
 - ♦ Use an odd function to generate the even parity bit
 - \diamond Use an **odd function** to check the (*n*+1)-bit code

Example of Parity Generator and Checker

- Design even parity generator & checker for 3-bit codes
- Solution:
 - Use 3-bit odd function to generate
 even parity bit *P*.
 - $\Rightarrow Use$ **4-bit odd function**to check if there is an error*E*in even parity.
 - ♦ Given that: xyz = 001 then P = 1.
 The sender transmits Pxyz = 1001.
 - ♦ If y changes from 0 to 1 between generator and checker, the parity checker receives Pxyz = 1011 and produces E = 1, indicating an error.

