
Additional Gates

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 2

Presentation Outline

� Additional Gates and Symbols

� Universality of NAND and NOR gates

� NAND-NAND and NOR-NOR implementations

� Exclusive OR (XOR) and Exclusive NOR (XNOR) gates

� Odd and Even functions

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 3

Additional Logic Gates and Symbols

� Why?

� Low cost implementation

� Useful in implementing Boolean functions

�
� � · �

AND gate

�
� � + �

OR gate

�′�

NOT gate (inverter)

�
� � · � �

NAND gate

�
� (� + �)′

NOR gate

�
� � ⊕ �

XOR gate

�
� (� ⊕ �)′

XNOR gate

��

Buffer

�

3-state gate

�

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 4

NAND Gate

� The NAND gate has the following symbol and truth table

� NAND represents NOT AND

� The small bubble circle represents the invert function

� NAND gate is implemented efficiently in CMOS technology

� In terms of chip area and speed

x y NAND

0 0 1

0 1 1

1 0 1

1 1 0

�
� � · � � = �� + �′

NAND gate �
� �′ + �′

Another symbol for NAND

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 5

NOR Gate

� The NOR gate has the following symbol and truth table

� NOR represents NOT OR

� The small bubble circle represents the invert function

� NOR gate is implemented efficiently in CMOS technology

� In terms of chip area and speed

x y NOR

0 0 1

0 1 0

1 0 0

1 1 0

�
� � + � � = �� · �′

NOR gate �
� �′ · �′

Another symbol for NOR

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 6

The NAND Gate is Universal

� NAND gates can implement any Boolean function

� NAND gates can be used as inverters, or to implement AND/OR

� A single-input NAND gate is an inverter

� NAND � = (� · �)′ = �′

� AND is equivalent to NAND with inverted output

(� NAND �)′ = ((� · �)′)′ = � · � (AND)

� OR is equivalent to NAND with inverted inputs

(�′ NAND �′) = (�′ · �′)′ = � + � (OR)

�

�
� · �

�

�
� + �

�′

�′

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 7

The NOR Gate is also Universal

� NOR gates can implement any Boolean function

� NOR gates can be used as inverters, or to implement AND/OR

� A single-input NOR gate is an inverter

� NOR � = (� + �)′ = �′

� OR is equivalent to NOR with inverted output

(� NOR �)′ = ((� + �)′)′ = � + � (OR)

� AND is equivalent to NOR with inverted inputs

(�′ NOR �′) = (�� + �′)′ = � · � (AND)

�

�
� + �

�

�
� · �

�′

�′

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 8

Non-Associative NAND / NOR Operations

� Unlike AND, NAND operation is NOT associative

(� NAND �) NAND
 ≠ � NAND (� NAND
)

(� NAND �) NAND
 = ((��)′
)′ = ((�′ + �′)
)′ = �� +
′
� NAND (� NAND
) = (�(�
)′)′ = (�(�′ +
′))′ = �′ + �

� Unlike OR, NOR operation is NOT associative

(� NOR �) NOR
 ≠ � NOR (� NOR
)

(� NOR �) NOR
 = � + � � +
 � = ���� +
 � = (� + �)
′

� NOR (� NOR
) = � + � +
 � � = � + ��
� � = �′(� +
)

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 9

Multiple-Input NAND / NOR Gates

NAND/NOR gates can have multiple inputs, similar to AND/OR gates

�
� � · � �

2-input NAND gate

�

 � · � ·
 �

3-input NAND gate

�
�

� · � · � ·
 �

4-input NAND gate

��

�
� � + � �

2-input NOR gate

�

 � + � +
 �

3-input NOR gate

�
�

� + � + � +
 �

4-input NOR gate

��

Note: a 3-input NAND is a single gate, NOT a combination of two 2-input gates.
The same can be said about other multiple-input NAND/NOR gates.

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 10

NAND – NAND Implementation

� Consider the following sum-of-products expression:

 = �� + �′��′
� A 2-level AND-OR circuit can be converted easily to a 2-level

NAND-NAND implementation

�
�
�′
�
�′

2-Level AND-OR

�
�
�′
�
�′

Inserting Bubbles

Two successive bubbles on same line cancel each other

�
�
�′
�
�′

2-Level NAND-NAND

3-input
NAND gate

3-input
AND gate

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 11

NOR – NOR Implementation

� Consider the following product-of-sums expression:

� = (� + �)(� + � + �′)
� A 2-level OR-AND circuit can be converted easily to a 2-level

NOR-NOR implementation

Two successive bubbles on same line cancel each other

2-Level OR-AND

�

�
�

�
�
�′

Inserting Bubbles

�

�
�

�
�
�′

2-Level NOR-NOR

�

�
�

�
�
�′ 3-input

NOR gate
3-input
OR gate

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 12

Exclusive OR / Exclusive NOR

� Exclusive OR (XOR) is an important Boolean operation used

extensively in logic circuits

� Exclusive NOR (XNOR) is the complement of XOR

�
� �	⨁	�

XOR gate

�
� (�	⨁	�)′

XNOR gate

x y XOR

0 0 0

0 1 1

1 0 1

1 1 0

x y XNOR

0 0 1

0 1 0

1 0 0

1 1 1

XNOR is also known

as equivalence

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 13

XOR / XNOR Functions

� The XOR function is: �	⨁	� = ��′ + �′�
� The XNOR function is: (�	⨁	�)′ = �� + �′�′

� XOR and XNOR gates are complex

� Can be implemented as a true gate, or by

� Interconnecting other gate types

� XOR and XNOR gates do not exist for more than two inputs

� For 3 inputs, use two XOR gates

� The cost of a 3-input XOR gate is greater than the cost of two XOR gates

� Uses for XOR and XNOR gates include:

� Adders, subtractors, multipliers, counters, incrementers, decrementers

� Parity generators and checkers

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 14

XOR and XNOR Properties

� �	⨁	0 = � �	⨁	1 = �′
� �	⨁	� = 0 �	⨁	�′ = 1
� �	⨁	� = �	⨁	�
� ��	⨁	�� = �	⨁	�
� �	⨁	� � = ��	⨁	� = �	⨁	�′
XOR and XNOR are associative operations

� �	⨁	� 	⨁	
 = �	⨁	 �	⨁	
 = �	⨁	�	⨁	

� �	⨁	� �	⨁	
 � = �	⨁	(�	⨁	
)′ � = �	⨁	�	⨁	

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 15

Odd Function

� Output is 1 if the number of 1's is odd in the inputs

� Output is the XOR operation on all input variables

x y z fodd

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1O
dd

 F
un

ct
io

n
w

ith
 3

 in
pu

ts

��� =�(1, 2, 4, 7)

��� = ����
 + ���
� + ���
� + ��

��� = �	⨁	�	⨁	

�
�

���

Implementation using two XOR gates

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 16

Even Function

� Output is 1 if the number of 1's is even in
the inputs (complement of odd function)

� Output is the XNOR operation on all inputs

w x y z feven

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

E
ve

n
F

un
ct

io
n

w
ith

 4
 in

pu
ts

���� =�(0, 3, 5, 6, 9, 10, 12, 15)

�
�
�

����

Implementation using two XOR gates and one XNOR

���� = (�	⨁	�	⨁	�	⨁	
)′

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 17

Parity Generators and Checkers

� A parity bit is added to the n-bit code

� Produces (n+1)-bit code with an odd (or even) count of 1's

� Odd parity: count of 1's in the (n+1)-bit code is odd

� Use an even function to generate the odd parity bit

� Use an even function to check the (n+1)-bit code

� Even parity: count of 1's in the (n+1)-bit code is even

� Use an odd function to generate the even parity bit

� Use an odd function to check the (n+1)-bit code

Sender Receiver

n-bit code Parity

Generator

(n+1)-bit code Parity

Checker
Error

Additional Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 18

Example of Parity Generator and Checker

� Design even parity generator & checker for 3-bit codes

� Solution:

� Use 3-bit odd function to generate
even parity bit $.

� Use 4-bit odd function to check if
there is an error % in even parity.

� Given that: ��
 = 001 then $ = 1.
The sender transmits $��
 = 1001.

� If � changes from 0 to 1 between
generator and checker, the parity
checker receives $��
 = 1011 and
produces % = 1, indicating an error.

�
�

 $

Parity Generator

$
�
� %

Parity Checker

