Additional Gates

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

* Additional Gates and Symbols
* Universality of NAND and NOR gates
* NAND-NAND and NOR-NOR implementations
* Exclusive OR (XOR) and Exclusive NOR (XNOR) gates
* Odd and Even functions

Additional Logic Gates and Symbols

* Why?
\triangleleft Low cost implementation
« Useful in implementing Boolean functions

XOR gate

XNOR gate

NOT gate (inverter)

3-state gate

NAND Gate

* The NAND gate has the following symbol and truth table * NAND represents NOT AND
* The small bubble circle represents the invert function
$y=0-(x \cdot y)^{\prime}=x^{\prime}+y^{\prime}$
NAND gate

\mathbf{x}	\mathbf{y}	NAND
0	0	1
0	1	1
1	0	1
1	1	0

* NAND gate is implemented efficiently in CMOS technology
\diamond In terms of chip area and speed

NOR Gate

* The NOR gate has the following symbol and truth table
* NOR represents NOT OR
* The small bubble circle represents the invert function

NOR gate

\mathbf{x}	\mathbf{y}	NOR
0	0	1
0	1	0
1	0	0
1	1	0

* NOR gate is implemented efficiently in CMOS technology
\diamond In terms of chip area and speed

The NAND Gate is Universal

* NAND gates can implement any Boolean function
* NAND gates can be used as inverters, or to implement AND/OR
* A single-input NAND gate is an inverter x NAND $x=(x \cdot x)^{\prime}=x^{\prime}$
* AND is equivalent to NAND with inverted output
$(x \text { NAND } y)^{\prime}=\left((x \cdot y)^{\prime}\right)^{\prime}=x \cdot y$ (AND)

* OR is equivalent to NAND with inverted inputs
$\left(x^{\prime}\right.$ NAND $\left.y^{\prime}\right)=\left(x^{\prime} \cdot y^{\prime}\right)^{\prime}=x+y(\mathrm{OR})$

The NOR Gate is also Universal

* NOR gates can implement any Boolean function
* NOR gates can be used as inverters, or to implement AND/OR
* A single-input NOR gate is an inverter x NOR $x=(x+x)^{\prime}=x^{\prime}$
* OR is equivalent to NOR with inverted output
$(x \text { NOR } y)^{\prime}=\left((x+y)^{\prime}\right)^{\prime}=x+y(\mathrm{OR})$

* AND is equivalent to NOR with inverted inputs
$\left(x^{\prime}\right.$ NOR $\left.y^{\prime}\right)=\left(x^{\prime}+y^{\prime}\right)^{\prime}=x \cdot y($ AND $)$

Non-Associative NAND / NOR Operations

* Unlike AND, NAND operation is NOT associative (x NAND y) NAND $z \neq x$ NAND (y NAND z) (x NAND y) NAND $z=\left((x y)^{\prime} z\right)^{\prime}=\left(\left(x^{\prime}+y^{\prime}\right) z\right)^{\prime}=x y+z^{\prime}$ x NAND $(y$ NAND $z)=\left(x(y z)^{\prime}\right)^{\prime}=\left(x\left(y^{\prime}+z^{\prime}\right)\right)^{\prime}=x^{\prime}+y z$
* Unlike OR, NOR operation is NOT associative (x NOR y) NOR $z \neq x$ NOR (y NOR z)
$(x \operatorname{NOR} y) \operatorname{NOR} z=\left((x+y)^{\prime}+z\right)^{\prime}=\left(\left(x^{\prime} y^{\prime}\right)+z\right)^{\prime}=(x+y) z^{\prime}$
$x \operatorname{NOR}(y \operatorname{NOR} z)=\left(x+(y+z)^{\prime}\right)^{\prime}=\left(x+\left(y^{\prime} z^{\prime}\right)\right)^{\prime}=x^{\prime}(y+z)$

Multiple-Input NAND / NOR Gates

NAND/NOR gates can have multiple inputs, similar to AND/OR gates

2-input NAND gate

3-input NAND gate

3-input NOR gate

2-input NOR gate

4-input NAND gate

4-input NOR gate

Note: a 3-input NAND is a single gate, NOT a combination of two 2-input gates. The same can be said about other multiple-input NAND/NOR gates.

NAND - NAND Implementation

* Consider the following sum-of-products expression:

$$
f=b d+a^{\prime} c d^{\prime}
$$

* A 2-level AND-OR circuit can be converted easily to a 2-level NAND-NAND implementation

Inserting Bubbles

2-Level NAND-NAND

Two successive bubbles on same line cancel each other

NOR - NOR Implementation

$*$ Consider the following product-of-sums expression:

$$
g=(a+d)\left(b+c+d^{\prime}\right)
$$

* A 2-level OR-AND circuit can be converted easily to a 2-level NOR-NOR implementation

Inserting Bubbles

2-Level NOR-NOR

Two successive bubbles on same line cancel each other

Exclusive OR / Exclusive NOR

§ Exclusive OR (XOR) is an important Boolean operation used extensively in logic circuits

* Exclusive NOR (XNOR) is the complement of XOR

XOR / XNOR Functions

* The XOR function is: $x \oplus y=x y^{\prime}+x^{\prime} y$
* The XNOR function is: $(x \oplus y)^{\prime}=x y+x^{\prime} y^{\prime}$
* XOR and XNOR gates are complex
\diamond Can be implemented as a true gate, or by
\checkmark Interconnecting other gate types
* XOR and XNOR gates do not exist for more than two inputs
\diamond For 3 inputs, use two XOR gates
\diamond The cost of a 3-input XOR gate is greater than the cost of two XOR gates
\star Uses for XOR and XNOR gates include:
\diamond Adders, subtractors, multipliers, counters, incrementers, decrementers
> Parity generators and checkers

XOR and XNOR Properties

* $x \oplus 0=x$

$$
\begin{aligned}
& x \oplus 1=x^{\prime} \\
& x \oplus x^{\prime}=1
\end{aligned}
$$

* $x \oplus y=y \oplus x$
$\nless x^{\prime} \oplus y^{\prime}=x \oplus y$
$(x \oplus y)^{\prime}=x^{\prime} \oplus y=x \oplus y^{\prime}$
XOR and XNOR are associative operations
* $(x \oplus y) \oplus z=x \oplus(y \oplus z)=x \oplus y \oplus z$
* $\left((x \oplus y)^{\prime} \oplus z\right)^{\prime}=\left(x \oplus(y \oplus z)^{\prime}\right)^{\prime}=x \oplus y \oplus z$

Odd Function

* Output is 1 if the number of 1 's is odd in the inputs
* Output is the XOR operation on all input variables

	F	nc	n					
$\stackrel{ }{ }+$	\mapsto	-	\vdash	Q	Q	Q	Q	\times
$\stackrel{\rightharpoonup}{ }$	\mapsto	Q	Q	$\stackrel{\rightharpoonup}{ }$	$\stackrel{ }{ }$	-	Q	$<$
$\stackrel{ }{ }+$	-	$\stackrel{ }{ }$ -	©	$\stackrel{\rightharpoonup}{ }$	Q	\triangleright	Q	N
,	Q	Q	\vdash	Q	\vdash	\vdash	Q	-

$$
\begin{aligned}
& \text { fodd }=\sum(1,2,4,7) \\
& \text { fodd }=x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z \\
& \text { fodd }=x \oplus y \oplus z
\end{aligned}
$$

Even Function

$\begin{aligned} & \frac{9}{3} \\ & \stackrel{0}{1} \end{aligned}$		x y		feven
	0	00	0	1
	0	00	1	0
	0	01	0	0
		01	1	1
	0	10	0	0
¢		10	1	1
3		11	0	1
\bigcirc		11	1	0
-		00	0	0
5		00	1	1
丩		01		1
$\stackrel{\square}{0}$		01		0
亩		10		1
		10		0
		11		0
		11		1

* Output is 1 if the number of 1 's is even in the inputs (complement of odd function)
* Output is the XNOR operation on all inputs

Implementation using two XOR gates and one XNOR

Parity Generators and Checkers

* A parity bit is added to the n-bit code
\diamond Produces ($n+1$)-bit code with an odd (or even) count of 1 's
* Odd parity: count of 1's in the ($n+1$)-bit code is odd
\diamond Use an even function to generate the odd parity bit
\diamond Use an even function to check the ($n+1$)-bit code
Even parity: count of 1 's in the $(n+1)$-bit code is even
\triangleleft Use an odd function to generate the even parity bit
\triangleleft Use an odd function to check the ($n+1$)-bit code

Example of Parity Generator and Checker

* Design even parity generator \& checker for 3-bit codes

Solution:

» Use 3-bit odd function to generate even parity bit P.
\checkmark Use 4-bit odd function to check if there is an error E in even parity.
\triangleleft Given that: $x y z=001$ then $P=1$. The sender transmits $P x y z=1001$.
\diamond If y changes from 0 to 1 between generator and checker, the parity checker receives $P x y z=1011$ and produces $E=1$, indicating an error.

Parity Checker

