Binary Arithmetic

COE 202

Digital Logic Design
Dr. Muhamed Mudawar
King Fahd University of Petroleum and Minerals

Adding Bits

$* 1+1=2$, but 2 should be represented as $(10)_{2}$ in binary

* Adding two bits: the sum is S and the carry is C

X	0	0	1	1
$+Y$	+0	+1	+0	+1
CS	00	01	$\frac{+0}{01}$	10

* Adding three bits: the sum is S and the carry is C

0	0	0	0	1	1	1	1
0	0	1	1	0	0	1	1
+0	+1	+0	+1	+0	+1	+0	+1
00	+01	01	+10	01	$\frac{+1}{10}$	$\frac{+1}{11}$	

Binary Addition

* Start with the least significant bit (rightmost bit)
* Add each pair of bits
* Include the carry in the addition, if present

carry	1		11		1			
	0	0	1	1	0	1	1	0
+	0	0	0	1	1	1	0	1
	0	1	0	1	0	0	1	1
bit position:	7	6	5	4	3	2	1	0

Subtracting Bits

* Subtracting 2 bits ($\mathrm{X}-\mathrm{Y}$): we get the difference (D) and the borrow-out (B) shown as 0 or -1

$$
\begin{array}{rrrrr}
X & 0 & 0 & 1 & 1 \\
-Y & \frac{-0}{} & \frac{-1}{-11} & \frac{-0}{01} & \frac{-1}{00}
\end{array}
$$

* Subtracting two bits ($\mathrm{X}-\mathrm{Y}$) with a borrow-in =-1: we get the difference (D) and the borrow-out (B)

borrow-in -1	-1	-1	-1	-1
x	0	0	1	1
- Y	-0	-1	-0	-1
B D	-11	-10	00	-11

Binary Subtraction

* Start with the least significant bit (rightmost bit)
* Subtract each pair of bits
* Include the borrow in the subtraction, if present

borrow
-
-
-
0

:---

Binary Multiplication

$*$ Binary Multiplication table is simple:
$0 \times 0=0, \quad 0 \times 1=0, \quad 1 \times 0=0, \quad 1 \times 1=1$
Multiplicand
$1100_{2}=12$

Multiplier

Product

$$
10011100_{2}=156
$$

n-bit multiplicand $\times n$-bit multiplier $=2 n$-bit product

* Accomplished via shifting and addition

Hexadecimal Addition

* Start with the least significant hexadecimal digits
* Let Sum = summation of two hex digits
* If Sum is greater than or equal to 16
\diamond Sum = Sum - 16 and Carry $=1$
* Example:

Hexadecimal Subtraction

* Start with the least significant hexadecimal digits
* Let Difference = subtraction of two hex digits
* If Difference is negative
\triangleleft Difference $=16+$ Difference and Borrow $=-1$
* Example:

Shifting the Bits to the Left

*What happens if the bits are shifted to the left by 1 bit position?

Before0 0 0 0 0 1 0 1 After 0 0 0 0 0 1 0 l

Multiplication
By 2
*What happens if the bits are shifted to the left by 2 bit positions?

Before \begin{tabular}{l|l|l|l|l|l|l|l|l|}
\hline 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1

	$=5$							
After	0	0	0	1	0	1	0	0

a
\end{tabular}

Multiplication

By 4

* Shifting the Bits to the Left by n bit positions is multiplication by 2^{n}
* As long as we have sufficient space to store the bits

Shifting the Bits to the Right

* What happens if the bits are shifted to the right by 1 bit position?

Before \begin{tabular}{l|l|l|l|l|l|l|l|l|}
\hline 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 0

After \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1

\hline

0

\hline
\end{tabular}

Division
By 2

* What happens if the bits are shifted to the right by 2 bit positions?

Before | 0 | 0 | 1 | 0 | 0 | 1 | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

After | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{9}, \mathbf{r}=\mathbf{2}$

Division

By 4

* Shifting the Bits to the Right by n bit positions is division by 2^{n}
* The remainder r is the value of the bits that are shifted out

