Binary Arithmetic

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Adding Bits

✤ 1 + 1 = 2, but 2 should be represented as $(10)_2$ in binary

Adding two bits: the sum is S and the carry is C

Χ	0	0	1	1
<u>+ Y</u>	+ 0	+ 1	+ 0	+ 1
C S	00	0 1	0 1	10

Adding three bits: the sum is S and the carry is C

0	0	0	0	1	1	1	1
0	0	1	1	0	0	1	1
+ 0	+ 1	+ 0	+ 1	+ 0	+ 1	+ 0	+ 1
00	01	01	10	0 1	10	10	11

Binary Addition

- Start with the least significant bit (rightmost bit)
- ✤ Add each pair of bits
- Include the carry in the addition, if present

Subtracting Bits

Subtracting 2 bits (X – Y): we get the difference (D) and the borrow-out (B) shown as 0 or -1

Χ	0	0	1	1
– Y	- 0	- 1	- 0	_ 1
BD	00	-1 1	01	00

Subtracting two bits (X – Y) with a borrow-in = -1: we get the difference (D) and the borrow-out (B)

borrow-in	-1	-1	-1	-1	-1
	Χ	0	0	1	1
	– Y	- 0	_ 1	- 0	_ 1
-	ΒD	-11	-1 0	00	-1 1

Binary Subtraction

- Start with the least significant bit (rightmost bit)
- Subtract each pair of bits
- Include the borrow in the subtraction, if present

Binary Multiplication

Binary Multiplication table is simple:

$0 \times 0 = 0$,	$0 \times 1 = 0$,	$1 \times 0 = 0$,	1×1=1
Multiplicar Multiplier	nd ×	1100 ₂ = 1101 ₂ =	12 13
	1 11	1100 0000 100 00	Binary multiplication is easy 0 × multiplicand = 0 1 × multiplicand = multiplicand
Product	100	$11100_{-} =$	156

- ✤ *n*-bit multiplicand × *n*-bit multiplier = 2*n*-bit product
- Accomplished via shifting and addition

Hexadecimal Addition

- Start with the least significant hexadecimal digits
- Let Sum = summation of two hex digits
- ✤ If Sum is greater than or equal to 16

```
\diamond Sum = Sum – 16 and Carry = 1
```

Example:

$$\begin{array}{c} \text{carry} & 1 & 1 & 1 \\ \textbf{+} & \begin{array}{c} \textbf{9 C 3 7 2 8 6 5} \\ \textbf{1 3 9 5 E 8 4 B} \\ \hline \textbf{A F C D 1 0 B 0} \end{array} \begin{array}{c} 5 + B = 5 + 11 = 16 \\ \text{Since Sum} \ge 16 \\ \text{Sum} = 16 - 16 = 0 \\ \text{Carry} = 1 \end{array}$$

Hexadecimal Subtraction

Start with the least significant hexadecimal digits

- Let Difference = subtraction of two hex digits
- ✤ If Difference is negative

 \diamond Difference = 16 + Difference and Borrow = -1

Example:

Shifting the Bits to the Left

What happens if the bits are shifted to the left by 1 bit position?

What happens if the bits are shifted to the left by 2 bit positions?

Shifting the Bits to the Left by *n* bit positions is multiplication by 2^n

✤ As long as we have sufficient space to store the bits

Shifting the Bits to the Right

What happens if the bits are shifted to the right by 1 bit position?

What happens if the bits are shifted to the right by 2 bit positions?

Shifting the Bits to the Right by *n* bit positions is division by 2^n

The remainder r is the value of the bits that are shifted out