Introduction to Digital Circuits

COE 202 Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Welcome to COE 202

Course Webpage:

http://faculty.kfupm.edu.sa/coe/mudawar/coe202/

Lecture Slides:

http://faculty.kfupm.edu.sa/coe/mudawar/coe202/lectures/

✤ Assignments:

http://faculty.kfupm.edu.sa/coe/mudawar/coe202/assignments.htm

Blackboard:

https://blackboard.kfupm.edu.sa/

Which Book will be Used?

Introduction to Logic Design

✤ Alan B. Marcovitz

♦ Third Edition

♦ McGraw Hill

What will I Learn in this Course?

- Towards the end of this course, you should be able to:
 - ♦ Represent numbers and perform arithmetic in various number systems.
 - Understand the basic identities of Boolean algebra and perform algebraic manipulations of Boolean expressions.
 - \diamond Simplify functions using the K-map method.
 - Design efficient combinational circuits utilizing basic functional blocks such as multiplexors, encoders, decoders, adders, and comparators.
 - ♦ Analyze and design efficient Mealy and Moore sequential circuits.
 - Model simple combinational and sequential circuits using Verilog HDL and use tools to simulate and verify correctness of design.
 - \diamond Design registers and counters and understand their applications.

Is it Worth the Effort?

- Absolutely!
- Digital circuits are employed in the design of:
 - ♦ Digital computers
 - ♦ Data communication
 - ♦ Digital phones
 - ♦ Digital cameras
 - ♦ Digital TVs, etc.
- This course provides the fundamental concepts and the basic tools for the design of digital circuits and systems

Grading Policy

 Assignments 	10%
✤ Quizzes	10%
✤ Exam 1	25%
Exam 2	25%
Final Exam	30%

NO makeup exam will be given

Presentation Outline

Analog versus Digital Circuits

- Digitization of Analog Signals
- Binary Numbers and Number Systems
- Number System Conversions
- Representing Fractions
- Binary Codes

Analog versus Digital

- Analog means continuous
- Analog parameters have continuous range of values
 - ♦ Example: temperature is an analog parameter
 - ♦ Temperature increases/decreases continuously
 - ♦ Other analog parameters?
 - ♦ Sound, speed, voltage, current, time
- Digital means discrete using numerical digits
- Digital parameters have fixed set of discrete values
 - ♦ Example: month number \in {1, 2, 3, ..., 12}, month cannot be 1.5!
 - ♦ Other digital parameters?
 - ♦ Alphabet letters, ten decimal digits, twenty-four hours, sixty minutes

Analog versus Digital System

Are computers analog or digital systems?

Computer are digital systems

Which is easier to design an analog or a digital system?

Digital systems are easier to design, because they deal with a limited set of values rather than an infinitely large range of continuous values

- The world around us is analog
- ✤ It is common to convert analog parameters into digital form
- This process is called digitization

Digitization of Analog Signals

- Digitization is converting an analog signal into digital form
- Example: consider digitizing an analog voltage signal
- Digitized output is limited to four values = {V1,V2,V3,V4}

Digitization of Analog Signals - cont'd

- Some loss of accuracy, why?
- How to improve accuracy?

Add more voltage values

ADC and DAC Converters

Analog-to-Digital Converter (ADC)

- ♦ Produces digitized version of analog signals
- ♦ Analog input => Digital output
- Digital-to-Analog Converter (DAC)
 - ♦ Regenerate analog signal from digital form
 - \diamond Digital input => Analog output
- Our focus is on digital systems only

 \diamond Both input and output to a digital system are digital signals

Next . . .

- Analog versus Digital Circuits
- Digitization of Analog Signals
- Binary Numbers and Number Systems
- Number System Conversions
- Representing Fractions
- Binary Codes

How do Computers Represent Digits?

- Binary digits (0 and 1) are the simplest to represent
- Using electric voltage
 - ♦ Used in processors and digital circuits
 - \Rightarrow High voltage = 1, Low voltage = 0
- Using electric charge
 - ♦ Used in memory cells
 - \diamond Charged memory cell = 1, discharged memory cell = 0
- Using magnetic field
 - \diamond Used in magnetic disks, magnetic polarity indicates 1 or 0
- Using light
 - \diamond Used in optical disks, optical lens can sense the light or not

Binary Numbers

- Each binary digit (called a bit) is either 1 or 0
- ✤ Bits have no inherent meaning, they can represent …
 - ♦ Unsigned and signed integers
- \diamond Fractions Most Least Significant Bit Significant Bit \diamond Characters 5 3 2 7 6 4 1 0 Images, sound, etc. \diamond 1 1 1 1 0 0 0 26 **2**³ 2^1 25 24 **2**² 27 20 Bit Numbering
 - ♦ Least significant bit (LSB) is rightmost (bit 0)
 - ♦ Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

Decimal Value of Binary Numbers

- Each bit represents a power of 2
- Every binary number is a sum of powers of 2
- ✤ Decimal Value = $(d_{n-1} \times 2^{n-1}) + ... + (d_1 \times 2^1) + (d_0 \times 2^0)$
- Sinary $(10011101)_2 = 2^7 + 2^4 + 2^3 + 2^2 + 1 = 157$

7		6	5	4	3	2	1	0
1		0	0	1	1	1	0	1
2	7	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

Some common powers of 2

2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
2 ⁰	1	2 ⁸	256
21	2	2 ⁹	512
2 ²	4	210	1024
2 ³	8	2 ¹¹	2048
24	16	212	4096
2 ⁵	32	2 ¹³	8192
2 ⁶	64	214	16384
27	128	215	32768

Positional Number Systems

Different Representations of Natural Numbers

- XXVII Roman numerals (not positional)
 - 27 Radix-10 or decimal number (positional)
- 11011₂ Radix-2 or binary number (also positional)

Fixed-radix positional representation with *n* digits

Number N in radix
$$r = (d_{n-1}d_{n-2} \dots d_1d_0)_r$$

$$N_r$$
 Value = $d_{n-1} \times r^{n-1} + d_{n-2} \times r^{n-2} + \dots + d_1 \times r + d_0$

Examples: $(11011)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2 + 1 = 27$

$$(2107)_8 = 2 \times 8^3 + 1 \times 8^2 + 0 \times 8 + 7 = 1095$$

Convert Decimal to Binary

- Repeatedly divide the decimal integer by 2
- Each remainder is a binary digit in the translated value
- Example: Convert 37₁₀ to Binary

Decimal to Binary Conversion

- $\bigstar N = (d_{n-1} \times 2^{n-1}) + \dots + (d_1 \times 2^1) + (d_0 \times 2^0)$
- Dividing N by 2 we first obtain
 - ♦ Quotient₁ = $(d_{n-1} \times 2^{n-2}) + ... + (d_2 \times 2) + d_1$
 - \diamond Remainder₁ = d_0
 - ♦ Therefore, first remainder is least significant bit of binary number
- Dividing first quotient by 2 we first obtain
 - ♦ Quotient₂ = $(d_{n-1} \times 2^{n-3}) + ... + (d_3 \times 2) + d_2$
 - ♦ Remainder₂ = d_1
- Repeat dividing quotient by 2
 - \diamond Stop when new quotient is equal to zero
 - ♦ Remainders are the bits from least to most significant bit

Popular Number Systems

- Binary Number System: Radix = 2
 - \diamond Only two digit values: 0 and 1
 - ♦ Numbers are represented as 0s and 1s
- Octal Number System: Radix = 8
 - ♦ Eight digit values: 0, 1, 2, ..., 7
- Decimal Number System: Radix = 10
 - ♦ Ten digit values: 0, 1, 2, ..., 9
- Hexadecimal Number Systems: Radix = 16
 - ♦ Sixteen digit values: 0, 1, 2, ..., 9, A, B, ..., F
 - ♦ A = 10, B = 11, ..., F = 15
- Octal and Hexadecimal numbers can be converted easily to Binary and vice versa

Octal and Hexadecimal Numbers

- Octal = Radix 8
- Only eight digits: 0 to 7
- Digits 8 and 9 not used
- Hexadecimal = Radix 16
- ✤ 16 digits: 0 to 9, A to F
- ✤ A=10, B=11, …, F=15
- First 16 decimal values (0 to15) and their values in binary, octal and hex.
 Memorize table

Decimal	Binary	Octal	Hex				
Radix 10	Radix 2	Radix 8	Radix 16				
0	0000	0	0				
1	0001	1	1				
2	0010	2	2				
3	0011	3	3				
4	0100	4	4				
5	0101	5	5				
6	0110	6	6				
7	0111	7	7				
8	1000	10	8				
9	1001	11	9				
10	1010	12	А				
11	1011	13	В				
12	1100	14	С				
13	1101	15	D				
14	1110	16	E				
15	1111	17	F				

Binary, Octal, and Hexadecimal

Binary, Octal, and Hexadecimal are related:

Radix $16 = 2^4$ and Radix $8 = 2^3$

- Hexadecimal digit = 4 bits and Octal digit = 3 bits
- Starting from least-significant bit, group each 4 bits into a hex digit or each 3 bits into an octal digit
- Example: Convert 32-bit number into octal and hex

3	5		3			0	0		5		5			2			3				6		2				4		Octal
11	. 10	1	0	. 1	0	0	0	1	0	1	1	0	1	0	1	0	0	1	1	1	1	0	0	1	0	1	0	0	32-bit binary
	E		В	<u> </u>		1					6			7	1			-	7			ç)			Ļ	1		Hexadecimal

Converting Octal & Hex to Decimal

↔ Octal to Decimal: $N_8 = (d_{n-1} \times 8^{n-1}) + ... + (d_1 \times 8) + d_0$

↔ Hex to Decimal: $N_{16} = (d_{n-1} \times 16^{n-1}) + ... + (d_1 \times 16) + d_0$

Examples:

$$(7204)_8 = (7 \times 8^3) + (2 \times 8^2) + (0 \times 8) + 4 = 3716$$

 $(3BA4)_{16} = (3 \times 16^3) + (11 \times 16^2) + (10 \times 16) + 4 = 15268$

Converting Decimal to Hexadecimal

- Repeatedly divide the decimal integer by 16
- Each remainder is a hex digit in the translated value
- Example: convert 422 to hexadecimal

To convert decimal to octal divide by 8 instead of 16

Important Properties

- ✤ How many possible digits can we have in Radix r?
 r digits: 0 to r 1
- What is the result of adding 1 to the largest digit in Radix r?
 Since digit r is not represented, result is (10)_r in Radix r

Examples:
$$1_2 + 1 = (10)_2$$
 $7_8 + 1 = (10)_8$
 $9_{10} + 1 = (10)_{10}$ $F_{16} + 1 = (10)_{16}$

✤ What is the largest value using 3 digits in Radix r?

In binary:
$$(111)_2 = 2^3 - 1$$

In octal: $(777)_8 = 8^3 - 1$
In decimal: $(999)_{10} = 10^3 - 1$
In decimal: $(999)_{10} = 10^3 - 1$

Important Properties - cont'd

✤ How many possible values can be represented …

Using *n* binary digits?

Using *n* octal digits

Using *n* decimal digits?

Using *n* hexadecimal digits

Using *n* digits in Radix *r*?

 2^{n} values: 0 to $2^{n} - 1$

 8^{n} values: 0 to $8^{n} - 1$

 10^{n} values: 0 to $10^{n} - 1$

 16^{n} values: 0 to $16^{n} - 1$

 r^n values: 0 to $r^n - 1$

Next . . .

- Analog versus Digital Circuits
- Digitization of Analog Signals
- Binary Numbers and Number Systems
- Number System Conversions
- Representing Fractions
- ✤ Binary Codes

Representing Fractions

A number N_r in *radix* r can also have a fraction part:

$$N_{r} = \underbrace{d_{n-1}d_{n-2} \dots d_{1}d_{0}}_{\text{Integer Part}} \cdot \underbrace{d_{-1}d_{-2} \dots d_{-m+1}d_{-m}}_{\text{Fraction Part}} \quad 0 \le d_{i} < r$$

$$Radix \text{ Point}$$

• The number N_r represents the value:

$$N_{r} = d_{n-1} \times r^{n-1} + \dots + d_{1} \times r + d_{0} + \qquad \text{(Integer Part)}$$

$$d_{-1} \times r^{-1} + d_{-2} \times r^{-2} \dots + d_{-m} \times r^{-m} \qquad \text{(Fraction Part)}$$

$$N_{r} = \sum_{i=0}^{i=n-1} d_{i} \times r^{i} + \sum_{j=-m}^{j=-1} d_{j} \times r^{j}$$

Examples of Numbers with Fractions

- $(2409.87)_{10} = 2 \times 10^3 + 4 \times 10^2 + 9 + 8 \times 10^{-1} + 7 \times 10^{-2}$
- $(1101.1001)_2 = 2^3 + 2^2 + 2^0 + 2^{-1} + 2^{-4} = 13.5625$
- $(703.64)_8 = 7 \times 8^2 + 3 + 6 \times 8^{-1} + 4 \times 8^{-2} = 451.8125$
- $(A1F.8)_{16} = 10 \times 16^2 + 16 + 15 + 8 \times 16^{-1} = 2591.5$
- $(423.1)_5 = 4 \times 5^2 + 2 \times 5 + 3 + 5^{-1} = 113.2$
- $(263.5)_6$ Digit 6 is NOT allowed in radix 6

Converting Decimal Fraction to Binary

- Convert N = 0.6875 to Radix 2
- Solution: Multiply *N* by 2 repeatedly & collect integer bits

Multiplication	New Fraction	Bit	
0.6875 × 2 = 1 .375	0.375	1 -	→ First fraction bit
0.375 × 2 = <mark>0</mark> .75	0.75	0	
0.75 × 2 = 1.5	0.5	1	
0.5 × 2 = 1 .0	0.0	1 -	→ Last fraction bit

- Stop when new fraction = 0.0, or when enough fraction bits are obtained
- ♦ Therefore, $N = 0.6875 = (0.1011)_2$
- ♦ Check $(0.1011)_2 = 2^{-1} + 2^{-3} + 2^{-4} = 0.6875$

Converting Fraction to any Radix r

* To convert fraction N to any radix r

 $N_r = (0.d_{-1} d_{-2} \dots d_{-m})_r = d_{-1} \times r^{-1} + d_{-2} \times r^{-2} \dots + d_{-m} \times r^{-m}$

• Multiply *N* by *r* to obtain d_{-1}

$$N_r \times r = d_{-1} + d_{-2} \times r^{-1} \dots + d_{-m} \times r^{-m+1}$$

- The integer part is the digit d_{-1} in radix r
- The new fraction is $d_{-2} \times r^{-1} \dots + d_{-m} \times r^{-m+1}$
- Repeat multiplying the new fractions by r to obtain d_{-2} d_{-3} ...
- Stop when new fraction becomes 0.0 or enough fraction digits are obtained

More Conversion Examples

- Convert N = 139.6875 to Octal (Radix 8)
- Solution: N = 139 + 0.6875 (split integer from fraction)
- The integer and fraction parts are converted separately

Division	Quotient	Remainder
139 / 8	17	3
17 / 8	2	1
2/8	0	2

Multiplication	New Fraction	Digit
0.6875 × 8 = <mark>5</mark> .5	0.5	5
$0.5 \times 8 = 4.0$	0.0	4

- ↔ Therefore, $139 = (213)_8$ and $0.6875 = (0.54)_8$
- Now, join the integer and fraction parts with radix point

$$N = 139.6875 = (213.54)_8$$

Conversion Procedure to Radix r

- * To convert decimal number N (with fraction) to radix r
- Convert the Integer Part
 - ♦ Repeatedly divide the integer part of number N by the radix r and save the remainders. The integer digits in radix r are the remainders in reverse order of their computation. If radix r > 10, then convert all remainders > 10 to digits A, B, ... etc.
- Convert the Fractional Part
 - ♦ Repeatedly multiply the fraction of *N* by the radix *r* and save the integer digits that result. The fraction digits in radix *r* are the integer digits in order of their computation. If the radix *r* > 10, then convert all digits > 10 to A, B, … etc.
- ✤ Join the result together with the radix point

Simplified Conversions

- Converting fractions between Binary, Octal, and Hexadecimal can be simplified
- Starting at the radix pointing, the integer part is converted from right to left and the fractional part is converted from left to right
- Group 4 bits into a hex digit or 3 bits into an octal digit

		i	nt	eę	ge	er:	ri	g	h	t t	0	le	ft	-		•			-	fr	ac	ctio	or):	lef	ft t	0	ri	gh	t	_		+				
	7		2				6	6			1		3			•	. 2				4			7		4		4		5		2	2	Octal			
1	1	1	0	1	0	1	_ 1	. (0	0	0	1	0	1	1	•	0	1	0	1	0	0	1	1	1	1	0	0	1	0	1	0	1	Binary			
	7			ļ	5	•			8	3			I	3		•		5				3	•		C		С		C		C		A			8	Hexadecimal

Use binary to convert between octal and hexadecimal

Important Properties of Fractions

- How many fractional values exist with *m* fraction bits?
 2^m fractions, because each fraction bit can be 0 or 1
- ✤ What is the largest fraction value if *m* bits are used? Largest fraction value = $2^{-1} + 2^{-2} + ... + 2^{-m} = 1 - 2^{-m}$ Because if you add 2^{-m} to largest fraction you obtain 1
- In general, what is the largest fraction value if *m* fraction digits are used in radix *r*?

Largest fraction value = $(r - 1) \times (r^{-1} + r^{-2} + ... + r^{-m}) = 1 - r^{-m}$

For decimal, largest fraction value = $1 - 10^{-m}$

For hexadecimal, largest fraction value = $1 - 16^{-m}$

Next . . .

- Analog versus Digital Circuits
- Digitization of Analog Signals
- Binary Numbers and Number Systems
- Number System Conversions
- Representing Fractions
- Binary Codes

Binary Codes

- How to represent characters, colors, etc?
- Define the set of all represented elements
- ✤ Assign a unique binary code to each element of the set
- Given *n* bits, a binary code is a mapping from the set of elements to a subset of the 2ⁿ binary numbers
- Coding Numeric Data (example: coding decimal digits)
 - ♦ Coding must simplify common arithmetic operations
 - ♦ Tight relation to binary numbers
- Coding Non-Numeric Data (example: coding colors)
 - ♦ More flexible codes since arithmetic operations are not applied

Example of Coding Non-Numeric Data

- Suppose we want to code 7 colors of the rainbow
- ✤ As a minimum, we need 3 bits to define 7 unique values
- ✤ 3 bits define 8 possible combinations
- Only 7 combinations are needed
- Code 111 is not used
- Other assignments are also possible

Color	3-bit code					
Red	000					
Orange	001					
Yellow	010					
Green	011					
Blue	100					
Indigo	101					
Violet	110					

Minimum Number of Bits Required

Given a set of *M* elements to be represented by a binary code, the minimum number of bits, *n*, should satisfy:

 $2^{(n-1)} < M \le 2^n$

 $n = \lceil \log_2 M \rceil$ where $\lceil x \rceil$, called the ceiling function, is the integer greater than or equal to x

How many bits are required to represent 10 decimal digits with a binary code?

• Answer: $\lceil \log_2 10 \rceil = 4$ bits can represent 10 decimal digits

Decimal Codes

- Binary number system is most natural for computers
- But people are used to the decimal number system
- Must convert decimal numbers to binary, do arithmetic on binary numbers, then convert back to decimal
- To simplify conversions, decimal codes can be used
- Define a binary code for each decimal digit
- Since 10 decimal digits exit, a 4-bit code is used
- But a 4-bit code gives 16 unique combinations
- 10 combinations are used and 6 will be unused

Binary Coded Decimal (BCD)

- Simplest binary code for decimal digits
- Only encodes ten digits from 0 to 9
- BCD is a weighted code
- The weights are 8,4,2,1
- Same weights as a binary number
- There are six invalid code words

1010, 1011, 1100, 1101, 1110, 1111

- Example on BCD coding:
 - 13 \Leftrightarrow (0001 0011)_{BCD}

Decimal	BCD				
0	0000				
1	0001				
2	0010				
3	0011				
4	0100				
5	0101				
6	0110				
7	0111				
8	1000				
9	1001				
	1010				
Unused	• • •				
	1111				

Warning: Conversion or Coding?

Do NOT mix up conversion of a decimal number to a binary number with coding a decimal number with a binary code

• $13_{10} = (1101)_2$ This is conversion

- ♦ 13 \Leftrightarrow (0001 0011)_{BCD}
 This is coding
- In general, coding requires more bits than conversion
- ✤ A number with *n* decimal digits is coded with 4*n* bits in BCD

Other Decimal Codes

- ✤ BCD, 5421, 2421, and 8 4 -2 -1 are weighted codes
- Excess-3 is not a weighted code
- ✤ 2421, 8 4 -2 -1, and Excess-3 are self complementary codes

Decimal	BCD 8421	5421 code	2421 code	8 4 -2 -1 code	Excess-3 code
0	0000	0000	0000	0000	0011
1	0001	0001	0001	0111	0100
2	0010	0010	0010	0110	0101
3	0011	0011	0011	0101	0110
4	0100	0100	0100	0100	0111
5	0101	1000	1011	1011	1000
6	0110	1001	1100	1010	1001
7	0111	1010	1101	1001	1010
8	1000	1011	1110	1000	1011
9	1001	1100	1111	1111	1100
Unused					

Introduction to Digital Circuits

Character Codes

Character sets

- \diamond Standard ASCII: 7-bit character codes (0 127)
- ♦ Extended ASCII: 8-bit character codes (0 255)
- \diamond Unicode: 16-bit character codes (0 65,535)
- ♦ Unicode standard represents a universal character set
 - Defines codes for characters used in all major languages
 - Each character is encoded as 16 bits
- ♦ UTF-8: variable-length encoding used in HTML
 - Encodes all Unicode characters
 - Uses 1 byte for ASCII, but multiple bytes for other characters
- Null-terminated String
 - $\diamond\,$ Array of characters followed by a NULL character

Printable ASCII Codes

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
2	space	ļ	TT	#	\$	olo	&	V	()	*	+	,	_	•	/
3	0	1	2	3	4	5	6	7	8	9	•	;	<	I	>	?
4	0	Α	В	С	D	E	F	G	H	I	J	K	L	М	N	0
5	P	Q	R	S	Т	U	V	W	X	Y	Z]	\]	^	_
6	`	a	b	С	d	е	f	g	h	i	j	k	1	m	n	ο
7	p	q	r	S	t	u	v	W	x	У	Z	{		}	~	DEL

Examples:

- \Rightarrow ASCII code for space character = 20 (hex) = 32 (decimal)
- \Rightarrow ASCII code for 'L' = 4C (hex) = 76 (decimal)
- \Rightarrow ASCII code for 'a' = 61 (hex) = 97 (decimal)

Control Characters

- The first 32 characters of ASCII table are used for control
- Control character codes = 00 to 1F (hexadecimal)
 - \diamond Not shown in previous slide
- Examples of Control Characters
 - \diamond Character 0 is the NULL character \Rightarrow used to terminate a string
 - ♦ Character 9 is the Horizontal Tab (HT) character
 - ♦ Character 0A (hex) = 10 (decimal) is the Line Feed (LF)
 - ♦ Character 0D (hex) = 13 (decimal) is the Carriage Return (CR)
 - ♦ The LF and CR characters are used together
 - They advance the cursor to the beginning of next line
- One control character appears at end of ASCII table
 - ♦ Character 7F (hex) is the Delete (DEL) character

Parity Bit & Error Detection Codes

- Binary data are typically transmitted between computers
- Because of noise, a corrupted bit will change value
- To detect errors, extra bits are added to each data value
- Parity bit: is used to make the number of 1's odd or even
- Even parity: number of 1's in the transmitted data is even
- Odd parity: number of 1's in the transmitted data is odd

7-bit ASCII Character	With Even Parity	With Odd Parity
'A' = 1000001	0 1000001	1 1000001
'T' = 1010100	1 1010100	0 1010100

Detecting Errors

- Suppose we are transmitting 7-bit ASCII characters
- ✤ A parity bit is added to each character to make it 8 bits
- Parity can detect all single-bit errors
 - If even parity is used and a single bit changes, it will change the parity to odd, which will be detected at the receiver end
 - The receiver end can detect the error, but cannot correct it because it does not know which bit is erroneous
- Can also detect some multiple-bit errors
 - ♦ Error in an odd number of bits