Introduction to Digital Circuits

COE 202

Digital Logic Design
Dr. Muhamed Mudawar
King Fahd University of Petroleum and Minerals

Welcome to COE 202

* Course Webpage:
http://faculty.kfupm.edu.sa/coe/mudawar/coe202/
* Lecture Slides:
http://faculty.kfupm.edu.sa/coe/mudawar/coe202/lectures/
* Assignments:
http://faculty.kfupm.edu.sa/coe/mudawar/coe202/assignments.htm
* Blackboard:
https://blackboard.kfupm.edu.sa/

Which Book will be Used?

* Introduction to Logic Design
* Alan B. Marcovitz
\diamond Third Edition
\triangleleft McGraw Hill
$\diamond 2010$

What will I Learn in this Course?

* Towards the end of this course, you should be able to:
\checkmark Represent numbers and perform arithmetic in various number systems.
\diamond Understand the basic identities of Boolean algebra and perform algebraic manipulations of Boolean expressions.
s Simplify functions using the K-map method.
\star Design efficient combinational circuits utilizing basic functional blocks such as multiplexors, encoders, decoders, adders, and comparators.
\triangleleft Analyze and design efficient Mealy and Moore sequential circuits.
\diamond Model simple combinational and sequential circuits using Verilog HDL and use tools to simulate and verify correctness of design.
\diamond Design registers and counters and understand their applications.

Is it Worth the Effort?

* Absolutely!
* Digital circuits are employed in the design of:
\diamond Digital computers
\diamond Data communication
> Digital phones
\triangleleft Digital cameras
» Digital TVs, etc.
* This course provides the fundamental concepts and the basic tools for the design of digital circuits and systems

Grading Policy

* Assignments

10\%

* Quizzes

10\%

* Exam 1

25\%

* Exam 2
25%
* Final Exam
30%
* NO makeup exam will be given

Presentation Outline

* Analog versus Digital Circuits
* Digitization of Analog Signals
* Binary Numbers and Number Systems
* Number System Conversions
* Representing Fractions
* Binary Codes

Analog versus Digital

* Analog means continuous
* Analog parameters have continuous range of values
\diamond Example: temperature is an analog parameter
\diamond Temperature increases/decreases continuously
\diamond Other analog parameters?
\triangleleft Sound, speed, voltage, current, time
* Digital means discrete using numerical digits
* Digital parameters have fixed set of discrete values
\triangleleft Example: month number $\in\{1,2,3, \ldots, 12\}$, month cannot be 1.5 !
\triangleleft Other digital parameters?
\diamond Alphabet letters, ten decimal digits, twenty-four hours, sixty minutes

Analog versus Digital System

* Are computers analog or digital systems?

Computer are digital systems

* Which is easier to design an analog or a digital system?

Digital systems are easier to design, because they deal with a limited set of values rather than an infinitely large range of continuous values

* The world around us is analog
* It is common to convert analog parameters into digital form
* This process is called digitization

Digitization of Analog Signals

* Digitization is converting an analog signal into digital form
* Example: consider digitizing an analog voltage signal
* Digitized output is limited to four values $=\{\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3, \mathrm{~V} 4\}$

Digitization of Analog Signals - cont'd

* Some loss of accuracy, why?
: How to improve accuracy? Add more voltage values

ADC and DAC Converters

* Analog-to-Digital Converter (ADC)
» Produces digitized version of analog signals
\triangleleft Analog input => Digital output
* Digital-to-Analog Converter (DAC)
« Regenerate analog signal from digital form
\diamond Digital input => Analog output
* Our focus is on digital systems only

« Both input and output to a digital system are digital signals
* Analog versus Digital Circuits
* Digitization of Analog Signals
* Binary Numbers and Number Systems
* Number System Conversions
* Representing Fractions
* Binary Codes

How do Computers Represent Digits?

* Binary digits (0 and 1) are the simplest to represent
\star Using electric voltage
\triangleleft Used in processors and digital circuits
\triangleleft High voltage $=1$, Low voltage $=0$
* Using electric charge

\diamond Used in memory cells
\diamond Charged memory cell $=1$, discharged memory cell $=0$
* Using magnetic field
\triangleleft Used in magnetic disks, magnetic polarity indicates 1 or 0
* Using light
\diamond Used in optical disks, optical lens can sense the light or not

Binary Numbers

* Each binary digit (called a bit) is either 1 or 0
* Bits have no inherent meaning, they can represent ...
\diamond Unsigned and signed integers
\diamond Fractions
\triangleleft Characters
\diamond Images, sound, etc.

* Bit Numbering
\diamond Least significant bit (LSB) is rightmost (bit 0)
\diamond Most significant bit (MSB) is leftmost (bit 7 in an 8 -bit number)

Decimal Value of Binary Numbers

* Each bit represents a power of 2
* Every binary number is a sum of powers of 2
* Decimal Value $=\left(d_{n-1} \times 2^{n-1}\right)+\ldots+\left(d_{1} \times 2^{1}\right)+\left(d_{0} \times 2^{0}\right)$
* Binary $(10011101)_{2}=2^{7}+2^{4}+2^{3}+2^{2}+1=157$

7	6	5	4	3	2	1	0
1	0	0	1	1	1	0	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

Some common powers of 2

$\mathbf{2}^{\mathbf{n}}$	Decimal Value	$\mathbf{2}^{\mathbf{n}}$	Decimal Value
$2^{\mathbf{0}}$	1	2^{8}	256
2^{1}	2	2^{9}	512
2^{2}	4	2^{10}	1024
2^{3}	8	2^{11}	2048
2^{4}	16	2^{12}	4096
2^{5}	32	2^{13}	8192
2^{6}	64	2^{14}	16384
2^{7}	128	2^{15}	32768

Positional Number Systems

Different Representations of Natural Numbers
XXVII Roman numerals (not positional)
27 Radix-10 or decimal number (positional)
11011_{2} Radix-2 or binary number (also positional)
Fixed-radix positional representation with \boldsymbol{n} digits
Number N in radix $r=\left(d_{n-1} d_{n-2} \ldots d_{1} d_{0}\right)_{r}$
N_{r} Value $=\mathrm{d}_{n-1} \times r^{n-1}+\mathrm{d}_{n-2} \times r^{n-2}+\ldots+\mathrm{d}_{1} \times r+\mathrm{d}_{0}$
Examples: $(11011)_{2}=1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2+1=27$
$(2107)_{8}=2 \times 8^{3}+1 \times 8^{2}+0 \times 8+7=1095$

Convert Decimal to Binary

* Repeatedly divide the decimal integer by 2
* Each remainder is a binary digit in the translated value
* Example: Convert 37_{10} to Binary

Division	Quotient	Remainder	
37/2	18	1	least significant bit
18/2	9	0	$37=(100101)_{2}$
$9 / 2$	4	1	
4/2	2	0	
2/2	1	0	
1/2	0	1	most significant bit

Decimal to Binary Conversion

* $N=\left(d_{n-1} \times 2^{n-1}\right)+\ldots+\left(d_{1} \times 2^{1}\right)+\left(d_{0} \times 2^{0}\right)$
* Dividing N by 2 we first obtain
\diamond Quotient $_{1}=\left(d_{n-1} \times 2^{n-2}\right)+\ldots+\left(d_{2} \times 2\right)+d_{1}$
\triangleleft Remainder $_{1}=d_{0}$
\diamond Therefore, first remainder is least significant bit of binary number
* Dividing first quotient by 2 we first obtain
\diamond Quotient $_{2}=\left(d_{n-1} \times 2^{n-3}\right)+\ldots+\left(d_{3} \times 2\right)+d_{2}$
\diamond Remainder $_{2}=d_{1}$
* Repeat dividing quotient by 2
\diamond Stop when new quotient is equal to zero
\diamond Remainders are the bits from least to most significant bit

Popular Number Systems

* Binary Number System: Radix $=2$
\diamond Only two digit values: 0 and 1
\triangleleft Numbers are represented as 0s and 1s
* Octal Number System: Radix $=8$
\triangleleft Eight digit values: $0,1,2, \ldots, 7$
* Decimal Number System: Radix = 10
\diamond Ten digit values: $0,1,2, \ldots, 9$
* Hexadecimal Number Systems: Radix = 16
\triangleleft Sixteen digit values: $0,1,2, \ldots, 9, A, B, \ldots, F$
$\diamond A=10, B=11, \ldots, F=15$
* Octal and Hexadecimal numbers can be converted easily to Binary and vice versa

Octal and Hexadecimal Numbers

* Octal = Radix 8
* Only eight digits: 0 to 7
* Digits 8 and 9 not used
* Hexadecimal = Radix 16
* 16 digits: 0 to 9 , A to F
* $A=10, B=11, \ldots, F=15$
* First 16 decimal values (0 to15) and their values in binary, octal and hex. Memorize table

Decimal Radix 10	Binary Radix 2	Octal Radix 8	Hex Radix 16
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Binary, Octal, and Hexadecimal

* Binary, Octal, and Hexadecimal are related:

Radix $16=2^{4}$ and Radix $8=2^{3}$

* Hexadecimal digit $=4$ bits and Octal digit $=3$ bits
* Starting from least-significant bit, group each 4 bits into a hex digit or each 3 bits into an octal digit
* Example: Convert 32-bit number into octal and hex

3	5	3	0		5	5	5	2	3	6		2	4	Octal 32-bit binary Hexadecimal
1	0	101	00		01	10		10	011	10	00	10	100	
E		B	1	1	6	6		A	7		9		4	

Converting Octal \& Hex to Decimal

* Octal to Decimal: $N_{8}=\left(d_{n-1} \times 8^{n-1}\right)+\ldots+\left(d_{1} \times 8\right)+d_{0}$
\& Hex to Decimal: $N_{16}=\left(d_{n-1} \times 16^{n-1}\right)+\ldots+\left(d_{1} \times 16\right)+d_{0}$
* Examples:
$(7204)_{8}=\left(7 \times 8^{3}\right)+\left(2 \times 8^{2}\right)+(0 \times 8)+4=3716$
$(3 B A 4)_{16}=\left(3 \times 16^{3}\right)+\left(11 \times 16^{2}\right)+(10 \times 16)+4=15268$

Converting Decimal to Hexadecimal

* Repeatedly divide the decimal integer by 16
* Each remainder is a hex digit in the translated value
* Example: convert 422 to hexadecimal

Division	Quotient	Remainder
$422 / 16$	26	6
$26 / 16$	1	A least significant digit
$1 / 16$	0	

* To convert decimal to octal divide by 8 instead of 16

Important Properties

* How many possible digits can we have in Radix r ? r digits: 0 to $r-1$
* What is the result of adding 1 to the largest digit in Radix r ? Since digit r is not represented, result is (10) in Radix r Examples: $1_{2}+1=(10)_{2} \quad 7_{8}+1=(10)_{8}$

$$
9_{10}+1=(10)_{10} \quad F_{16}+1=(10)_{16}
$$

$*$ What is the largest value using 3 digits in Radix r ?
In binary: $(111)_{2}=2^{3}-1$
In octal: $(777)_{8}=8^{3}-1$
In Radix r.
largest value $=r^{3}-1$
In decimal: $(999)_{10}=10^{3}-1$

Important Properties - cont'd

* How many possible values can be represented ...

Using n binary digits?

Using noctal digits
Using n decimal digits?

Using n hexadecimal digits
Using n digits in Radix r ?
2^{n} values: 0 to $2^{n}-1$
8^{n} values: 0 to $8^{n}-1$
10^{n} values: 0 to $10^{n}-1$
16^{n} values: 0 to $16^{n}-1$
r^{m} values: 0 to r^{n-1}

* Analog versus Digital Circuits
* Digitization of Analog Signals
* Binary Numbers and Number Systems
* Number System Conversions
* Representing Fractions
* Binary Codes

Representing Fractions

\star A number \boldsymbol{N}_{r} in radix \boldsymbol{r} can also have a fraction part:

$$
N_{r}=\underbrace{d_{n-1} d_{n-2} \ldots d_{1} d_{0}}_{\text {Integer Part }} \cdot \underbrace{d_{-1} d_{-2} \ldots d_{-m+1} d_{-m}}_{\text {Fraction Part Point }} \quad 0 \leq d_{i}<r
$$

* The number \boldsymbol{N}_{r} represents the value:

$$
\begin{aligned}
& N_{r}= d_{n-1} \times r^{n-1}+\ldots+d_{1} \times r+d_{0}+ \\
& d_{-1} \times r^{-1}+d_{-2} \times r^{-2} \ldots+d_{-m} \times r^{-m} \\
& N_{r}= \text { (Integer Part) } \\
& \sum_{i=0}^{i=n-1} d_{i} \times r^{i}+\sum_{j=-m}^{j=-1} d_{j} \times r^{j}
\end{aligned}
$$

Examples of Numbers with Fractions

$(2409.87)_{10}=2 \times 10^{3}+4 \times 10^{2}+9+8 \times 10^{-1}+7 \times 10^{-2}$
$*(1101.1001)_{2}=2^{3}+2^{2}+2^{0}+2^{-1}+2^{-4}=13.5625$

* (703.64) ${ }_{8}$

$$
=7 \times 8^{2}+3+6 \times 8^{-1}+4 \times 8^{-2}=451.8125
$$

(A1F.8) ${ }_{16}$
$=10 \times 16^{2}+16+15+8 \times 16^{-1}=2591.5$

* $(423.1)_{5}$
$=4 \times 5^{2}+2 \times 5+3+5^{-1}=113.2$
* $(263.5)_{6}$

Digit 6 is NOT allowed in radix 6

Converting Decimal Fraction to Binary

* Convert $N=0.6875$ to Radix 2
* Solution: Multiply N by 2 repeatedly \& collect integer bits

Multiplication	New Fraction	Bit
$0.6875 \times 2=1.375$	0.375	1
$0.375 \times 2=0.75$	0.75	0
$0.75 \times 2=1.5$	0.5	1
$0.5 \times 2=1.0$	0.0	1

* Stop when new fraction $=0.0$, or when enough fraction bits are obtained
* Therefore, $N=0.6875=(0.1011)_{2}$
* Check $(0.1011)_{2}=2^{-1}+2^{-3}+2^{-4}=0.6875$

Converting Fraction to any Radix r

* To convert fraction N to any radix r

$$
N_{r}=\left(0 . d_{-1} d_{-2} \ldots d_{-m}\right)_{r}=d_{-1} \times r^{-1}+d_{-2} \times r^{-2} \ldots+d_{-m} \times r^{-m}
$$

* Multiply N by r to obtain d_{-1}

$$
N_{r} \times r=d_{-1}+d_{-2} \times r^{-1} \ldots+d_{-m} \times r^{-m+1}
$$

* The integer part is the digit d_{-1} in radix r
* The new fraction is $d_{-2} \times r^{-1} \ldots+d_{-m} \times r^{-m+1}$
* Repeat multiplying the new fractions by r to obtain $d_{-2} d_{-3} \ldots$
* Stop when new fraction becomes 0.0 or enough fraction digits are obtained

More Conversion Examples

* Convert $N=139.6875$ to Octal (Radix 8)
* Solution: $N=139+0.6875$ (split integer from fraction)
* The integer and fraction parts are converted separately

Division	Quotient	Remainder
$139 / 8$	17	3
$17 / 8$	2	1
$2 / 8$	0	2

Multiplication	New Fraction	Digit
$0.6875 \times 8=5.5$	0.5	5
$0.5 \times 8=4.0$	0.0	4

$*$ Therefore, $139=(213)_{8}$ and $0.6875=(0.54)_{8}$

* Now, join the integer and fraction parts with radix point

$$
N=139.6875=(213.54)_{8}
$$

Conversion Procedure to Radix r

* To convert decimal number N (with fraction) to radix r
* Convert the Integer Part
\triangleleft Repeatedly divide the integer part of number N by the radix r and save the remainders. The integer digits in radix r are the remainders in reverse order of their computation. If radix $r>10$, then convert all remainders > 10 to digits $\mathrm{A}, \mathrm{B}, \ldots$ etc.
* Convert the Fractional Part
\diamond Repeatedly multiply the fraction of N by the radix r and save the integer digits that result. The fraction digits in radix r are the integer digits in order of their computation. If the radix $r>10$, then convert all digits > 10 to A, B, \ldots etc.
* Join the result together with the radix point

Simplified Conversions

* Converting fractions between Binary, Octal, and Hexadecimal can be simplified
* Starting at the radix pointing, the integer part is converted from right to left and the fractional part is converted from left to right
* Group 4 bits into a hex digit or 3 bits into an octal digit
\leftarrow integer: right to left $-_$fraction: left to right \longrightarrow

7	2	6	1	3	2	4	7	4	5	2	Octal Binary Hexadecimal		
					0101000111111001010101								
7	5			B	5			c	A				

* Use binary to convert between octal and hexadecimal

Important Properties of Fractions

* How many fractional values exist with m fraction bits?
2^{m} fractions, because each fraction bit can be 0 or 1
* What is the largest fraction value if m bits are used?

Largest fraction value $=2^{-1}+2^{-2}+\ldots+2^{-m}=1-2^{-m}$
Because if you add 2^{-m} to largest fraction you obtain 1

* In general, what is the largest fraction value if m fraction digits are used in radix r ?

Largest fraction value $=(r-1) \times\left(r^{-1}+r^{-2}+\ldots+r^{-m}\right)=1-r^{-m}$
For decimal, largest fraction value $=1-10^{-m}$
For hexadecimal, largest fraction value $=1-16^{-m}$

* Analog versus Digital Circuits
* Digitization of Analog Signals
* Binary Numbers and Number Systems
* Number System Conversions
* Representing Fractions
* Binary Codes

Binary Codes

* How to represent characters, colors, etc?
* Define the set of all represented elements
* Assign a unique binary code to each element of the set
* Given n bits, a binary code is a mapping from the set of elements to a subset of the 2^{n} binary numbers
* Coding Numeric Data (example: coding decimal digits)
\triangleleft Coding must simplify common arithmetic operations
\diamond Tight relation to binary numbers
* Coding Non-Numeric Data (example: coding colors)
\diamond More flexible codes since arithmetic operations are not applied

Example of Coding Non-Numeric Data

* Suppose we want to code 7 colors of the rainbow
* As a minimum, we need 3 bits to define 7 unique values
* 3 bits define 8 possible combinations
* Only 7 combinations are needed
* Code 111 is not used
* Other assignments are also possible

Color	3-bit code
Red	000
Orange	001
Yellow	010
Green	011
Blue	100
Indigo	101
Violet	110

Minimum Number of Bits Required

* Given a set of M elements to be represented by a binary code, the minimum number of bits, n, should satisfy:
$2^{(n-1)}<M \leq 2^{n}$
$n=\left\lceil\log _{2} M\right\rceil$ where $\lceil x\rceil$, called the ceiling function, is the integer greater than or equal to x
* How many bits are required to represent 10 decimal digits with a binary code?
* Answer: $\left\lceil\log _{2} 10\right\rceil=4$ bits can represent 10 decimal digits

Decimal Codes

* Binary number system is most natural for computers
* But people are used to the decimal number system
* Must convert decimal numbers to binary, do arithmetic on binary numbers, then convert back to decimal
* To simplify conversions, decimal codes can be used
* Define a binary code for each decimal digit
* Since 10 decimal digits exit, a 4-bit code is used
* But a 4-bit code gives 16 unique combinations
* 10 combinations are used and 6 will be unused

Binary Coded Decimal (BCD)

* Simplest binary code for decimal digits
* Only encodes ten digits from 0 to 9
* BCD is a weighted code
* The weights are 8,4,2,1
* Same weights as a binary number
* There are six invalid code words 1010, 1011, 1100, 1101, 1110, 1111
* Example on BCD coding:
$13 \Leftrightarrow(00010011)_{B C D}$

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
	1010
Unused	\cdots
	1111

Warning: Conversion or Coding?

* Do NOT mix up conversion of a decimal number to a binary number with coding a decimal number with a binary code
$* 13_{10}=(1101)_{2}$
* $13 \Leftrightarrow(00010011)_{\text {BCD }}$

This is conversion
This is coding

* In general, coding requires more bits than conversion
* A number with n decimal digits is coded with $4 n$ bits in BCD

Other Decimal Codes

BCD, 5421, 2421, and 84-2-1 are weighted codes

* Excess-3 is not a weighted code
* 2421, 8 4-2-1, and Excess-3 are self complementary codes

Decimal	BCD 8421	5421 code	2421 code	$84-2-1$ code	Excess-3 code
0	0000	0000	0000	0000	0011
1	0001	0001	0001	0111	0100
2	0010	0010	0010	0110	0101
3	0011	0011	0011	0101	0110
4	0100	0100	0100	0100	0111
5	0101	1000	1011	1011	1000
6	0110	1001	1100	1010	1001
7	0111	1010	1101	1001	1010
8	1000	1011	1110	1000	1011
9	1001	1100	1111	1111	1100
Unused	\cdots	\cdots	\cdots	\cdots	\cdots

Character Codes

* Character sets

\triangleleft Standard ASCII: 7-bit character codes (0-127)
\& Extended ASCII: 8-bit character codes (0-255)
४ Unicode: 16-bit character codes ($0-65,535$)
\triangleleft Unicode standard represents a universal character set

- Defines codes for characters used in all major languages
- Each character is encoded as 16 bits
« UTF-8: variable-length encoding used in HTML
- Encodes all Unicode characters
- Uses 1 byte for ASCII, but multiple bytes for other characters
* Null-terminated String
\diamond Array of characters followed by a NULL character

Printable ASCII Codes

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
2	space	!	"	\#	\$	\%	\&	'	$($)	*	+	,	-		$/$
3	0	1	2	3	4	5	6	7	8	9	:	;	$<$	$=$	>	?
4	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
5	P	Q	R	S	T	U	V	W	X	Y	Z	[\}]	^	-
6		a	b	C	d	e	f	g	h	i	j	k	1	m	n	\bigcirc
7	p	q	r	s	t	u	v	w	x	Y	z	\{	1	\}	\sim	del

* Examples:
\triangleleft ASCII code for space character $=20$ (hex) $=32$ (decimal)
\diamond ASCII code for 'L' = 4C (hex) $=76$ (decimal)
\triangleleft ASCII code for 'a' = 61 (hex) $=97$ (decimal)

Control Characters

* The first 32 characters of ASCII table are used for control
* Control character codes = 00 to 1F (hexadecimal)
\diamond Not shown in previous slide
* Examples of Control Characters
\triangleleft Character 0 is the NULL character \Rightarrow used to terminate a string
\diamond Character 9 is the Horizontal Tab (HT) character
\diamond Character 0A (hex) $=10$ (decimal) is the Line Feed (LF)
\diamond Character 0D (hex) $=13$ (decimal) is the Carriage Return (CR)
\triangleleft The LF and CR characters are used together
- They advance the cursor to the beginning of next line
* One control character appears at end of ASCII table
\triangleleft Character 7F (hex) is the Delete (DEL) character

Parity Bit \& Error Detection Codes

* Binary data are typically transmitted between computers
* Because of noise, a corrupted bit will change value
* To detect errors, extra bits are added to each data value
* Parity bit: is used to make the number of 1's odd or even
* Even parity: number of 1 's in the transmitted data is even
* Odd parity: number of 1's in the transmitted data is odd

7-bit ASCII Character	With Even Parity	With Odd Parity
'A' = 1000001	$\mathbf{0 1 0 0 0 0 0 1}$	$\mathbf{1 1 0 0 0 0 0 1}$
'T' = 1010100	$\mathbf{1 1 0 1 0 1 0 0}$	$\mathbf{0 1 0 1 0 1 0 0}$

Detecting Errors

| Sender \longrightarrow T-bit ASCII character + 1 Parity bit |
| :---: | :---: |\rightarrow Receiver

* Suppose we are transmitting 7-bit ASCII characters
* A parity bit is added to each character to make it 8 bits
* Parity can detect all single-bit errors
\diamond If even parity is used and a single bit changes, it will change the parity to odd, which will be detected at the receiver end
\diamond The receiver end can detect the error, but cannot correct it because it does not know which bit is erroneous
* Can also detect some multiple-bit errors
\diamond Error in an odd number of bits

