King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3) Term 141 (Fall 2014) Final Exam Wednesday Dec. 31, 2014

7:00 p.m. – 10:00 p.m.

Time: 180 minutes, Total Pages: 11

Name:	_ID:	Section:

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	13	
2	15	
3	10	
4	6	
5	8	
6	15	
Total	67	

(13 Points)

Question 1.

I) Given the sequential circuit below with a single input X, a single output Z and two D flip-flops:

- a) Is this a rising-edge or falling-edge triggered circuit? (1 Point)
- **b**) Is this a Mealy or Moore circuit? (**1 Point**)
- c) Obtain the state table of the circuit. (5 Points)

II) Given the state table below for a sequential circuit with a single input x and a single output z,

Current	Next State		Out	tput
State	$(q1q0)^{t+1}$		2	Z
$(q1q0)^{t}$	x=0 x=1		x=0	x=1
00	00	01	0	0
01	00	10	0	1
10	00	10	0	1
11	00	01	0	0

a) Draw the state diagram of the circuit. (2 Points)

b) Complete the timing diagram below for the values of the two flip flops q1q0 and the output z assuming falling edge triggered flip flops are used and starting from initial state q1q0=00. (4 Points)

Question 2.

(15 Points)

I. Draw a circuit implementing the following state table minimizing the number of used gates. (7 Points)

Current State	Input	Next State	Output
(AB)	<i>(x)</i>	$(D_A D_B)$	(z)
00	0	00	0
00	1	01	0
01	0	00	1
01	1	11	0
10	0	00	1
10	1	10	0
11	0	10	1
11	1	11	0

- II. Choose the correct answer for each of the following: (2 Points)
 - a. A PLA is made of:
 - i. Fixed AND array, fixed OR array
 - ii. Fixed AND array, programmable OR array
 - iii. Programmable AND array, Fixed OR array
 - iv. Programmable AND array, programmable OR array
 - b. A PAL is made of:
 - i. Fixed AND array, fixed OR array
 - ii. Fixed AND array, programmable OR array
 - iii. Programmable AND array, Fixed OR array
 - iv. Programmable AND array, programmable OR array
- III. Optimize a solution to program the following programmable logic to implement the following functions: (6 Points)

$$f_1(A, B, C, D) = \sum m(6,7,11,12,13,14,15)$$

$$f_2(A, B, C, D) = \sum m(1,2,3,4,5,8,9,10,11)$$

Question 3.

A <u>Moore</u> <u>Transition Detector</u> synchronous sequential circuit has a single input x and a single output z. The input data is applied serially at the input x and the circuit produces a 1 in the output z whenever a transition from 0 to 1 or from 1 to 0 are detected at the applied input data. Draw the state diagram of this circuit. Assume the existence of an asynchronous reset input to reset the machine to a reset state. A sample input/output data is given below.

(<u>NOTE</u>: You are <u>only</u> required to draw the state diagram <u>Nothing MORE</u>)

<u>Example</u>	<u>e:</u>		t=0 time
	Input	x	01100100011111
	Output	z	00101011001000

Question 4.

It is required to design a synchronous sequential circuit that receives two serial inputs \mathbf{x} and \mathbf{y} and produces a serial output \mathbf{z} that computes the equation $\mathbf{z}=2\mathbf{x}-\mathbf{y}$. Draw the state diagram of this circuit assuming a <u>Mealy</u> model. Assume the existence of an asynchronous reset input to reset the machine to a reset state. Two samples of input/output data are given below.

(NOTE: You are <u>only</u> required to draw the state diagram <u>Nothing MORE</u>)

<u>Example</u>	es:	[t = 0	time ►>
	Input	x	00100	
		у	01100	
	Output	z	01000	

		t=0 time
Input	x	10110
	у	11010
Output	z	11110

Question 5

- a. The sequential circuit above is clocked _____ (synchronously / asynchronously) (1 Pt)
- b. Draw the waveforms of signals A, B, C in response to the shown Clk signal assuming initial ABC value of **000**. (**4 Points**)

c. Assuming a negligible setup and hold times, an *inverter* delay of **1** ns and a delay from the *clock active edge till the new flip flop output* appearing of **4** ns, what is the <u>maximum clock</u> <u>frequency</u> at which the above circuit can operate? (**3 Points**)

(15 Points)

Question 6

It is required to design a digital calendar that counts days and months of the year. Given a clock signal with frequency **1 pulse/24 hours,** you are required to design the following as part of this system:

- a. Design a mod 12 months counter to count the months of the year (count 0 → January¹ up to Count 11 → December). Use a mod 16 counter to build this months counter. Assume the mod 16 counter to have the following control inputs :
 - **CE** "Count_Enable,
 - Clr (synchronous clear), and
 - Ld (parallel load), together with its associated inputs I₀, I₁, I₂, I₃.

The counter should produce an output signal (C_{out}) which equals 1 *only* during the last month of the year. (3 Points)

¹ The Gregorian year months are: January, February, March, April, May, June, July, August, September, October, November and December respectively.

b. Design a *days* counter to count the days of the month. The counter has two input signals x_1x_0 which indicate the number of days in the current month as shown in the table below.

$x_1 x_0$	# of Days	Months	Month Count
0 0	31	January, March, May, July, August, October,	0, 2, 4, 6, 7, 9, 11
		December	
0 1	30	April, June, September, November	3, 5, 8, 10
1 0	29	February in leap years	1
1 1	28	February in ordinary years	1

The counter should produce an output signal (C_{month}) which equals 1 *only* during the last day of the month. Design this *days* counter using a **mod 32** binary counter having the same control inputs as the counter in part (a). (5 Points)

c. Given the output (m₃ m₂ m₁ m₀) of the months' counter of part (a) and an input signal L that equals 1 only throughout leap years, derive the logic circuits which generate the signals x₁ and x₀ used by the *days* counter. (3 Points)
(*Hint: Use a 4x16 decoder and any other needed parts*)

d. Given the clock signal of frequency **1 pulse/24 hours**, show how to assemble the parts designed in (a), (b) and (c) to build a *synchronous* counter which gives the current month of the year and the day of that month. Assume that the counter is reset to 0 at the beginning of each year. *This assembled design should produce an output signal* (C_{year}) which equals **1** only during the last day of the year. (**4 Points**)

Note: Use black boxes for the parts designed in (a), (b) and (c) showing only the interface input and output signals, various signal connections and the logic to generate C_{year}